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From Parallel Plants to Smart Plants: Intelligent
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Abstract—Precision management of agricultural systems, aim-
ing at optimizing profitability, productivity and sustainability,
comprises a set of technologies including sensors, information
systems, and informed management, etc. Expert systems are
expected to aid farmers in plant management or environment
control, but they are mostly based on the offline and static infor-
mation, deviated from the actual situation. Parallel management,
achieved by virtual/artificial agricultural system, computational
experiment and parallel execution, provides a generic framework
of solution for online decision support. In this paper, we present
the three steps toward the parallel management of plant: growth
description (the crop model), prediction, and prescription. This
approach can update the expert system by adding learning
ability and the adaption of knowledge database according to
the descriptive and predictive model. The possibilities of passing
the knowledge of experienced farmers to younger generation, as
well as the application to the parallel breeding of plant through
such system, are discussed.

Index Terms—Artificial intelligence, cropping plan, manage-
ment system, precision agriculture, plant model.

I. INTRODUCTION

GREEN plants, our source of food, need fertilizer, water,
light, CO2 to grow. For controlled environment, artificial

light, CO2 as well as heating/cooling facilities are needed.
Inappropriate operations lead to low production efficiency and
damage to environment. Precision management [1] has been
proposed for agriculture in order to achieve benefits in prof-
itability, productivity, sustainability, crop quality, food safety,
environmental protection, on-farm quality of life, and rural
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economic development. According to [2], precision agriculture
comprises a set of technologies that combines sensors, infor-
mation systems, enhanced machinery, and informed manage-
ment to optimize production by accounting for variability and
uncertainties within agricultural systems. Nevertheless, preci-
sion management of crop (plants) production is a challenging
and long-term task, because of social and technical reasons.
Multiple domain knowledge is needed for the management
of complex agricultural system, including ecophysiology, soil
science, climatology, computer science, automation, etc. One
of the reasons for a multi- and inter-disciplinary approach is
that plant growth is under control of numerous environmental
factors, some being closely linked with each other, especially
in controlled environment [3].

To describe and to have better understanding about the be-
havior of these green living organisms, plant models have been
developed since 1960’s [4]. Process-based (or explanatory)
models have the advantage of simulating the growth of plant as
the result of many processes, including light interception, gross
photosynthesis, respiration, leaf area formation, dry matter
partitioning, etc. [5]. However, such process-based models
are often too complex [6] to serve for crop management,
although they did bring much knowledge about the interaction
between plant and environment, and also on greenhouse design
[7]. One reason is that model calibrations are usually done
under experimental conditions [8], while real situation is much
more complex and variable. As the growth environment is
essential for crop growth, for the greenhouse, mechanistic
environmental models have been developed describing the heat
exchange, humidity and CO2 concentration [9]; they are the
basis not only for greenhouse design [10], but also for the
simulation, control and optimization of crop production. More
recently, online parameter estimation of greenhouse model
has been developed [11], so that they can serve more for
environment control, yield prediction, crop management and
not just for education.

Expert systems aim at aiding farmers in plant management
or environment control, such as how to apply fertilizer or
how to deal with diseases. Classically they are based on
offline and static information, and even if being model-
based, the model does not necessarily describe the actual
situation. Recent advances in technologies and science bring
new chances for the development of smarter expert system.
Applications of IoT (internet of things) facilities are bringing
much more data than ever about agricultural environment, such
as the air temperature, light intensity, etc. [12]. Widely-used
mobile phones are not only the tools of viewing the data but
also giving the user behavior through agricultural information



162 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 2, APRIL 2017

management system. Besides, there are enormous open data
source that can be achieved through Web crawler, such as the
price of agricultural products [13]. However, such data need
to be deeply exploited to realize their value.

With the win of AlphaGo in 2016 [14], the idea of arti-
ficial intelligence is again warmly recognized by population.
Algorithms in machine learning are available to solve practical
problem [15], which can serve for intelligent decision support.
With the above background, we present a new framework
of smart plant management and control, which can upgrade
the classical model-based expert system into a system that
interacts with real situation. The system is achieved by vir-
tual/artificial agricultural system, computational experiment
and parallel execution [16]. This paper presents the key
components for building the virtual agricultural system — the
plant growth model, the approach of utilizing the real data
and generating experimental scenarios, and the steps of finally
achieving the parallel management of plant growth.

II. PLANT MODEL: A KEY COMPONENT OF THE
ARTIFICIAL AGRICULTURAL SYSTEM

Early generation of crop models include CERES [17],
Hortisim [18], etc. Afterwards, the models became more and
more sophisticated, describing most processes linked to plant
growth, including plant photosynthesis, respiration, biomass
production, allocation, remobilization, fruit setting, etc. Such
advances have greatly driven forward the plant science and
vice versa. In Netherlands, knowledge transfers are made
successfully from modelers to farmers, pushing the advances
in greenhouse and planting technology.

To be integrated in a computer system, classical process-
based models are too complex and have too many param-
eters to be estimated. For example, more than 500 state
variables are concerned in TomGro [6]. It is also the case
for most functional-structural plant model (FSPM, a more
recent generation of crop model) which simulates the plant
growth at individual organ level. In [19], for example, there
are 111 parameters for wheat simulation. Tailoring the model
complexity is thus a relevant issue. There should be a balance
between the model simplicity and the physiological meaning
of the parameters.

GreenLab model [20] shares the concepts close to process-
based model with the philosophy of simplicity. Fig. 1 shows
the main work flow of GreenLab. The model behavior can be
controlled by limited number of parameters. The number of
hidden parameters to identify is dependent on plant architec-
ture, but in general they are about ten, which is a relatively
small number. The plant growth can be expressed as a typical
discrete dynamic system as follows [21]:

Xn+1 = Fn(Xn, Un, P ) (1)

where Xn ∈ Rx is the set of characteristic system variables at
time tn (n ∈ [0; N]), here referring to the biomass of all types
of organs (leaves, internodes, flowers); Un ∈ Ru is the set
of exogenous variables at tn, such as the light intensity, soil
humidity, or air temperature, and P ∈ Rp the vector of model
(hidden) parameters, such as the sink strength of organs. The
initial biomass X0 is observable.

Fig. 1. A typical process flow in GreenLab model.

The harvestable part of plant is usually part of plant
biomass, e.g., root for radish, leaves for lettuce, and fruits for
tomato. Let Y ∈ Ry be a vector of experimental observations
made on the real plant once or several times. The correspond-
ing model outputs, deduced from (Xn), are thus a function of
parameter vector P :

Ỹ = G((Xn)n, P ). (2)

The parameters P can be identified by minimizing the
quadratic criteria as follows:

J(P ) = (Y − Ỹ (P ))T
−1∑

(Y − Ỹ (P )). (3)

Being a generic model, GreenLab has been calibrated for
different kinds of plants grown under different conditions, such
as tomato [22], chrysanthemum [23], wheat [24] and maize
[25]. A by-product is that the model can give 3D visualization
of plants, so that we can see virtual plants [23].

III. FACING REALITY: DATA AND KNOWLEDGE DRIVEN
MODELING APPROACH

In field circumstance, the environmental conditions may
vary significantly due to unexpected weather or management,
such that the originally calibrated process-based model is
unable to handle. Data-driven model, being a key approach
for the new generation of smart agriculture [26], has the
advantage of the ability to approximate nonlinear functions,
strong predictive abilities, and the flexibility to adapt to the
inputs of a multivariate system, while the physical explanations
or structural knowledge of a physical system are missing and
the internal processes are usually considered as black-box [27].
Taking the advantages of both process-based plant models and
data-driven models leads to the knowledge and data driven
modeling (KDDM) approach, which can break the bottleneck
of model applications from laboratory environment to real-
world application.

An example can be found in [27], which couples GreenLab
model with a neural network. The coupling of both models
can be additive or multiplicative. The result shows that this ap-
proach adds flexibility of dealing with environmental variables
to process-based model, and gives better prediction compared
to existing data-driven model, as it enables the model to utilize
domain knowledge. Fig. 2 shows the structure of an additive
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KDDM between a process-based crop model and a radial basis
function network (RBFN).

Fig. 2. A data and knowledge driven modeling approach [27].

Here, although one can distinguish the data-driven and
knowledge-based model, in wider sense, the process-based
model is also data/observation based. When one chooses the
level of model complexity, the degree to which the process has
to be described is decided. For example, in FSPM the biomass
production and allocation process are modeled, while the leaf
expansion law is described by an empirical law such as a Beta
function, which is based on observation data [27].

IV. TOWARD PARALLEL MANAGEMENT OF CROP GROWTH

KDDM provides a key solution for answering well the
questions like “what happened in history”, “why did it hap-
pen”. For application, often the question is “what to do next”.
This need leads to the parallel precision management system
of plant growth. Typically a parallel system is achieved by
ACP approach: artificial/virtual system for descriptive analyt-
ics, computational experiments for predictive analytics, and
parallel execution for prescriptive analytics [26]. For parallel
plant management system, the scheme is shown as in Fig. 3.

Fig. 3. Schematic presentation of parallel plant management system.

A. Description

This process is to build a representation of the real system
in cyberspace. To have a sound basis, it is necessary that the
virtual correspondent fits well the data of the real one, so
this process is regarded as “speaking with data” [28]. Given
its genotype, the plant growth is under control of both the
environment (E) and management by human being (M), e.g.,
fertilizing, harvesting, pruning, etc., the latter influencing the
plant growth either directly or indirectly via environment. Each
component has its way to achieve data. Fig. 4 shows the key
components and their corresponding descriptive models.

For plants, the observable data includes their development
stages (flowering, fruit set, etc.), yield and/or nutrition level,
partly available in an automatic way. The above mentioned

KDDM can serve as the descriptive model for plants. Fig. 5
shows two plants, simulated under two different temperatures:
given the model rules, the plant under low temperature pro-
duces fewer flowers, with its corresponding curves of biomass.

For the environment data, most of them can be obtained
with (cheap or expensive) sensors in real time, thanks to IoT
technology, while the nutrition level in soil is more difficult
to get. The management behavior, such as the fertilizing
and irrigation, can be recorded by information system. In
the agricultural system, human is part of the agricultural
system: an experienced farmer makes decisions (e.g., timing
of pruning, irrigation) in a different manner from a new
practitioner. The descriptive model of human being can be
assessed by prevailing User Profile technology, popular in
commercial domain [29].

B. Prediction
Predictive analytics is supposed to answer “what will hap-

pen”, “when will it happens”, and “why will it happen”
in future. It must be based on the descriptive model and
historical data to be realistic, but it can easily produce much
more data than the reality, giving a source of virtual “big
data”. This step is about conducting computational experiment
[30], providing a cheap way of obtaining desirable scenarios
with certain control and management policy, for example, the
reaction of plants under different temperature, humidity and
light combinations.

According to [26], [28], [30], the virtual predicted future
can be regarded as the virtually created future in cyberspace,
because one of the computational results can be chosen for
implementation in real world. In agriculture, for example,
before planting, setting up the cropping plan is a tedious work
and should be based on the knowledge of the plant’s life
cycle, market, the compatibility between successive crops, etc.
[31]. The prediction of plant growth according to environment
model can serve for scheduling, before a cropping plan is
finally applied. Fig. 6 shows an example of prediction by
setting different planting dates of tomato plants. Based on
the trained model (solid lines) [27], yield evolution for other
condition (dashed lines) is deduced.

C. Prescription
Prescriptive analytics is developed to find beneficial/op-

timized policy from predictions through parallel execution,
during which the real and virtual systems interact with each
other. For example, the optimal cropping plan can be computed
given the crop cultivar, constraints and the target [32], which
is a key information for the arrangement of cash flow, human
resource and farming machines for a modern farm manager.

Optimization method is necessary at this stage to give an
optimal (suboptimal) choice from the virtual outputs. For
example, Wu et al. [33] computed an irrigation policy for
a given amount of water so that the sunflower product is
most (Fig. 7). The target is to obtain the optimal water supply
strategy to maximize yield with the given amount of water.
The visual output of plant can help to observe the result in a
direct way, e.g., the size and color of organs, to see quickly
the result of a strategy.



164 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 2, APRIL 2017

Fig. 4. Components in an agricultural system and the descriptive models.

Fig. 5. Calibrated GreenLab model for chrysanthemum [23].

Fig. 6. Prediction of total dry weights of tomato plants for different planting
date. Dots and solid lines represent the trained model, and the dashed line
represents the predicted result.

Fig. 7. Optimal control of irrigation policy [33].

Moreover, online learning and adaption are needed during
the implementation as the behavior of the real system may
deviate from the predicted one. Algorithm like particle filtering
[34] can serve for this purpose. It has been applied to predict
online the leaf area index with data from remote sensing
using a crop model [35] (Fig. 8). Such work is useful for the

prescription in case that the real situation deviates from the
expected one.

V. CONCLUSION AND DISCUSSION

In China, promoting information and intelligence technolo-
gies in agronomy is being strengthened by the government
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over the years. With

Fig. 8. Online prediction of leaf area index based on a crop model [35].

the transition from the small-scale and family-based farming
mode to the big-scale and company-based mode, the need of
new techniques is higher than ever. The information systems,
usually available in industry, are coming into agriculture to
develop the industrialized agriculture. The cyber-physical-
social system (CPSS) [36] is necessary in agriculture to
augment the production efficiency. The application of artificial
intelligence is opening a new era of modern agriculture. The
above parallel system for management and control defines
a generic framework for future management systems. This
also updates the expert system by learning and adaption of
knowledge database according to the descriptive and predictive
model. While previously many agricultural applications are
focused more on data acquisition through IoT technology,
parallel management provides a feasible solution of utilizing
such data.

The full system as in Fig. 4 includes human being, which
can take decisions proposed by an expert system, according
to his/her experience. This kind of “human-in-loop” system
adds a new dimension and the human behavior can influence
the final system behavior. Actually, adding human in the
greenhouse control system has been proposed already [3], in
order to compensate the situation that the crop models are
not reliable and leave room for the experienced grower. It is
expected that, with an experienced user, by learning from its
decision, the system may finally give smarter decision than
the one given by an ordinary user, as proved by the AlphaGo
[14]. This gives a way for saving, analyzing and spreading
the knowledge of experienced farmers, which is becoming
scarce with younger generation who mostly choose to abandon
agricultural work. In this way, the parallel system is served
for training. If the descriptive model is well setup, and data
acquisition is easy, parallel dynamic programming [28] can
be applied to train a highly intelligent virtual farmer that can
give decision. However, for the moment, there are still many
research works left to be done.

Similarly, the proposed idea can be extended to parallel
breeding. Genetic models are being developed in past years
that link the quantitative train locus (QTL) with the plant
phenotypes [37]. In this circumstance, plant production has

another dimension, and the model parameters as in (1) are
functions of genetic information G, i.e., P = g(G). To con-
duct a full field experiment and compare the genetic behavior
is a lengthy and tedious work. Computational experiments can
be conducted on the different combination of QTLs on the final
yield. Such kind of theoretical study has started which can give
promising prescription [37] that may guide real breeding.
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