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A Nonlinear Observer Approach of SOC Estimation
Based on Hysteresis Model for Lithium-ion Battery

Yan Ma, Bingsi Li, Guangyuan Li, Jixing Zhang, and Hong Chen, Senior Member, IEEE

Abstract—In this paper, a state of charge (SOC) estimation
approach for lithium-ion battery based on equivalent circuit
model and the input-to-state stability (ISS) theory has been pro-
posed. According to the electrochemical performance of lithium-
ion battery, the equivalent circuit model with two RC networks
is established, which includes hysteresis characteristic in inner
electrochemical response process. The nonlinear relation between
open circuit voltage (OCV) and SOC is obtained from a rapid
test. Exponential fitting method is used to identify the parameters
of the model. A novel state observer based on ISS theory is
designed for lithium-ion battery SOC estimation. The designed
observer is tested on AMESim and Simulink co-simulation. The
simulation results show that the proposed method has a high
SOC estimation accuracy with an error of about 2 percent.

Index Terms—AMESim, hysteresis model, input-to-state sta-
bility (ISS) observer, Lithium-ion battery, state of charge (SOC).

I. INTRODUCTION

L ITHIUM-ION batteries have high levels of energy and
power density among electrochemical batteries. These

attributes make them suitable to be the energy storage system
in electric vehicle, hybrid electric vehicle, and plug-in hybrid
electric vehicle (EV/HEV/PHEV) [1]. One of the important
requirements in automotive batteries is to monitor their real
time state of charge (SOC). SOC of the battery is not readily
available during charging and discharging cycles. SOC values
have to be predicted based on the measured terminal voltage
and current [2].

SOC reflects the remaining capacity that can be drawn from
the battery pack and is used to ensure an optimum control of
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charging and discharging processes. However, several factors
of SOC determination for batteries such as hysteresis phe-
nomena, flat characteristic of open circuit voltage (OCV) over
SOC, and limited voltage measurement accuracy can result in
SOC estimation error [3].

In recent years, great effort has been exercised to improve
the accuracy of SOC estimation. There are two main kinds
of methods for SOC estimation at present. One is calcu-
lating SOC by charge-discharge current and OCV based on
energy conservation and inner physical characteristics of the
lithium-ion cell. The classical approach of current integration
(Coulomb counting) which samples the battery current and
computes the accumulated charge and discharge to estimate
SOC, is simple and inexpensive to implement, but it cannot
solve the problems of accumulative error and inaccurate initial
values. Open circuit voltage commonly needs relatively long
rest periods in applications. Since the rest periods will only
occur from time to time, the open circuit voltage measurement
is usually combined with other techniques [4]. Other methods,
such as discharge test or internal resistance characteristic,
are usually considered as laboratory methods. The obvious
disadvantages of non-model based estimation methods are
the limited accuracy, long estimation time and only offline
application in spite of the advantages as simple principle and
easy implementation [5].

The other is indirectly estimating SOC based on the math-
ematical model of the lithium-ion cell. State estimation with
Luenberger observer has already been analyzed [6]. Kalman
filter (KF) approach with its knowledge about statistical
characteristics of process and measurement noise is inten-
sively studied. Extended Kalman filter (EKF) and sigma point
Kalman filter (SPKF) are two improvements to the classical
KF which are investigated for nonlinear systems [7]−[9]. The
support vector machine (SVM) and sliding mode observer
(SMO) can simulate the complicated battery dynamics, but
the performance of these techniques is sensitive to training
data. Therefore, it is not appropriate for the battery online
application [10], [11].

The well-known input-to-state stability (ISS) property of
deterministic systems originated in [12] and was investigated
quite intensively in recent years [13], [14]. Especially, some
concepts of ISS observer have appeared in [15]. Considering
the parameter uncertainties and the unmodeled dynamics as
disturbance inputs [16], analyzed the robust stability of the
closed loop estimation error system based on the ISS theory,
and gave estimation system parameter adjustment guidelines
on this basis.

It is obvious that proper design, engineering and operation
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of these battery systems require an appropriate battery model
[6]. In [17], we can see that the battery parameters, such as
internal resistance, can be different in different charging and
discharging rates or other conditions. So it is necessary for
us to build a more accurate battery model such as parameter-
varying model with hysteresis effect.

The hysteresis constitutes a very significant internal variable
for some battery technologies. Its value depends on the battery
process, which can be divided into three possibilities: charging,
discharging and charging/discharging transient. There is not
yet a clear physical explanation for the hysteresis phenomenon,
although the domain theory relates the hysteresis to separated
regions inside the electrode that lead to different electrode
equilibrium potentials during the charging and discharging
[18], [19]. The hysteresis phenomenon also modifies the model
parameters of the battery and therefore its dynamic response
[20]. So we consider the influence of hysteresis on the OCV
of the battery in charging/ discharging transient.

Therefore, the future study on SOC estimation will focus
not only on highly accurate and strongly robust estimation
methods, but also on modeling the cell accurately by means
of studying the battery characteristics.

The remaining part of the paper is organized as follows.
In Section II an equivalent circuit model with hysteresis
(ECMH) is presented to characterize the dynamics of lithium-
ion cell, and the detail procedures to identify the battery ECM
parameters are also explained. In Section III, the nonlinear
observer based on the ISS theory is proposed to estimate
SOC of lithium-ion cell. The numerical algorithm for SOC
estimation based on the nonlinear observer is verified by the
co-simulation in Matlab/Simulink and AMESim respectively
in Section IV. Finally, conclusions are given in Section V.

II. HYSTERESIS MODELING AND PARAMETER
IDENTIFICATION

In this section, the simplified equivalent circuit model
with the hysteresis characteristic of lithium-ion cell will be
modeled. Time-varying elements in each RC network and the
internal resistance are considered. The hysteresis element in
the equivalent circuit model shows the nonlinear characteristics
of the components inside the SOC estimating system [21].

A. Hysteresis Modeling of Lithium-ion Cell

The motion of the lithium-ion in the cell is shown in Fig. 1.
The equivalent circuit model with hysteresis characteristic of
lithium-ion cell is shown in Fig. 2.

Fig. 1. Lithium-ion battery schematics.

Fig. 2. Equivalent circuit model with hysteresis.

This model consists of an ohmic internal resistance Re(i),
two RC networks (R1(i), C1(i) represent the electrochemical
polarization effect, R2(i), C2(i) represent the concentration
polarization effect), and a hysteresis link Vh(i).

According to Kirchhoff’s law, the terminal voltage can be
given by

V = Voc(SOC) + V1 + V2 + Vh + Re(i) · i (1)

and the electrochemical polarization voltage V1 and the con-
centration polarization voltage V2 can be expressed as

V̇1 = − 1
R1C1

V1 +
1
C1

i (2)

V̇2 = − 1
R2C2

V2 +
1
C2

i (3)

where Voc is the OCV; V1 is the voltage of network of R1C1,
V2 is the voltage of network of R2C2; Vh is the voltage
of hysteresis part; Re is the ohmic internal resistance and
i represents the instantaneous current (i > 0 means charge
process of the battery, while i < 0 means discharge process
of the battery). τ1 = R1C1 and τ2 = R2C2 are the time
constants.

The OCV, as a function of SOC, is simplified as Voc(SOC),
which can be expressed [22] as

Voc(SOC) = λ · V C
oc(SOC) + (1− λ) · V D

oc (SOC) (4)

where λ ∈ (0, 1), is proportionality coefficient. V C
oc(SOC) and

V D
oc (SOC) is the OCV of the charge and discharge of a battery

at this SOC, respectively. Once the parameter λ is determined,
we could get the OCV value corresponding to this SOC.

The hysteresis voltage Vh is a first order dynamic process
[23] related to current absolute value, which can be expressed
as

V̇h = (1− e−|κ·i|)Vh ± (1− e−|κ·i|)H (5)

where κ is the attenuation coefficient, H can be expressed as
(9), which is the upper bound of hysteresis voltage determined
by charging/discharging OCV, and ± represent charging and
discharging, respectively.

H =
1
2
[V C

oc(SOC)− V D
oc (SOC)]. (6)

Choose state variables as x =
[
SOC Vh V1 V2

]T
. Let

input as u =
[
i ±H

]T
, current i and hysteresis voltage’s

upper bound H . Let the output as y = V . Then state space
model is shown as follows

ẋ = A(i) · x + B(i) · u (7)

y = g(x) + D(i) · u (8)
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where A(i) =




0 0 0 0
0 1− e−|κ·i| 0 0
0 0 − 1

R1(i)C1(i)
0

0 0 0 − 1
R2(i)C2(i)




B(i) =




1
QN

0
0 1− e−|κ·i|
1

C1(i)
0

1
C2(i)

0


, D(i) =

[
Re(i) 0

]

g(x) = Voc(SOC)+Vh+V1+V2. And R1(i), R2(i), C1(i),
C2(i), Re(i) represents the dependency of these parameters on
current.

B. Model Parameterization Identification

The cell characterization and validation tests are carried
out on single cell. The 2.5 Ah cells are used for experiment
in this paper. The OCV boundary curve test and hysteresis
test are done on a Neware battery test device BTS-5V6A
that comprises a voltage measurement accuracy of ±5 mV
and a current measurement accuracy of ±6 mA (of the full
scale value). During testing the cells, ambient temperature is
constantly held at 25 ◦C.

The model parameterization test schedule includes cell
capacity test and OCV test. The first charging circulation of the
cells makes the cells’ chemical characteristics fully activated.

Fig. 3. Configuration of the battery test bench.

Fig. 4. Battery charge and discharge rest curve.

During the first OCV test (boundary curve test), the cells
are gradually discharged in 10 % ∆SOC steps beginning
at SOC = 100 %, with constant current 0.25 C, which means
400 mA, until reaching the discharge cutoff voltage (2 V).
Then the cells are recharged again (10 % interval, 0.25 C).

And then, equivalent resistance, polarization resistance and
polarization capacitance are identified in this section.

The charging and discharging idle curve of the battery test
is shown in Fig. 4, in which there are two curves. One is the
charging segment 1© and charging idle segment 2©. The other
is the discharging segment 3© and idle segment 4©.

Segment 1© shows the charging process with SOC 0 % to
50 %; segment 2© shows that the battery has been rested for
3 hours;

Segment 3© shows the discharging process with SOC 100 %
to 50 %; segment 4© also shows that the battery has been rested
for 3 hours;

Segment 4© is calibrated as shown in Fig. 5, where the initial
point is set at zero for simply curve fitting. Here exponential
function is taken to fit parameters of battery terminal voltages.

Fig. 5. Fitting curve of Segment 4©.

According to the circuit relations in Fig. 1 and (1)−(3), we
can get the battery terminal voltage output equation as follows

V = Voc + Rei + R1i(1− e−t/τ1) + R2i(1− e−t/τ2). (9)

Then we choose the exponential fitting function expression
as

V = k0 + k1e
−λ1t + k2e

−λ2t (10)

where k0, k1, k2 are constants; λ1, λ2 are the time constants.
Writing an exponential fitting function in MATLAB with the
rest voltage curves as shown in Fig. 4, we can determine the
parameters k0, k1, k2, λ1 and λ2, and obtain the fitting curve
like Fig. 5. And then the model parameters Re, R1, R2, C1

and C2 can be determined accordingly.
In order to study the effect of charge and discharge current

of battery on the model parameters, we had taken 16 sets
of charging/discharging experiments, and 100 times per set.
Discharging currents are −1600 mA to −200 mA, and charg-
ing currents are 200 mA to 1600 mA, with 200 mA interval
current. Fitting the charging/discharging rest curve, the values
of equivalent internal resistance, polarization resistances and
polarization capacitances are shown in Table I.

The second OCV test is for investigating the hysteresis
effect.

Gradual partial cycles are applied to achieve the inter-
mediate OCV curves between the OCV boundary curves as
shown in Fig. 6. At first the cells (SOC = 0%) are charged
to SOC = 50%. After 3 hours rest, the cells are discharged by
∆SOC = 10% for four times (SOC = 10% with 0.25 C and rest
3hours a time after discharging). Then the cells are charged
again in four steps (10% SOC a time, 0.25 C). The same cycles
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are repeated for initial SOC = 50% and 10%, respectively. The
nominal capacity is extracted from the cells being constant
current constant voltage (CCCV) charged previously.

From Fig. 6 we can see that the OCV value changes through
the hysteresis belt from the charging curve into discharging
curve. We can get the maximum value of H in different SOC
values [24], i.e., H = 13 mV by computing (6), and determine
κ = 4×10−6 by curve fitting the terminal voltage function in
(1) and (5).

TABLE I
THE RELATION BETWEEN MODEL PARAMETERS AND

CHARGE- & DISCHARGE-CURRENT

No i(A) Re(Ω) R1(Ω) R2(Ω) C1(F ) C2(F )

1 –1.6 0.0397 0.0220 0.0052 3245.3 2.8182×105

2 –1.4 0.0399 0.0227 0.0060 3330.4 2.4293×105

3 –1.2 0.0405 0.0237 0.0068 3519.4 2.2674×105

4 –1.0 0.0434 0.0242 0.0120 5684.6 1.9716×105

5 –0.8 0.0421 0.0252 0.0091 4120.9 2.2000×105

6 –0.6 0.0428 0.0267 0.0111 4381.1 1.7728×105

7 –0.4 0.0424 0.0229 0.0236 10219 1.2599×105

8 –0.2 0.0457 0.0261 0.0415 9410.3 9.7443×104

9 0.2 0.0587 0.0356 0.0346 9300.8 1.0908×105

10 0.4 0.0473 0.0249 0.0195 8475.9 1.6055×105

11 0.6 0.0415 0.0240 0.0119 4021.7 1.9176×105

12 0.8 0.0407 0.0225 0.0095 3826.5 2.2920×105

13 1.0 0.0385 0.0201 0.0061 3303.7 2.3189×105

14 1.2 0.0398 0.0206 0.0066 3570.0 3.4728×105

15 1.4 0.0392 0.0200 0.0059 3375.6 3.8511×105

16 1.6 0.0387 0.0194 0.0054 3101.6 3.7891×105

Fig. 6. Charging/discharging OCV curves.

C. Model Verification

To verify the accuracy of this parameter-varying second
order RC ECHM, build the battery simulation model in
MATLAB/Simulink. Charge the battery from SOC 0% to 50%
by constant current of 400 mA, and then discharge it to SOC
10% by the same current. We get battery terminal voltage
shown in Fig. 7 and the errors between model and measured
voltage are shown in Fig. 8. Those figures tell us that the error
mainly remains under 10mV when SOC = 10% − 50%. The
part of SOC below 10% is ignored in parameter calibration
because of unstable performance, complex process, and rare
use of battery in this condition, while we ensure the high
accuracy in other conditions.

To verify the accuracy and reliability of the model in
complex process, design a current-varying procedure as shown

in Fig. 9, which contains current value switching and charging-
discharging switching. We contrast the voltage output of this
model and a first order RC model with the measured values,
and get the results as in Figs. 10 and 11.

Fig. 7. The parameter-varying second order RC equivalent circuit model with
hysteresis simulation verification results.

Fig. 8. Battery model error.

Fig. 9. Custom current conditions.

Fig. 10. Battery model verification results.

Fig. 11. Battery model error under custom current conditions.

The voltage output values of the two models and the



MA et al.: A NONLINEAR OBSERVER APPROACH OF SOC ESTIMATION BASED ON HYSTERESIS MODEL FOR LITHIUM-ION BATTERY 199

measured voltage are shown in Fig. 12. And the output errors
of the two models are shown in Fig. 13. And those figures tell
us obviously that the errors of parameter-varying model with
hysteresis characteristics mainly remain under 10 mV, which
is a great improvement in accuracy than the first order one.
In addition, the tracking performance progresses a lot as well
especially when charging-discharging switching.

Fig. 12. ISS based observer simulation model block diagram.

Fig. 13. The SOC estimation effect validation of the nonlinear observer.

The simulation results show that the accuracy and other
model characters could be improved by adding into the
model the consideration of the difference between charging
and discharging process and the influence of the current on
the coefficients. Besides, the errors of the two models both
increase when charging-discharging switching, but the addition
of hysteresis influence would make the model better simulate
the real response when switching and keep the error at about
10 mV.

III. ISS BASED NONLINEAR OBSERVER

In this section, the parameter uncertainties and unmodeled
dynamics are considered as disturbance inputs, and it can be
proved that the SOC estimating closed-loop error system has
robust stability based on the ISS theory.

A. ISS Stability Analysis

To analyze the ISS stability of the SOC estimator of battery,
we rewrite the dynamic system (7) and (8) as follows

ẋ = A(i) · x + B(i) · u + w (11)

y = g(x) + D(i) · u + v (12)

where w and v summarize the model uncertainties and the
output measurement noise, respectively. The model parameters
come from a series of modeling experiments in Section II, and
the observer system is observable.

The nonlinear observer is designed in the form of

˙̂x = A(i) · x̂ + B(i) · u + L(y − ŷ) (13)

ŷ = g(x̂) + D(i) · u (14)

where L ∈ R4×1 is the observer gain to be determined later.
The observer error is defined as follows

e = x− x̂ (15)

then the error dynamics are described by

ė = A(i)x + B(i)u + w −A(i)x̂−B(i)u− L(y − ŷ)
= A(i)e + w − L[g(x)− g(x̂)]− Lv

(16)

where g(x) can be rewritten as the linear equation

g(x)− g(x̂) = C(x) · x− C(x̂) · x̂ + o(x). (17)

Substituting (17) into (16) leads to

ė = [A(i)− LC(x̂)]e + w − L[∆Cx + o(x) + v]
= [A(i)− LC(x̂)]e + w − Lw1

(18)

where ∆C = C(x)− C(x̂), ∆Cx + o(x) + v = w1.
Let the candidate Lyapunov function be in the form

V =
1
2
eT Pe (19)

with positive definite symmetric matrix P .
The time derivative of (19) is

V̇ =
1
2
[ėT Pe + eT P ė]

=
1
2
[eT (A(i)T P − C(x)T LT P + PA(i)− PLC(x))e]

+
1
2
(wT Pe− wT

1 LT Pe + eT Pw − eT PLw1). (20)

Let PL = Q, using PT = P , and P is a positive definite
symmetric matrix, so there must be an orthogonal matrix
U and a diagonal matrix Λ making P = UΛU−1, where
Λ = diag(

√
aii)2 = Λ1

2. Then P = (UΛ1U
−1)2 = P 2

1 .
Define P1w = v1, P1Lw1 = v2 and v0 = v1 − v2 , then (20)
becomes

V̇ =
1
2
[eT (A(i)T P − C(x)T QT + PA(i)−QC(x))e]

+ (P1e
T )v0. (21)

Apply Young’s Inequality [15] to achieve

(P1e
T )v0 ≤ κ1e

T Pe +
1

4κ1
vT
0 v0 (22)

where κ1 > 0.
Then (21) becomes

V̇ =
1
2

[
eT (A(i)T P − C(x)T QT + PA(i)

−QC(x) + 2κ1P )e
]

+
1

4κ1
vT
0 v0. (23)

Choose P , Q to satisfy the following inequality

A(i)T P−C(x)T QT +PA(i)−QC(x)+2κ1P ≤ −κ2P (24)
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with κ2 > 0.
Then (23) becomes

V̇ ≤ −1
2
κ2e

T Pe +
1

4κ1
vT
0 v0. (25)

Substitute (19) into (25), we have

V̇ ≤ −κ2V +
1

4κ1
vT
0 v0. (26)

Using the fact that [13]
1
2
λmin(P )‖e‖2 ≤ 1

2
eT Pe ≤ 1

2
λmax(P )‖e‖2 (27)

where λmin/max(P ) denotes the minimum/maximum eigen-
value of the matrix P .

From (25) and (26), we have

V̇ ≤ −1
2
κ2‖e‖2 supλmax(P ) +

1
4κ1

‖v0‖2. (28)

Upon multiplication of (26) by eκ2t, we get
d

dt
(V eκ2t) ≤ 1

4κ1
vT
0 v0e

κ2t. (29)

Integrating (29) over the interval t ∈ [0, t], then

V (t) = V (0)e−κ2t +
1

4κ1

∫ t

0

e−κ2(t−τ)vT
0 v0dτ (30)

Hence, the properties of the error dynamics of the designed
observer (13) and (14) are described as follows.

Theorem 1: Suppose the following:
1) κ1 > 0, κ2 > 0;
2) The observer gain P , Q is chosen to satisfy (24).
Then, the error dynamic property of the observer (13) and

(14) are as follow:
1) Input-to-state stable, if w and w1 are bounded in ampli-

tude, i.e., w, w1 ∈ L∞;
2) Exponentially stable with κ2 for w = w1 = 0.
Proof : It follows from (25) to (30), which shows that the

error dynamics admit the input-to-state stability property if
the model error w and w1 are supposed to be bounded in
amplitude, as property 1) required.

Taking w = w1 = 0, which means v1 = v2 = 0, and
v0 = 0, we obtain from (30) that |e(t)| ≤ |e(0)|e−κ2t, ∀t ≥ 0
which proves property 2). ¥

Remark 1: Now we give some discussions on the parame-
ters κ1 and κ2. From property 2), κ2 is chosen according to
the required decay rate of the error. If w and w1 are bounded
in amplitude, i.e., w, w1 ∈ L∞, then (30) becomes

‖e(∞)‖2 ≤ (
‖v0‖2∞
4κ1

) lim
t→∞

∫ t

0

e−κ2(t−τ)dτ (31)

i.e.,

‖e(∞)‖2 ≤ ‖v0‖2∞
4κ1κ2

. (32)

Hence, one may choose larger κ1 to reduce the offset. From
(24), however, one also notices that the larger κ1 is, the higher
observer gain is [15].

Remark 2: Equation (32) gives just an upper bound of the
estimation error offset, if the bound of the model error is given.
The real offset could be much smaller, due to the multiple use
of inequalities in the above derivation.

B. Implementation Issues and SOC Observer Design

According to Theorem 1 and Remark 1, a systematic
procedure is given to design the ECHM based observer in
the form of (13), Equation (14) as follows, and the observer
gain satisfies (24).

Step 1: Choose the parameter κ2, according to the required
error decay rate of the estimation error;

Step 2: Choose the parameter κ1, where it is suggested to
start from some smaller values (according to Remark 1);

Step 3: Determine the observer gain L and make it satisfy
(24);

Step 4: Use (32) to compute the estimated upper bound
of the offset for a given model error bound, and check if the
offset bound is acceptable;

Step 5: If the offset bound is acceptable, end the design
procedure. If not acceptable, go to Step 2.

It is well known that getting model error bounds is in
general very difficult, if not impossible. As mentioned in
Remark 2, for a given model error bound, (32) gives just an
upper bound of the estimation error offset, but the calculation
of static error after continuous inequality arithmetic might
be much larger than the real offset. Hence, the stopping of
iterations from Steps 1−5 is somehow a “rule of thumb”,
and we can obtain the most appropriate gain after repeated
calculation [16].

We now give a solution of (24) for choosing L to be
time-invariant (constant value), where the requirement for
low observer gains can be considered through linear matrix
inequality (LMI) optimization method. If A(i) and C(x) in
(24) vary in a polytope (convex polyhedron) with r vertices,
i.e.,

(A(i) C(x)) ∈ Co {(A1 C1), (A2 C2), . . ., (Ar Cr)}
(33)

where Co {} denotes the convex hull of the polytope. Then,
there are

β1, β2, . . ., βr ≥ 0 (34)

that satisfy
r∑

n=1

βn = 1 (35)

and make

(A(i) C(x)) =
r∑

n=1

βn(An Cn). (36)

Hence, conclusions are given as follows.
Theorem 2: Suppose that A(i) and C(x) vary in a polytope

as (33). Then for any time-invariant P , Q satisfying the
following linear matrix inequalities (LMIs):

AT
nP − CT

n QT +PAn −QCn + 2κ1P + κ2P ≤ 0
n = 1, 2, . . ., r

(37)

meet the observer gain condition (24).
Proof : The substitution of (36) into (24) leads to

r∑
n=1

βn(AT
nP − CT

n QT + PAn −QCn + 2κ1P + κ2P ) ≤ 0.

(38)
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Due to (35), the satisfaction of (37) guarantees (24) and
hence (38).

According to (35), if (37) is satisfied, (24) and (38) must
be valid. ¥

In (37), An and Cn are known and bounded, κ1 and κ2

are selected to be bounded, hence, some constant L is always
found to render it satisfying, i.e., P , Q is always satisfying
(37). Moreover, we prefer to have low observer gains, for being
robust against noises and reducing the upper bound of the
error offset, which is estimated by (32). Hence, L is obtained
through L = P−1Q.

By solving LMIs optimization problem (37), the solution
gives then a constant observer gain with the lowest possible
values satisfying the condition (24).

Under different circuit working conditions, An and Cn are
computed respectively, then the optimal P and Q are solved
through the LMI toolbox of Matlab, and the optimal observer
gain L is calculated.

P =




4.1921 0.0636 − 0.0048 0.0402
0.0636 0.0011 −1.0366e−5 6.1983e−5

−0.0048 −1.0366e−5 1.6871 −4.8214e−5

0.0402 6.1983e−5 −4.8214e−5 3.8635e−5




(39)

Q =
[
0.0048 4.3605e−5 3.7697e−5 4.3146e−5

]T
(40)

then the observer gain is

L = P−1Q =
[
0.1553 0.8038 −1.9750 17.3426

]T
.

C. Simulation Results

The proposed ISS based SOC observer is verified by
AMESim/Simulink co-simulation. First the observer is pro-
grammed in MATLAB/Simulink as in Fig. 12. Then a simula-
tion model of EV is developed in AMESim environment. The
model’s parameters are configured based on driving cycles and
the lithium-ion batteries used in this paper, so that the battery
module within will capture the transient dynamics.

Before simulation, set up the initial value of battery model
SOC as 50%, and the initial values of nonlinear observer SOC
as 30%, 50%, 70%, 90%, to verify the estimation precision
of the observer under the inaccurate SOC initial values. Plots
in Fig. 13 gives the simulation results of the SOC with the
current condition of Fig. 9, i.e., the condition for the observer
design. In Fig. 13 the red, black, purple and green curves are
the observer output SOC estimations, the blue curve is SOC
reference value. Due to the simulation is run for a long time,
the experimental data volume is larger, so we zoom in the
former 2000 s of the simulation results, as shown in Fig. 14.
We can see from Fig. 14, at the start of the simulation, SOC
estimation has different initial errors with reference value, but
at the beginning of the simulation within 1000 s, SOC estimate
is gradually moving closer to the “true SOC value”. In practice,
the requirement of convergence rate of SOC estimation is not
very high, so we think estimation error convergence within
1000 s meets the actual requirements here.

Fig. 14. Detailed SOC estimation simulation before the 2000s.

In Fig. 15, SOC estimation error and detailed simulation
before the 2000 s are shown, and we can see that, the observer
estimation error is within 2% and does not diverge throughout
the operation. Those simulation experiments prove that the
observer has a good robustness. At this point, we prove that the
calculated observer gain in Section III-C can make estimation
error meet the ISS from theoretical analysis and simulation
experiment respectively.

Fig. 15. SOC estimation error.

Fig. 16. Nonlinear observer battery terminal voltage estimation effect veri-
fication.

Fig. 16 shows the comparison curve of the output voltage
for the nonlinear observer and the terminal voltage of battery
model. In Fig. 16 the red curve is the terminal voltage estima-
tion value of the battery model, the blue curve is the terminal
voltage of battery model with white noise, to simulate the
actual sensor measurement noise. The resolution of the exper-
imental equipment is 5 mV, the white Gaussian noise added
into this simulation experimentation is with the average of 0,
and the variance of 0.25. Hence, the estimation performance
in Fig. 13 to Fig. 16 is much better. In the custom current
conditions, the observer can accurately track the voltage of
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the battery, which shows that the observer can guarantee
the precision of SOC estimation, at the same time, and can
accurately estimate the other three state variables.

IV. THE OBSERVER VERIFICATION BASED ON AMESIM

The proposed ISS based SOC observer is verified by
AMESim/Simulink co-simulation. First the observer is pro-
grammed in Matlab/Simulink as in Fig. 10. Then a simulation
model of EV is developed in AMESim environment. The
model’s parameters are configured based on driving cycles and
the lithium-ion batteries used in this paper, so that the built-in
battery module will capture the transient dynamics.

Electric vehicle model and the battery module in AMESim
are shown in Fig. 17.

Fig. 17. AMESim/Simulink co-simulation sketch.

We set up the co-simulation environment, and the AMES-
im/Simulink co-simulation flow chart is shown in Fig. 17.
All the model ports allow parameter configuration. So before
simulation, we need to load the relation between the battery’s
internal parameters (resistance R and open circuit voltage Voc)
and the depth of discharge (DOD = 1−SOC) to the software
installation location specified directory. The relation between
OCV and DOD is given by battery OCV boundary test in Sec-
tion II. The relation between the battery’s internal resistance R
and DOD is obtained from the impulse charging/discharging
test. The test is conducted between 0% and 100% at every
5% SOC interval to obtain the battery internal resistance.

In practice, the cell obviously cannot provide the driven
motor with sufficient voltage and current, so we need to
make battery packs which can be series or parallel connected
in several sets [9]. In the process of vehicle modeling, we
changed the battery module parameters into the A123-26650
battery which is studied and completely calibrated. We set
that the battery module contains 40 series battery unit and
every battery unit contains 100 parallel cells. At this point,
the electric vehicle battery module is set completely.

In this paper we choose New European driving cycle
(NEDC) which lasts for 1180 s. This driving cycle is a typical
procedure for light-duty vehicle (less than 3500 kg) under
European emission standards. It consists of 4 urban cycles and
an expressway cycle (urban speed under 50 km/h, expressway

speed under 120 km/h, frequent start-stop state), and the whole
process lasts 20 minutes. The details of the procedure are
shown in Fig. 18.

Fig. 18. NEDC speed working condition details.

We need to verify if the precision of the battery model is
satisfied in AMESim before SOC estimation. If the model
accuracy meets the requirements, co-simulate to estimate
battery SOC and to verify the accuracy of the estimation
algorithm under the actual working condition. If it does not
meet the precision requirements, then we need to adjust model
parameters.

Under AMESim environment, set up the cycle condition
as NEDC, and the initial value of battery SOC at 80%.
The working condition of cell is shown in Fig. 19, which
is corresponding to the car speed details. When speed is
low, discharge current is small; When the car is idle, the
current is zero; When the car speed is up, discharge current
instantaneously increases; When the car is braking, the motor
mode changes into electric generator mode and charges the
battery.

Fig. 19. Working current of the cell under NEDC.

The current value of the working condition and charge/
discharge switches frequently comparing the forestall custom
condition, and it is in favor of validating battery model’s
accuracy in complex current conditions. The terminal voltage
of cell in the battery pack through the simulation experiment
is shown as the blue curve in Fig. 20. After fine-tuning the
parameters of the model established in Section II, we get the
output voltage of the battery model shown as the red dotted
line in Fig. 20. The battery model error is shown in Fig. 21.

Within the simulation time of 0 s−800 s, i.e., under the city
working condition, the battery working current is relatively
small, and the model error is within 15 mV; Later in the
simulation, the car went into the high speed cycle, and the
battery charge/discharge current increases. The error of the
parameter identification resulted in the model error increased
in this period. When the discharge current increases instan-
taneously, the model error value is up to 26 mV. Throughout
the whole working condition cycle, by removing the influence
of the individual “spine” points, the model error can keep
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within 15 mV, which means the model accuracy meets the
requirements.

Fig. 20. Verification of the Li-ion battery under AMESim environment.

Fig. 21. Modeling error of the Li-ion battery under AMESim environment.

After the model verification, we would test the SOC es-
timation accuracy of the proposed nonlinear observer under
complex current procedure. Link AMESim and Simulink
according to Fig. 17, set the charging-discharging current as
is shown in Fig. 18, and set the SOC initial value 80% to
operate co-simulating. Use the SOC output from AMESim
battery value as the “true value”. The SOC accuracy would be
tested with model errors.

The battery working current and SOC value constantly
changes along with the vehicle’s start-stop, accelerating and
braking. In urban cycle, the maximum discharging current
is 40 A, while in expressway cycle it reaches 110 A. The
battery’s terminal voltage changes with current, but the range
is limited within 10 V because of the flat voltage plateau
of LiFePO4 batteries. With the observer’s SOC initial value
set at 82% before simulation, we get the estimation result
shown in Fig. 22 and the estimation error curve in Fig. 23.
After simulation, the battery SOC value decreases from 80%
to 76.4%. In addition, we put a plenty of battery packs in
parallel so as to have relatively small current in each pack,
which would reduce the battery heat generation [25], [26] and
cut down the polarization current to improve the service time
of one charging.

We set the observer with different SOC initial values in
the AMESim battery model, because of the difficulty in
determination of SOC initial value in application, and to verify
the proposed observer’s high accuracy, good robustness and
the ability to overcome the incorrect initial value problem. In
the beginning of simulation, the observer constantly corrects
the error between estimation value and “true value”. And then
with the influence of model error, it keeps the estimation value
waving near “true value” by correction. Finally, considering
all the results of the whole cycle procedure, we get the SOC
estimation error within 1.1%, which represents high accuracy.

The simulation results show that the proposed ISS observer
can not only guarantee the convergence of estimation error,

Fig. 22. SOC estimation of Li-ion battery pack under NEDC.

Fig. 23. SOC estimation error of Li-ion battery pack under NEDC.

but also effectively overcome the error of incorrect SOC
initial value. Furthermore, the nonlinearity causing divergence
can be effectively overcome in real vehicle running for the
model nonlinearity is sufficiently taken into consideration
during ISS observer design. Therefore, we believe that the
proposed ISS observer can accurately estimate battery SOC
in real vehicle running circumstances, in which the charging-
discharging current would change violently.

V. CONCLUSION

This paper proposes a nonlinear state observer based on the
ISS theory to estimate SOC of lithium-ion battery. We set up
equivalent circuit model with two RC networks, considering
the hysteresis characteristic when the lithium-ion battery is in
charging and discharging process. And the hysteresis model
parameters are identified by the measurement data acquired
from a commercial lithium-ion battery on a test bench. Then
the ISS based estimator has been set up to estimate SOC
of the lithium-ion battery. Simulation results denote the ISS
based estimator for the SOC estimation has high accuracy, and
improved robustness. The designed observer is also tested on
AMESim and Simulink co-simulation. The simulation results
show that the state observer based ISS theory in this paper
could trace the theoretical SOC well with the modeling error,
and the estimation error is restricted in the required bound
even when the model error or the initial SOC value is large.

In future work, the underlying battery model will be ex-
tended taking battery aging (capacity fade and resistance rise)
into account.
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