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Design and Robust Performance Evaluation of a
Fractional Order PID Controller Applied
to a DC Motor

J. Viola, L. Angel, and J. M. Sebastian

Abstract—This paper proposes a methodology for the quan-
titative robustness evaluation of PID controllers employed in
a DC motor. The robustness analysis is performed employing
a 2% factorial experimental design for a fractional order pro-
portional integral and derivative controller (FOPID), integer
order proportional integral and derivative controller (IOPID)
and the Skogestad internal model control controller (SIMC). The
factors assumed in experiment are the presence of random noise,
external disturbances in the system input and variable load. As
output variables, the experimental design employs the system step
response and the controller action. Practical implementation of
FOPID and IOPID controllers uses the MATLAB stateflow tool-
box and a NI data acquisition system. Results of the robustness
analysis show that the FOPID controller has a better performance
and robust stability against the experiment factors.

Index Terms—Factorial experimental design, fractional-order
PID controller, robustness analysis, SIMC PID controller.

I. INTRODUCTION

HE robustness of a control strategy is the capacity to

reach the desired operation specifications despite the
presence of external disturbances and parametric uncertainties
of the model guaranteeing a robust performance and robust
stability.

The classic control strategies as the proportional, integral
and derivative (PID) controller are widely implemented to
control different systems due to its simplicity in the tun-
ing and implementation. The PID controller provides good
features in the face of disturbances that affect the system
dynamics, as long as the magnitude of the disturbances does
not further alter the operation point of the feedback system.
Some advanced control strategies such as quantitative feedback
theory (QFT) [1],[2], H-infinity [3],[4], loop shaping [5]
and adaptive control [6] can be used for designing control
systems to deal process with robustness problems, however,
their implementation is quite complex.
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In the recent years and given a better understanding of
the fractional calculus [7],[8], a control strategy known as
fractional control has been presented suggesting the use of
non-integer operators for the modeling and design of control
systems [9]—[11]. Some applications of fractional control
[12]—[19] exhibit a good performance in the face of external
disturbances and parametric uncertainties, with good results
in the control of industrial processes. Although the effect of
the disturbances has been analyzed considering performance
indexes as the integral square error (ISE) or the integral of time
multiply by absolute error (ITAE) when the fractional-control
strategy is compared against the classic PID control [20]—[23],
a quantitative analysis, capable to identify which of these
disturbances further affects the stability and the performance
of each control strategy, has not been conducted.

This paper aims to perform a robustness analysis comparing
the IOPID, SIMC PID [24] and FOPID applied to the speed
control of a motor-generator set. The robustness analysis
aims to describe how the presence of disturbances affects
the performance and stability of each one of the PID control
strategies.

Usually the performance and robust stability evaluation of
a fractional control system is based on the graphical analysis
of the unit step response [25] or the graphical analysis of
the frequency response of the sensitivity and complementary
sensitivity functions of the system [9]—[11]. The proposed
method in this paper quantifies the effect of the external distur-
bances (random noise, external perturbation and the presence
of uncertain load) and its possible combinations on the output
variables of the system (unit step response and the control
action of the closed loop system) using statistical methods and
the analysis of variance (ANOVA). This methodology gives the
percentage of incidence of each perturbation over the system
outputs.

A factorial experimental design 23 is used as tool for the
robustness analysis which utilizes as input factors the presence
of random noise in the feedback loop, the existence of an
external disturbance to the process input and the presence of
uncertain load. The effect of these factors in the stability and
the performance of each control strategy is measured using
the root mean square error (RMSE) criterion and the standard
deviation of the step response and the root mean square
(RMS) value and the standard deviation of the control action
of the system. The factorial experimental design has been
implemented for the behavior analysis of biological [26],
chemical [27],[28] and communications [29], [30] processes
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as its application in control of processes is very limited.

The main contribution of this paper is the proposal of a new
method for a quantitative robustness evaluation of the control
strategies FOPID, IOPID and SIMC PID using a factorial
experimental design 2*. As additional contributions of this
paper are the design and digital implementation of the FOPID
controller and its validation in a real prototype.

This paper is structured as follows: the first part presents
the basic concepts of the fractional calculus and its application
to the PID control theory. Then, the principal aspects of the
SIMC PID and IOPID controllers are introduced. Subsequently
the design techniques for tuning the FOPID, SIMC PID
and IOPID controllers are established. It is followed by the
description of the system to control (motor-generator), the
model identification, the design of the FOPID, SIMC PID and
IOPID controllers and their digital implementation employing
the stateflow toolbox from MATLAB. Later the robustness
analysis for the implemented control systems is performed
using a factorial experimental design 23. For this analysis, the
experimental data is initially acquired from each PID control
system considering the effect of every factor (presence of
random noise in the feedback loop, the existence of an external
disturbance to the process input and the presence of uncertain
load) in the system step response and in the control signal. For
the step response the RMSE (root mean square error) value
and the standard deviation (SD OUT) are computed, whereas
for the control signal the RMS (root mean square) value and
the standard deviation (SD CONTROL) will be determined.
Then, the experiments design is performed using the DESIGN
EXPERT software and based on it, the percentage of incidence
of every factor to the control strategy is established. Finally,
the analysis of the results and the obtained conclusions are
exposed.

II. PRELIMINARY CONCEPTS
A. FOPID Controller

In the theory of fractional calculus [7],[8], notation used
to represent the derivative and integral of fractional order is
given by (1), where « represents the fractional order of the
derivative and integral, which are non-integers. f(¢) represents
the function to derive or integrate.
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dtiaf(t)’ a>0
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FOPID controller transfer function is based on the
widespread definition presented in (1) which can be rep-
resented by the Riemann-Lieuville (R-L) and Grunwald-
Letnikov (G-L) approximations.

R-L definition for o > 0 is given by:
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for (n —1 < a < n) and where I'() is the gamma function.

Dy f(t) 2

The definition of G-L is given by (3)
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where
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i) TE+DI(a—j+1)
Assuming zero initial conditions, the Laplace transform for
the fractional-order derivative of f(¢), is defined in (4).

LD f(t) = sTF(s). “4)

According to (1), it is possible to define the transfer func-
tion of the FOPID controller through the following integral
differential equation:

1
T;
where k is the proportional constant, 7; is the integral time
constant, T} is the derivative time constant, \ is the order (non-
integer) of the integral term, p corresponds to the order (non-
integer) of the derivative term, e(t) represents the error signal
and u/(t) is the control action signal. Based on (5) and applying
the Laplace transform of fractional order defined in (4), the
transfer function of the FOPID controller can be expressed as:

u(t) = k(e(t) + =D e(t) + TyD"e(t)) (5)

u(s) 1
=——=k(14 = Tyst | . 6
wo =20 =k (14 g Tet). ©

As presented in (6), the FOPID controller has five tuning
parameters, which gives a greater flexibility in the design stage
but becomes more complex obtaining the parameters of the
controller.

B. SIMC PID Controller

The SIMC tuning technique is based on the internal model
control (IMC) theory and proposes a simple methodology for
the tuning of the PI and PID industrial controllers. This design
methodology is used specially for the control of systems of
first and second order with delay. As shown in [24], the
principal advantages of this design technique are the simplicity
in the determination of the parameters of the PID controllers
for first and second order systems and the robustness of the
control system facing changes in the set point, presence of
external disturbances and random noise. According to [24], the
structure of the SIMC PID controller is given by the interacting
form of the PID controller.

1
Ge(s) =K (1 14 Tys). 7
= (14 7 ) 0 7 @
In order to use the parallel form of the PID controller, the
transformation factor f = 1+ 7T/T] is used, so the controller

parameters are defined as:

k=Kf
T, =T/f
T/
T, = 7d (8)
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III. TECHNIQUES FOR CONTROLLERS DESIGN
A. Design of FOPID Controller in the Frequency Domain

The design methodology in the frequency domain for frac-
tional controllers starts from a linear model of the system
Gp(s) and the transfer function of the controller G.(s), which
must satisfy the following operations specifications:

1) Phase margin (pm):

arctan(G.(jw)G,(jw)) = —m + pm. )
2) Gain crossover frequency (w,):
|Ge(s)Gp(s)| =0 dB. (10)
3) Robustness against variation of plant gain:
%arctan(Gc(jw)Gp(jw)) =0. (11)
4) Rejection of high frequency noise:
Ge(jw)Gp(jw)
- : = B dB. (12)
' 1+ Ge(jw)Gp(jw)
5) Rejection of output disturbances:
1
- - = A dB. (13)
’ 1+ Ge(jw)Gp(jw)

6) Controller saturation: It is considered due to the actuators
in the real systems have physical limitations that cannot be
exceeded. For the motor-generator system, the control action
is limited between £10 V.

The desired design specifications for the FOPID controller
are the phase margin (pm), the gain cross over frequency
(we), the magnitude of the sensitivity function (A) and the
magnitude of the complementary sensitivity function (B). In
order to solve the equation system described in (9)—(13), it is
necessary to use optimization methodologies.

B. Design of SIMC PID Controller

For the second-order system with delay defined in (14),
Reference [24] proposes the design of a PID controller with
the constants defined by (15).

_ kp —0s
) = T T D)@ 1
, 11
kT +0 1
T! = min [Ty, 4(T,. + 0)]
T =T, (15)

As shown in (15), T, is the only tuning parameter. Accord-
ing to [24], it is suggested to make 7T, the same as the delay
time 6, guaranteeing a robust behavior and a great following
to changes in the set point. Once the parameters have been
determined using (15), it is possible to obtain the parameters
of the parallel PID controller employing (8).

C. Design of the IOPID Controller in the Frequency Domain

Constants from the IOPID controller can be obtained
through design techniques in the frequency domain solving
the equation system established by (9)—(11).
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IV. DESCRIPTION AND IDENTIFICATION OF THE SYSTEM
A. System to be Controlled

The system to be controlled is shown in Fig.1. It cor-
responds to a DC motor-generator set formed of two DC
motors Bodine brand with 2500 RPM and nominal voltage
+130V DC. In Fig.1, motors are shown using the label 1.
One motor works as motor and the other motor is used as
generator and is mechanically coupled to the first motor and
a taco-generator 2 with +7V output. The power driver 3
with 10V input regulates the motor tension. The generator’s
maximum voltage output is £90V with a current of 2.3 A.
Control system is composed of the data acquisition card NI
DAQ 6008 4 and the MATLAB-Simulink interface 5. The
resistive loads shown in 6 are employed as uncertain load.

Fig. 1.
scheme.

Motor-generator system using the MATLAB-Simulink control

B. System Identification

Data acquisition card NI-DAQ 6008 from National
Instruments is employed to get the identification data of the
motor-generator system. Fig.2 shows the input and output
data employed in the identification process. Using a staggered
signal as input, the motor is driven into different speeds
including changes in direction of rotation. Taco-generator
voltage £7V is used as output signal. Acquired data is
introduced in the MATLAB identification toolbox to obtain
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Fig.2. Staggered input signal for the identification and system response.
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an approximated linear model from the system, which corre-
sponds to a second-order system with delay given by (16). The
identificated model has a fit of 90 %.

0.63606

670.615.
(42.77s + 1)(7.455 + 1)

G,(s) = (16)

V. DESIGN AND IMPLEMENTATION OF THE PID
CONTROLLERS

From the identified second order model of the system (16)
PID controllers design is performed. The proposed design
specifications for the feedback system are a gain margin of
10dB, a gain crossing frequency 0.033 rad/s, a phase margin of
60, the magnitude of the sensitivity function of A = —20dB,
the magnitude of the complementary sensitivity function of
B = —20dB and saturation limits 10 V. The constants of the
FOPID, SIMC PID and IOPID controllers are obtained using
the design techniques described in Section III. The constants
for every PID controller are shown in Table I.

TABLE I
CONTROLLERS CONSTANTS

Controller k T; Ty A o
FOPID 0.133 2.5 0.76 0.89 0.44

SIMC PID 0.33 4.7 0.6 1 1
I0PID 0.145 5.98 0.005 1 1

A. Controllers Discretization

1) FOPID Controller: In order to get the practical imple-
mentation of a controller in a specific hardware, it is necessary
to find its discrete model expressed in terms of a difference
equation. There are approximations that employ numerical dif-
ferentiation techniques that allow approximating the derivative
operator. Among these techniques the most commonly used
are, inter alia, forward difference, backward difference and
bilinear transform. However, for fractional controllers it is
necessary to redefine the discretization techniques previously
described so as to convert the non-integer order term to the
discrete domain.

According to [31] the fractional derivative with order can
be represented in a discrete form, using Tustin definition as:

_ —1\P
$ 0451 z
1+ 271

We

a7)

with
of —

~ tan( wel)

where 7' is the sampling time and w,. is the gain crossover
frequency chosen for FOPID tuning. However, in order to
determine the controller difference equation, a Taylor series
approximation for (17) is required. This approximation is
given by:

1— 21\’ N
(o/’ ) =a” > fu(Bwt (18)

where w = 21, N is the order of truncation of the Taylor
series and fi(53) is:

1 d* (1—w\”
) = 55 qur <1+w>

In this paper, s operator has an order of truncation N =6,
whose fi () coefficients are shown in Table IL

TABLE I
CONTROLLERS CONSTANTS

Constant fx(B) Coefficient
a6 fo(B) 1
as f1(B) -28
as f2(8) —24?
ag I3(8) - (%ﬁB + %5)
az fa(B) +(%54+%52)
ai f5(8) —(£8°+ 3%+ 2p)
ao f6(B) —(458° + 584 + £28%)

In order to reduce the infinite gain of integral term s~ of
the FOPID controller, it is necessary to rewrite this term as:

- [
PR Y
5

s 19)

Applying Taylor series expansion in (19), integral term can
be approximated as:

sA=a?

N
DI NPV (20)
k=0

where w = 271, (2 + 1)/(z — 1) corresponds to the Tustin
approximation for the integral term 1/s and N to the trun-
cation order. For the evaluation of the parameter fi(1 — A),
coefficients shown in Table II are used with 3 = 1— \. For the
derivative term, coefficients of Table II are used with 5 = p.
Replacing (18) and (20) in (6), FOPID discrete structure is
given by:

N
M = kp + kiOé_AZ + 12 fk(l — )\)w_k
e(z) z-1&=
N
+kq <a“ > fk(u)wk> : e2))
k=0
Expressing (20) as:
u(z) = up(2) + ui(2) + ua(2) (22)
with
up(2) = ke(2)
yz2+1 ol K
ui(z) = |f<:¢,0¢ g kgofk(l - Mw ]e(z)
N
ug(z) = lkzd <a“ ka(u)wk>]e(z). (23)
k=0

Replacing the Taylor series approximation coefficients
shown in Table II at (23), the terms wu,(k), u;(k) and uq(k)
in (24) are given by:
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up(k) = ke(k)
B (e — ek — 1)
7((15 — 1)u1(k — ].) — (CL4 — a5)ui(k — 2)
—(a3 - a4)ui(k — 3) — (CLQ — ag)ui(k — 4)
—(a1 — ag)ui(k — 5) — (ao — al)ui(k — 6)
—|—a0ui(k — 7)
ugq(k) = kqat[(e(k) — ase(k — 1))
+age(k — 2) + aze(k — 3) + aze(k — 4)
+a1€(k — 5) + aoe(k: — 6).

wilk) =

(24)

The structure presented in (23) allows to employ the anti-
windup technique in the integral term and facilitates the
implementation of the control law into a specific hardware.

2) IOPID and SIMC PID Controllers: For the practical
implementation of these controllers, the classic numeric dif-
ferentiation techniques of the derivative operator were used
such as Tustin, forward difference or backward difference;
in which the difference equation is obtained using the same
methodology described in the previous section.

B. Controller’s Practical Implementation

Response of the FOPID, SIMC PID and IOPID controllers
to a staggered input signal is shown in Fig. 3. This input signal
corresponds to variations in the speed of the motor from 0
RPM to 2500 RPM with changes in direction of rotation. As
Fig. 3 (a) shows, FOPID controller performs a better following
task, IOPID controller reaches the maximum overshoot and
the SIMC PID controller has maximum settling time. From
Fig. 3 (b), the control action of FOPID controller reaches its
steady-state value in less time. Meanwhile, the control action
of the SIMC PID controller is further affected by the random
noise.

Fig.4 presents the implementation of the feedback control
system utilizing MATLAB-Simulink. It is possible to observe:
the input ports (feedback signal obtained from the taco-
generator) and output from the data acquisition card (control
signal to manipulate the motor driver) D1, the controller
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implemented through the stateflow toolbox D2, the interface
to export data for later analysis D3, and the generator of
perturbations to the input of the process D4. The practi-
cal implementation of the FOPID, SIMC PID and IOPID
controllers is developed employing the stateflow toolbox. As
an example, Fig.5 shows the digital implementation of the
FOPID controller according to (23) and (24). It is important
to highlight the antiwind-up scheme for the integral action
(dotted line), the high-frequency filter for the derivative action
and the saturation limits of the actuator.

10 . 5

8/ — FOPID
o SIMC PID |
2 6 PIMCPID S 4 FOPID
5 4 b=t I0PID |
s 2 g3
g 0 — — 8 | vy
g2 i !
= P
c 4 = L
< — S }
=-6 o1t |

-3 D
101000 2000 3000 4000 % 1000 2000 3000 4000

Time (s) Time (s)
(a) (b)
Fig.3. Response to step input and control action from the FOPID, SIMC

PID and IOPID controllers.

VI. FACTORIAL EXPERIMENTAL DESIGN 23 AND
ROBUSTNESS ANALYSIS

Robustness of a control system is defined as the capacity of
the controller to ensure robust performance and robust stability
of the system given the presence of external disturbances and
random noise. This paper proposes the robustness analysis
of the control system presented in the Section IV using the
FOPID, SIMC PID and IOPID controllers and considering
its dynamical behavior given the presence of external distur-
bances. For this robustness analysis, a factorial experimental
design 2% with k = 3 factors [32] is proposed. The following
factors have been taken into consideration: the presence of
random noise in the feedback loop (A), the existence of
external disturbance in the input of the process (B) and
uncertainty in the load (C). Two levels have been considered
for each factor (presence or absence). The robustness of the

Fig.4. Feedback control system implemented in MATLAB-Simulink.

D4
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D2 E Signal 2 DI
Group | Signal builder 1 [
. »ls i . .
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Output Gain 2 D3
—:I > DATA
To workspace
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(init

%FOPID constants
kp=0.133;

ti=2.5; lambda=0.89; ki=kpfti;

—

)

td=0.76; mu=0.44; kd=kp*td;

%system constants

ts=0.1;

Tt=sqri{td*ti);

mk_sat_pos=5;

mk_sat_neg=0;

ek_1=0; ek_2=0; ek_3=0; ek_4=0; ek_5=0; ek_6=0;

mki_1=0; mki_2=0; mki_3=0; mki_4=0; mki_5=0; mki_6=0; mki_7=0;

control
ek=sp-y;

mkp=kp*ek;

we=0.023;
lambda_1=1-lambda;
alfa=wetan(we*(tsi2);
affa_lambda=alfatlambda;

mka=mkp+mki+mkd,

mki= (r*(ek+ek_1)) - ((a5-1)*mki_1) - ((a4-a5)*mki_2) - ( (a3-ad)*mki_3 )
- ((a2-a3)*mki_4 )- ((a1-a2)*mki_5 ) - ( (a0-a1)*mki_6 )+=( (a0)*mki_7);

mkd=r1*( (ek)+(b5*ek_1))+(b4*ek_2))+(b3*ek_3))+(b2*ek_4))+(b1*ek_5))+(b0*ek_6));

a5=-2*lambda_1;
ad=2*(lambda_142);

a3=-( ((4/3y1ambda_113) + ((2/3)lambda_1) );

a2=( ((2/3y1ambda_1n4) + ((4/3)lambda_1"2) );

al=-( ((4/15)*lambda_115) + ((4/3)lambda_1*3) + ((2/3)*lambda_1) );
a0=( ((4/45)"lambda_146) + ((2/9)1ambda_144) + ((46/45)lambda_142) );

mki_1=mki;

H ek_4
r=kifalfa_lambda;

mk=mka}
alfa_mu=affa*mu; \
b5=-2*mu1;
bA=2+(mur2);

b3=-( ((4/3y'mu*3) + ((2/3y'mu) ),

b2=( ((213y"mu*4) + (43 mu2) );

bA=-( ((4/15)*mur5) + ((43y*mur3) + ((2/3ymu) ),
bO=( ((4/45y'murE) + ((8/9y'mutd) + ((46/45) mut2) ),

mki_5=mki_4;mki_4=mki_3;

T{mh_7=mki_5.mki_E\:mki_S_ J
mKkL_3=mki_2;mki_2=mki_1;

ek_f=ek_5; ek_5=ek_4.
3, ek_3=ek_2;
k ek_2=ek_1; ek_1=ek;

[mka=mk_sat_pos]

[mka=mk_sat_neg]
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{mki=mki-(1/Tty*(mka-mk_sat_pos); mka=mk_sat_pos}}

mki=mki-(1/Tt)*{mka-mk_sat_neg);mka=mk_sat_neq}

\(1=kd*alfa_mu; Vi \\\ 0
Fig.5. FOPID controller implemented in stateflow.
TABLE III
FACTORS AND OUTPUT VARIABLES WHEN THE FOPID, SIMC PID AND IOPID CONTROLLERS ARE EMPLOYED
Factors FOPID IOPID SIMC PID
SD RMSE SD SD RMSE SD SD RMSE SD
A B C RMSE RMSE RMSE
OUT CONTROL CONTROL OUT CONTROL CONTROL OUT CONTROL CONTROL
0 0 O 0.15 6.45 3.46 1.29 0.42 6.38 3.53 1.28 0.22 6.49 3.55 1.27
0 0 1 0.16 6.44 3.48 1.28 0.42 6.38 3.55 1.29 0.24 6.49 3.56 1.3
0o 1 0 0.16 6.43 343 1.36 0.45 6.36 3.52 1.39 0.23 6.49 3.55 1.33
0 1 1 0.17 6.43 3.47 1.33 0.46 6.36 3.54 1.4 0.242  6.49 3.55 1.37
1 0 0 0.23 6.46 347 1.25 0.64 6.42 3.54 1.26 0.36 6.51 3.52 1.27
1 0 1 0.23 6.46 3.5 1.27 0.64 6.42 3.56 1.27 0.35 6.53 3.57 1.31
1 1 0 0.23 6.45 3.47 1.28 0.59 6.37 3.54 1.36 0.34 6.51 3.54 1.37
1 1 1 0.22 6.45 3.5 1.35 0.58 6.39 3.55 1.39 0.34 6.54 3.53 1.39
. - . RMSE SD OUT
system will be principally analyzed through the dynamic
behavior of the system step response and controller action. 0.6 6.50 ]
Specifically, the experimental design has as output variables, 0.5
the RMSE value and the standard deviation (SD OUT) for 0.4 6.45 E
the response of the system given a step input. Moreover, the 03 E 6.40 i
RMS value (RMS CONTROL) and the standard deviation 0.2 E E
1

(SD CONTROL) will be considered as output variables for
the control action. Two replicas of the experiment have been
taken into account to obtain a better representation of the in-
formation from the statistical standpoint. Table III presents the
effect of every factor and their combinations, over the output
variables previously mentioned, when the FOPID, SIMC PID
and IOPID controllers are employed.

A. Box-plot

A box-plot is created based on Table III in order to perform
a preliminary statistical analysis of the data. The box-plot for
the output variables from the FOPID, SIMC PID and IOPID
controllers with all the factors and their possible combinations
are shown in Fig. 6. According to Fig. 6, the output variables
RMSE, RMS CONTROL and SD CONTROL are less affected
for the presence of the analyzed factors when the FOPID con-
troller is used. The evidence is that the previously mentioned

FOPID SIMC PID IOPID

FOPID SIMC PID IOPID

RMS CONTROL SD CONTROL
- 1.40 —

—_ e
S

n " 03sf T
3.50 —

l;l 1.30]
3.45 | T i -+
- 0.25 -

FOPID SIMC PID IOPID

FOPID SIMC PID IOPID

Fig.6. Box-plot of the FOPID, SIMC PID and IOPID controllers.

output variables have the lowest value of the median and
the lowest dispersion when the FOPID controller is utilized.
The output variables RMSE and SD CONTROL are further
affected by the presence of the analyzed factors when the
SIMC PID controller is employed. The output variables RMS
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CONTROL and SD OUT are further affected by the presence
of the analyzed factors when the IOPID controller is used,
which is reflected in a highest median and a biggest dispersion.

B. Factorial Experimental Design 23

In order to establish quantitatively which of the analyzed
factors and their possible combinations affect to each output
variable when the FOPID, SIMC PID and IOPID controllers
are employed, a factorial experimental design 23 is performed
using the data shown in Table III. The quantitative robust-
ness analysis using the experimental design methodology is
considered to be as one of the principal contributions of this
paper. The analysis of variance (ANOVA) is performed using
the DESIGN EXPERT software and based on it is possible
to find the P value of every factor over each output variable
when a specific controller is used. A confidence interval of 95
percent (a = 0,05) was employed to perform the ANOVA. A
factor have a significant incidence over an output variable if the
P value is lower than a. Tables IV—VII present the obtained
results from the factorial experimental design for each one of
the output variables.

TABLE IV
ANOVA FOR THE RMSE OUTPUT VARIABLE WHEN THE FOPID,
SIMC PID AND IOPID CONTROLLERS ARE EMPLOYED

P value

Factor FOPID SIMC PID I0OPID
A-noise 0.007 0.95 0.47
B-load 0.08 0.001 0.6
C-disturbance 0.0001 0.0001 0.001
AB 0.33 0.2 0.27
AC 0.01 0.003 0.02
BC 0.03 0.0001 0.01
ABC 0.24 0.04 0.70

TABLE V

ANOVA FOR THE SD OUT OUTPUT VARIABLE WHEN THE
FOPID, SIMC PID AND IOPID CONTROLLERS ARE EMPLOYED

P value
Factor FOPID SIMC PID I0PID
A-noise 0.51 0.25 0.03
B-load 0.007 0.0001 0.001
C-disturbance 0.0001 0.0001 0.001
AB 0.47 0.62 0.98
AC 0.33 0.95 0.14
BC 0.27 0.009 0.01
ABC 0.57 0.87 0.8
TABLE VI

ANOVA FOR THE RMS CONTROL OUTPUT VARIABLE WHEN THE
FOPID, SIMC PID AND IOPID CONTROLLERS ARE EMPLOYED

P value

Factor FOPID SIMC PID IOPID
A-noise 0.0004 0.0003 0.01
B-load 0.4255 0.003 0.27
C-disturbance 0.0007 0.0008 0.07
AB 0.15 0.72 0.19
AC 0.86 0.53 0.87
BC 0.08 0.29 0.54
ABC 0.52 0.69 0.48
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TABLE VII
ANOVA FOR THE SD CONTROL OUTPUT VARIABLE WHEN THE
FOPID, SIMC PID AND IOPID CONTROLLERS ARE EMPLOYED

P value
Factor FOPID SIMC PID IOPID
A-noise 0.08 0.0005 0.01
B-load 0.0001 0.0001 0.0001
C-disturbance 0.03 0.0003 0.02
AB 0.36 0.13 0.46
AC 0.01 0.99 0.98
BC 0.60 0.85 0.14
ABC 0.17 0.44 0.26

C. Regression Models

Based on the ANOVA, it is possible to obtain the regres-
sion model for every output variable when each one of the
controllers is used. The general regression model is shown
in (25) and Table VIII presents the regression coefficients for
every output variable when the FOPID, SIMC PID and IOPID
controllers are employed, where y is the output variable, u is
the global mean of the output variable, k; for i = 1 to 7,
correspond to the coefficients of the regressor and A, B and
C correspond to the factors of the experiment.

y=p+kiA+koB+ k3C+ ksAB

+hsAC + kgBC + k7 ABC. (25)

The interpretation of the ANOVA for every output variable
and its correspondent regresor is presented below. Table IV
shows that the RMSE output variable is affected by the factors
A, C, AC and BC when the FOPID controller is employed.
The factor that presents the most significant incidence is C
(disturbance) due to this factor has the lowest P value. With
the SIMC PID controller, the factors of incidence are B, C,
AC, BC and ABC, with B (load) and C (disturbance) as the
most significant factors. In the case of the IOPID controller the
factors of incidence are C, AC and BC, where C (disturbance)
is the most significant. Based on the data from Table VIII,
the curve of the regression coefficients for the RMSE output
variable and for each one of the controllers is shown in Fig. 7.

0.6

0.5

0.4

0.3

021 o 0 o— ¢ — ¢ o o

o FOPID e SIMC 10PID
0.1

0
Nominal A-noise B-load C-disturbance AB AC BC ABC

Fig.7. Regression coefficients for the output variable RMSE using the
FOPID, SIMC PID and IOPID controllers.
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TABLE VIII
FACTORS AND OUTPUT VARIABLES WHEN THE FOPID, SIMC PID AND IOPID CONTROLLERS ARE EMPLOYED
RMSE SD OUT RMS CONTROL SD CONTROL

Factor FOPID SIMC PID IOPID FOPID SIMC PID IOPID FOPID SIMC PID IOPID FOPID SIMC PID IOPID
o 0.19 0.53 0.29 6.45 6.39 6.5 3.47 3.54 3.54 1.3 1.33 1.33
k1 2.85E—-3 —4E-5 —-043E-3 6.31E—4 —1.1E-3 —1.13E-3 0.01 7.6E—3 0.011 6.6E—3 7T9E—-3 0.01
ko —1.87E—4 —54E—-3 —1E-3 —3.25E-3 —-0.012 —228E—3 —1.68E—3 —5.18E—5 —3.78E—3 0.029 0.053 0.047
ks 0.033 0.09 0.06 0.01 0.017 9.66E—3 0.011 6.53E—3 —6.6E—3 —843E—3 —8.6E—3 99E-3
kq —8.25E—4 —1E-3 22E-3 —6.93E—4 —0.87E—4 —6.25E—6 3.18E—3 —456E—4 —4.54E—3 3.18E-3 23E—-3 2.71E-3
ks —25E-3 —-3.1E-3 —-51E-3 —947E—4 5.1E-5 —731E—4 356E—4 8.1E—4 54E—4 0.01 6.2E—6  8.12E—5
ke —2.1E-3 —0.02 —6.36E—3 —1E—-3 —3.26E-3 —1.5E-3 395E—-3 138E—3 -2.01E-3 1.8E—3 2.6E—4 578 E-3
kr —1E-3 —1.8E-3 7.56E—4 —531E—4 —15E—4 1.8E—4 1.33E—3 5.06E—4 —24E-3 5E-3 1.1E-3 —4.24E-3

Every point in the curve represents the level of incidence
of each factor and their combinations over an output variable
employing the FOPID, SIMC PID and IOPID controllers. It
is possible to notice that the factor with more significance in
all the controllers is C (disturbance). Besides, the SIMC PID
controller is the most affected by C (disturbance), meanwhile,
the FOPID controller is the less affected. The controller with
the lowest nominal RMSE value and the smallest dispersion
is the FOPID controller despite the presence of the factors
and their combinations. In nominal operation conditions, the
FOPID controller presents the lowest mean of the RMSE
output variable (0.19) while the SIMC PID controller has the
highest mean value (0.53).

Table V shows that SD OUT output variable is affected by
the factors B and C when the FOPID controller is used, with C
(disturbance) as the factor with the most significant incidence.
With the SIMC PID controller, the factors of incidence are
B, C and BC with B (load) and C (disturbance) as the most
significant ones. In the case of the IOPID controller the factors
of incidence are A, B, C and BC, with C (disturbance) as the
most significant. Based on the data presented in Table VIII,
the curve of the regression coefficients for the SD OUT output
variable and for each one of the controllers is shown in Fig. 8.

6.60
6.55
6.50

6.45

6.40
6.35

6.30

¢ FOPID ¢ SIMC IOPID

6.25
6.20

6.15 Nominal A-noise B-load C-disturbance AB AC BC ABC

Fig.8. Regression coefficients for the output variable SD OUT using the
FOPID, SIMC PID and IOPID controllers.

It is possible to notice that the factors with most significance
in all the controllers are C (disturbance) and B (load). Besides,
the SIMC PID controller is the most affected by C (distur-
bance) while the FOPID and IOPID controllers are affected
in a similar way. The SIMC PID controller has a smallest
nominal value of SD OUT and the biggest dispersion in the

presence of the factors and their combinations. In nominal
operation conditions the SIMC PID controller has the lowest
mean value of the SD OUT output variable (6.39), meanwhile,
the IOPID controller presents the highest mean value (6.50).

Based on Table VI, is possible to notice that the RMS
CONTROL output variable is affected by the factors A and
C when the FOPID controller is employed, with A (noise)
as the factor with the most significant incidence. With the
SIMC PID controller the factors of incidence are A, B and
C with A (noise) as the most significant one. In the case of
the IOPID controller the most significant factor is A (noise).
From Table VIII, the curve of the regression coefficients for
the RMS CONTROL output variable and for each one of the
controllers is shown in Fig.9.

3.60

3.58
3.56

3.54
3.52
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3.44
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Nominal A-noise B-load C-disturbance AB AC BC ABC

Fig.9. Regression coefficients for the output variable RMS CONTROL using
the FOPID, SIMC PID and IOPID controllers.

It is possible to observe that the factors with more signifi-
cance in all the controllers are A (noise) and C (disturbance).
Besides, the FOPID controller is the most affected by the
mentioned factors, while the SIMC PID controllers is the
less affected one due to it presents a smallest dispersion. In
nominal operation conditions, the FOPID controller has the
lowest mean of the RMS CONTROL output variable (3.47)
and the SIMC PID and IOPID controllers have a similar mean
value (3.54).

According to Table VII is possible to observe that SD
CONTROL output variable is influenced by the factors B, C
and AC when the FOPID controller is employed, with B (load)
as the factor that presents the most significant incidence. For
the SIMC PID and IOPID controllers, the factors of incidence
are A, B and C with B (load) as the most significant one.
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Based on Table VIII, the curve of the regression coefficients
for the SD CONTROL output variable and for each one of the
controllers is shown in Fig. 10. It is possible to notice that the
factor with more significance in all the controllers is B (load).
Besides, the SIMC PID controller is the most affected by the
previously mentioned factor, while the FOPID controller is the
less affected and presents a smaller dispersion in the presence
of the factors and their combinations. In nominal operation
conditions, the FOPID controller presents a lower mean value
in the SD CONTROL output variable (1.3) and the SIMC PID
and IOPID controllers have a similar mean value (1.33).

1.42

1.40]

1.28

1.26]
4 FOPID—¢-SIMC I0PID

1.24

1.22

Nominal A-noise B-load C-disturbance AB AC BC ABC

Fig. 10. Regression coefficients for the output variable SD CONTROL using
the FOPID, SIMC PID and IOPID controllers.

D. Robustness Analysis

For the robustness analysis of each controller, the results
from the experimental design obtained in Figs.7—10 will be
employ, as well as the regression coefficients presented in
Table VIII. The robustness of every controller will be evaluated
from the level of incidence of each factor over the output
variables used in the experiment. The level of incidence is
calculated subtracting to each point of the presented curves
in Figs.7—10 the mean value of every output variable for
each controller. In order to quantify the level of incidence
in percentage terms, the maximum value of the variations for
every output variable has been taken as an incidence of 100 %.
Fig. 11—14 show the level of incidence in percentage terms for
the output variables RMSE, SD OUT, RMS CONTROL and
SD CONTROL.

As Fig. 11 shows, the FOPID controller presents the lowest
level of incidence (14 %) for the RMSE output variable and
in the presence of the factor C (disturbance), while the SIMC
PID controller shows the highest incidence (100 %).

For the SD out output variable shown in Fig. 12, the FOPID
and IOPID controllers present a similar level of incidence
(60 %) in the presence of the factor C (disturbance), meanwhile
the SIMC PID presents the highest level of incidence (100 %).
This indicates that the FOPID controller shows a greater
performance and robust stability than the IOPID and SIMC
PID controllers facing the presence of external disturbances.

As Fig. 13 shows, for the RMS CONTROL output variable
facing the presence of the factors A (noise) and C (distur-
bance), the FOPID controller presents the highest level of
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Fig. 11. Level of incidence for the output variable RMSE using the FOPID,

SIMC PID and IOPID controllers.
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Fig. 12. Level of incidence for the output variable SD OUT using the FOPID,
SIMC PID and IOPID controllers.
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Fig. 13. Level of incidence for the output variable RMS CONTROL using
the FOPID, SIMC PID and IOPID controllers.

incidence (100 % and 91 %) while the SIMC PID controller
exhibits the lowest level of incidence (64 % and 56 %). For the
factor B (load) is possible to notice that the FOPID controller
has the lowest level of incidence (13 %) and the SIMC PID
controller has the highest level of incidence (43 %). This
means that despite the FOPID controller presents the highest
level of incidence in the presence of the factors A (noise)
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and C (disturbance), these levels do not exceed the minimum
values reached by the SIMC PID and IOPID controllers as is
presented in Fig. 9.

For the SD CONTROL output variable, Fig.14 shows
that the FOPID controller presents the lowest level of in-
cidence (53 %) facing the presence of the factor B (load),
while the SIMC PID exhibits the highest level of incidence
(100 %). Given the presence of the factors A (noise) and
C (disturbance), the level of incidence of these controllers
is similar (13% and 18 %). This indicates that the FOPID
controller presents a better performance and robust stability
than the IOPID and SIMC PID controllers in the presence of
uncertainties in the load.
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Fig 14. Level of incidence for the output variable SD CONTROL using the
FOPID, SIMC PID and IOPID controllers.

VII. CONCLUSIONS

This paper has presented a comparative robustness study
using a factorial experimental design among the FOPID, SIMC
PID and IOPID controllers employed to control a motor-
generator system. The factors used to measure the robustness
were the presence of random noise in the feedback loop, the
existence of external disturbance in the input of the system
and uncertainty in the load. The robustness analysis was
performed studying the level of incidence of the factors over
the system step response and the control action. This level of
incidence was measured through the output variables RMSE,
SD OUT, RMS CONTROL and SD CONTROL. The results of
the statistical robustness analysis show that the step response
is further affected by the presence of C (disturbance) with
the FOPID controller as the one with the lowest level of
incidence. This allows concluding that the FOPID controller is
more robust facing the presence of external disturbances. The
control action is further affected for the factors A (noise), B
(load) and C (disturbance) for all the controllers. The FOPID
controller presents the highest level of incidence due to the
factors A (noise) and C (disturbance), however is the less
affected by the factor B (load). This means that the control
action from the FOPID controller is more robust facing the
presence of uncertainty in the load.

Based on the robustness analysis, it is possible to conclude
that the FOPID controller, despite is not a robust control
technique, is an alternative for the control of systems with

uncertain load and presence of external disturbances, which is
reflected in a smaller control effort.

Finally, the experiments design methodology used this paper
for the robustness analysis of the control system, makes
possible to quantify and have numeric evidence of the real
performance of the controllers given the presence of different
factors that affect the behavior of the control system.
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