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An Improved Approach to Test Diagnosability of
Bounded Petri Nets
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Abstract—For bounded Petri nets, Cabasino et al. propose
a diagnosability test method that is based on the analysis of
a modified basis reachability graph and a basis reachability
diagnoser. However, its complexity is exponential in the number
of nodes of the basis reachability diagnoser. In order to reduce
the complexity of their method, this paper presents a new
diagnosability test approach for bounded Petri nets. We present
the concept of an extended basis reachability graph and prove
that our approach is of polynomial complexity in the number of
nodes of extended basis reachability graphs. An example is given
to illustrate the application of the presented approach.

Index Terms—Diagnosability, discrete event systems (DES),
fault diagnosis, Petri nets.

I. INTRODUCTION

FAULT diagnosis is an important task in complex and large
systems. In a discrete event system (DES) framework,

diagnosability is a required property for many practical appli-
cations. Diagnosability problem has received much attention
since the early 1990s [1]−[12]. Solving a diagnosability
problem is equivalent to determining if, once a fault has
occurred, the occurrence of the fault can be detected with an
observation of bounded length. Sampath et al. [1] first formally
presented the definition of diagnosability for regular languages
and proposed a method to test diagnosability of DESs modeled
by automata.

Due to the intuitive graphical representation and powerful
algebraic formulation, Petri nets have been recently used to
deal with diagnosability problems and a series of diagnosabil-
ity methods have been developed [5]−[12]. Ushio et al. [7]
extend the method for automata in [1] to test diagnosability of
unbounded Petri nets under the assumption that all transitions
are unobservable and places are partitioned into observable
and unobservable ones. They construct a so-called simple ω
diagnoser based on the coverability tree and present a sufficient
condition for diagnosability of a net.

Manuscript received August 28, 2016; accepted September 30, 2016.
This work was supported by National Natural Science Foundation of China
(61134007), National Basic Research Program of China (2013CB035406).
Recommended by Associate Editor Mengchu Zhou.

Citation: N. Ran, H. Y. Su, and S. G. Wang, “An improved approach to
test diagnosability of bounded petri nets,” IEEE/CAA Journal of Automatica
Sinica, vol. 4, no. 2, pp. 297−303, Apr. 2017.

N. Ran and H. Y. Su are with the State Laboratory of Industrial Control
Technology, Institute of Cyber-Systems and Control, Zhejiang University,
Yuquan Campus, Hangzhou 310027, China (e-mail: ranning87@hotmail.com;
hysu@iipc.zju.edu.cn).

S. G. Wang is with the School of Information & Electronic Engineer-
ing, Zhejiang Gongshang University, Hangzhou 310018, China (e-mail:
wsg5000@hotmail.com).

Digital Object Identifier 10.1109/JAS.2017.7510406

Chung [8] generalizes the setting in [7] by assuming that
some of the transitions are observable, and constructs a diag-
noser by taking the advantage of the additional information
from observable transitions. Then a verifier is proposed to test
diagnosability of bounded Petri nets.

Wen et al. [9] test diagnosability of Petri nets by checking
their T-invariants. They employ the diagnoser proposed in [7]
to prove that their method is correct. However they do not
actually construct a diagnoser to test diagnosability. Wen and
Jeng [10] then proposed a diagnosability test algorithm by
using a linear programming. It is of polynomial complexity in
the number of net nodes and provides a sufficient condition
for diagnosability of the nets.

Cabasino et al. [11] give a necessary and sufficient condition
for diagnosability of both bounded and unbounded Petri nets
and then present an algorithm for testing the condition based
on linear programming. Their approach is a general technique
and based on the analysis of the reachability/coverability graph
of a Petri net model named a verifier net. However, the number
of the states of the reachability graph increases exponentially
with the system complexity.

Cabasino et al. [12] compute basis markings of bounded
Petri nets to overcome the problem of exhaustive enumeration
of the state space. The diagnosability test method is based on
the analysis of two deterministic graphs called a basis reach-
ability graph and a basis reachability diagnoser. A Petri net is
diagnosable if and only if its basis reachability diagnoser has
no cycle that is indeterminate wrt all fault classes. However,
the complexity of their method is exponential in the number
of nodes in the basis reachability diagnoser.

In order to address the complexity problem in [12], we
propose a new diagnosability approach for bounded Petri nets.
We propose and compute an extended basis reachability graph
for each fault class and construct verifiers based on these
graphs. A necessary and sufficient condition is presented for
diagnosability of bounded Petri nets. The proposed method
is of polynomial complexity in the number of nodes of the
extended basis reachability graphs.

The rest of this paper is organized as follows. Section II
briefly reviews preliminaries used in this paper. The notion
of diagnosability of a Petri net is introduced in Section III.
Section IV proposes some new definitions and an approach to
test diagnosability of Petri nets. Section V presents an example
to demonstrate the proposed approach. Section VI compares
our approach and the one proposed in [11] from the complexity
point of view. Finally, Section VII concludes this paper.
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II. PRELIMINARIES

In this section, basic definitions of Petri nets are reviewed
[13]−[16].

A Petri net is a 4-tuple N = (P, T, F,W ), where P
is the set of places and T is the set of transitions, F ⊆
(P ×T )∪(T ×P ) is the flow relation, W : (P ×T )∪(T ×P )
is a mapping that assigns a weight to each arc: W (x, y) > 0 if
(x, y) ∈ F , and W (x, y) = 0 otherwise, where x, y ∈ P ∪ T .

Let x ∈ P ∪ T be a node of net N = (P, T, F,W ).
The preset of x is •x = {y ∈ P ∪ T |(y, x) ∈ F}, and
the postset of x is x• = {y ∈ P ∪ T |(x, y) ∈ F}. The
incidence matrix [N ] of N is a |P | × |T | integer matrix with
[N ](p, t) = W (t, p)−W (p, t). A Petri net that has no directed
circuits is said to be acyclic.

A marking m is a mapping from P to N = {0, 1, 2, . . .}.
(N, m0) denotes a Petri net with an initial marking m0. m(p)
denotes the number of tokens in place p. A transition t ∈ T
is enabled at a marking m if ∀p ∈ •t,m(p) ≥ W (p, t),
which is denoted by m[t >. Firing t yields a new marking
m′: ∀p ∈ P, m′(p) = m(p) + [N ](p, t), which is denoted by
m[t > m′. A marking m′′ is said to be reachable from m if
there exists a transition sequence σ such that m[σ > m′′. The
set of markings reachable from m in N is called the reachabil-
ity set of a marked Petri net (N, m) and denoted by R(N, m).
A Petri net is said to be bounded if there exists a positive
constant k such that ∀m ∈ R(N, m0),∀p ∈ P, m(p) ≤ k.

The set of all sequences that are enabled at the initial
marking m0 is denoted by L(N, m0), i.e., L(N, m0) = {σ ∈
T ∗|m0[σ >}. ε is used to denote the empty sequence. Let σ
be a transition sequence. Its Parikh vector is denoted by π(σ).
We use t ∈ σ to denote that a transition t is contained in σ.
Moreover, we use T ′ ∈ σ to denote that there exists at least
one transition in T ′ ⊂ T contained in σ, and T ′ /∈ σ to denote
that there is no transition in T ′ contained in σ.

Given a Petri net N = (P, T, F,W ) and a set T ′ ⊆ T of
transitions, we define T ′-induced subnet of N as a new Petri
net N ′ = (P, T ′, F ′,W ), where F ′ is the restriction of F to
(P × T ′) ∪ (T ′ × P ).

A labeled Petri net is a triple (N, m0,L), where (N, m0)
is a marked Petri net, and L is a labeling function L :
T → L ∪ {ε} that assigns to each transition in T either
a symbol from a given alphabet L or ε. Given a transition
sequence σ = t1t2 · · · tk ∈ T ∗, the corresponding observation
is w = L(σ) = L(t1)L(t2) · · · L(tk). L−1(w) denotes the
set of all transition sequences consistent with w ∈ L∗, i.e.,
L−1(w) = {σ ∈ L(N, m0)|L(σ) = w}.

We use Tu to denote the set of transitions whose labels are
ε, and To to denote the set of transitions whose labels are the
symbols in L. Tu and To are called the set of unobservable
and observable transitions, respectively. [N ]u (or [N ]o) is used
to denote the restriction of the incidence matrix [N ] to Tu (or
To).

Given a transition sequence σ ∈ T ∗, we denote Pu(σ) (or
Po(σ)) as the projection of σ over Tu (or To). Let K ⊆ T ∗

be a language, we use K/σ to denote the post-language of K
after σ, i.e., K/σ = {σ′|σσ′ ∈ K}.

III. PROBLEM STATEMENT

We partition the unobservable transition set as Tu = Tf∪Tr,
where Tf is the set of faults and Tr is the set of unobservable
but regular transitions. All faults in Tf are partitioned into r
different subsets T i

f that model different fault classes, where
i = 1, 2, . . . , r. In the following, we use T i

r to denote the set
of unobservable transitions that does not contain the faults in
T i

f , i.e., T i
r = Tu \ T i

f , and [N ]ir to denote the restriction of
the incidence matrix to T i

r .
We make the following assumptions in this paper, which

are the same as the assumptions in [12]:
A1) The Tu-induced subnet is acyclic.
A2) The Petri net is deadlock-free.
A3) The Petri net is bounded.
Note that Assumption A1 is commonly adopted in the

diagnosability study of Petri nets. It is analogous to the
classical assumption in the framework of automata that there
does not exist any cycle of unobservable events [1].

Just like the problem of model identification of DESs [17],
the problem of fault diagnosis of DESs also belongs to the
identification problem. The former aims to decide whether
for the given behavioral specification there exists a DES that
generates the specified behavior, and provide a constructive
procedure to determine such a DES [17]. The latter focuses
on detecting whether a fault event has occurred according to
the behavior generated by a DES.

Now we introduce the definition of diagnosability of labeled
Petri nets.

We use Ψ(T i
f ) to denote the set of all sequences in

L(N, m0) that end with a transition in T i
f .

Definition 1 [12]: Given a deadlock-free labeled Petri net
(N, m0,L), the i-th fault class T i

f is said to be diagnosable if
L(N, m0) is diagnosable wrt L and T i

f , i.e.,

∀σ′ ∈ Ψ(T i
f ), ∃k ∈ N, ∀σ′′ ∈ L(N, m0)

σ′

|σ′′| ≥ k ⇒ D

where the diagnosability condition D is

∀σ ∈ L−1(L(σ′σ′′)),∃tf ∈ T i
f ⇒ tf ∈ σ.

A deadlock-free labeled Petri net (N, m0,L) is said to be
diagnosable if all fault classes are diagnosable.

In simple words, T i
f is diagnosable if, once a fault in T i

f

has occurred, the system can detect the occurrence of a fault
belonging to T i

f within a finite delay.

IV. MAIN RESULTS

A. Extended Basis Reachability Graph

Similar to [12], this work computes the basis markings of a
Petri net to avoid enumerating all states. The following notions
are used.

Definition 2 [12]: Given a marking m and an observable
transition t, the set of explanations of t at m is denoted by

Σ(m, t) = {σ ∈ T ∗u |m[σ > m′,m′[t >}
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and the set of e-vectors is denoted by

Y (m, t) = π(Σ(m, t)).

Definition 3 [12]: Given a marking m and an observable
transition t, the set of minimal explanations of t at m is
denoted by

Σmin(m, t) = {σ ∈ Σ(m, t)|@σ′ ∈ Σ(m, t) : π(σ′) � π(σ)}
and the set of minimal e-vectors is denoted by

Ymin(m, t) = π(Σmin(m, t)).

Definition 4 [12]: Let (N, m0,L) be a labeled Petri net
and w ∈ L∗ be an observation, where N = (P, T, F,W ) and
T = To ∪ Tu. The set of pairs (σo ∈ T ∗o with L(σo) = w and
the justification) is denoted by

Ĵ (w) = {(σo, σu), σo ∈ T ∗o ,L(σo) = w, σu ∈ T ∗u |
[∃σ ∈ L−1(w) : σo = Po(σ), σu = Pu(σ)]

∧ [@σ′ ∈ L−1(w) : σo = Po(σ′),
σ′u = Pu(σ′) ∧ π(σ′u) � π(σu)]}

and the set of pairs (σo ∈ T ∗o with L(σo) = w and the j-vector)
is denoted by

Ŷmin(m0, w) = {(σo, y), σo ∈ T ∗o ,L(σo) = w, y ∈ N|Tu||
∃(σo, σu) ∈ Ĵ (w) : π(σu) = y}.

Definition 5 [12]: Given a pair (σo, σu) ∈ Ĵ (w), the basis
marking is denoted by

mb = m0 + [N ]u · π(σu) + [N ]o · π(σo).

Cabasino et al. [12] construct a basis reachability graph
(BRG) by assuming that all faults in Tf are observable, while
we construct a BRG for each fault class by assuming that the
faults in this class are observable. In more detail, when we
construct the BRG for a given fault class T i

f , the faults in
T i

f are considered as observable transitions and the faults in
Tf \T i

f are considered as regular unobservable transitions. We
provide the following definitions that are modified according
to the ones presented in [12].

Definition 6: An extended basis marking (EBM) wrt T i
f is a

basis marking computed by assuming that all faults in T i
f are

observable. The set of all EBMs wrt T i
f is denoted by M i

e.
M i

e can be computed by restricting the minimal explanations
to the unobservable transitions within T i

r . In the following, we
denote Y i

min(m, t) as the set of minimal e-vectors restricted to
T i

r . Y i
min(m, t) can be computed by Algorithm 4.4 presented

in [15].
Definition 7: An extended basis reachability graph (EBRG)

wrt T i
f is a (non-deterministic) graph that has as many nodes

as the number of markings in M i
e. Each node is associated a

different marking in M i
e. Each arc is labeled with tf or e(t),

where tf ∈ T i
f , e ∈ L and t ∈ To is the transition labeled

with e. More precisely, an arc tf (or e(t)) exists from nodes
m to m′ if there exists a minimal e-vector y ∈ Y i

min(m, tf ) (or

y ∈ Y i
min(m, t)) that satisfies m′ = m + [N ]ir · y + [N ](·, tf )

(or m′ = m + [N ]ir · y + [N ](·, t)).
In the following, we denote Gi

E as the EBRG wrt T i
f .

Given a labeled Petri net (N, m0,L) that satisfies Assumptions
A1−A3, Algorithm 1 summarizes the main steps for the
construction of Gi

E .

Algorithm 1 Construction of the EBRG wrt T i
f

Input: (N, m0,L) and T i
f .

Output: Gi
E .

1. Let m0 be the initial node and tag it “new”.
2. While nodes with “new” exist

2.1. select a node m with “new”,
2.2. for all t ∈ To ∪ T i

f , do
2.2.1. if Y i

min(m, t) 6= ∅, then
for all y ∈ Y i

min(m, t), do
let m′ = m + [N ]ir · y + [N ](·, t),
if @ a node m′, then

add a node m′ and tag it “new”,
if t ∈ To ∧ @ an arc e(t) from m to m′, where

e = L(t), then
add an arc e(t) from m to m′,

if t ∈ T i
f ∧ @ an arc t from m to m′, then

add an arc t from m to m′,
2.3. remove the tag of m.

Consider the labeled Petri net shown in Fig. 1, where
To = {t2, t5, t6}, Tu = {t1, t3, t4}, Tf = {t4} and m0 =
[2 1 0 0 0 0 0]T . The labeling function is defined as follows:
L(t2) = a and L(t5) = L(t6) = b. The corresponding EBMs
wrt Tf are detailed in Table I and the EBRG wrt Tf is shown
in Fig. 2.

Fig. 1. A labeled Petri net.

TABLE I
EBMS WRT Tf

Node EBM
m0 [2 1 0 0 0 0 0]T

m1 [0 1 0 1 1 0 0]T

m2 [0 1 0 1 0 0 1]T
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For each path starting from the initial node of Gi
E , we build

a sequence such that for each arc in the path we take either
tf if the arc is labeled by tf or t if the arc is labeled by
e(t). The set of all sequences built in this way is denoted by
Li

E(N, m0).

Fig. 2. EBRG wrt Tf .

From Algorithm 1 and Assumption A1, we can immediately
derive the following two properties.

Property 1: Let σ be a sequence of infinite length in
L(N, m0). If σ contains a fault tf ∈ T i

f , then there exists
a sequence of infinite length σ′ ∈ Li

E(N, m0) that contains tf
and satisfies L(σ′) = L(σ), and vice versa.

Proof: According to Algorithm 1, the set of transition
sequences in Li

E(N, m0) coincides with the projection of
L(N, m0) over the set To ∪ T i

f . Therefore σ contains a fault
tf ∈ T i

f iff σ′ contains a fault tf ∈ T i
f , where L(σ′) = L(σ).

Moreover, by Assumption A1 σ is infinitely long iff σ′ is
infinitely long. Hence, the result holds.

Property 2: Let σ be a sequence of infinite length in
L(N, m0). If σ does not contain a fault in T i

f , then there
exists a sequence of infinite length σ′ ∈ Li

E(N, m0) that does
not contain a fault in T i

f and satisfies L(σ′) = L(σ), and vice
versa.

Proof: The proof follows the same lines of the proof of
Property 1 and is omitted.

Lemma 1: Given a labeled Petri net (N, m0,L) that satisfies
Assumptions A1−A3, a fault class T i

f is diagnosable iff
Li

E(N, m0) is diagnosable wrt L and T i
f .

Proof: (If) By contradiction, suppose that T i
f is not di-

agnosable. According to Definition 1, there must exist two
sequences of infinite length σ1, σ2 ∈ L(N, m0) such that
L(σ1) = L(σ2), T i

f ∈ σ1 and T i
f /∈ σ2. From Properties 1

and 2, we know that there exist two sequences of infinite
length σ′1, σ

′
2 ∈ Li

E(N, m0) such that L(σ′1) = L(σ′2) =
L(σ1) = L(σ2), T i

f ∈ σ′1 and T i
f /∈ σ′2. Hence Li

E(N, m0) is
not diagnosable wrt L and T i

f . This is a contradiction.
(Only if) By contradiction, suppose that Li

E(N, m0) is
not diagnosable wrt L and T i

f . According to Definition 1,
there must exist two sequences of infinite length σ′1, σ

′
2 ∈

Li
E(N, m0) such that L(σ′1) = L(σ′2), T i

f ∈ σ′1 and T i
f /∈ σ′2.

From Properties 1 and 2, we know that there exist two
sequences of infinite length σ1, σ2 ∈ L(N, m0) such that
L(σ1) = L(σ2) = L(σ′1) = L(σ′2), T i

f ∈ σ1 and T i
f /∈ σ2.

Hence T i
f is not diagnosable. This is a contradiction.

B. Extended Observer
Next, we present the notion of an extended observer, which

can be constructed from an EBRG.
Definition 8: An extended observer (EO) wrt T i

f is a (non-
deterministic) graph. Each node is labeled with (m,h), where

m is a basis marking, h ∈ {N, F}. In particular, h = N if,
during the evolution from m0 to m, no fault in T i

f has occurred
and h = F otherwise. Arcs are labeled with symbols in L.

In the following, we denote Gi
O as the EO wrt T i

f . Al-
gorithm 2 summarizes the main steps for the construction of
Gi

O.

Algorithm 2 Construction of the EO wrt T i
f

Input: Gi
E .

Output: Gi
O .

1. Let (m0, N) be the initial node and tag it “new”.
2. While nodes with “new” exist

2.1. select a node d = (m, h) with “new”,
2.2. for all t ∈ To, do

2.2.1. if e(t) is an output arc of m in Gi
E , then

let m′ be the output node in Gi
E and h′ = h,

if @ a node d′ = (m′, h′), then
add a node d′ and tag it “new”,

if @ an arc e from d and d′, then
add an arc e from d to d′,

2.2.2. for all out paths of m in Gi
E lebeled σe(t), where

σ ∈ (T i
f )∗ and σ 6= ε, do

let m′′ be the final node in Gi
E and h′′ = F ,

if @ a node d′′ = (m′′, h′′), then
add a node d′′ and tag it “new”,

if @ an arc e from d and d′′, then
add an arc e from d to d′′,

2.3. remove the tag of d.

Since there may exist more than one path from m0 to m
such that some contain faults and others not, m may appear
in two different nodes: (m,N) and (m,F ). According to
Algorithm 2 and Assumption A1, we can derive the following
properties.

Property 3: Given a cycle

c = ((m1, h1), e1, (m2, h2), . . . , (mk, hk), ek, (m1, h1))

in Gi
O, we have ha = hb for any a and b in {1, 2, . . . , k}.

Proof: Straightforward from Step 2.2 of Algorithm 2.
Property 4: Let σ be a sequence of infinite length in

Li
E(N, m0). If σ does not contain a fault in T i

f , then there
exists a path λ ending with a cycle in Gi

O, where

λ = ((m0, h0), e0, . . . , (mk−1, hk−1), ek−1, (mk, hk),

ek, . . . , (mn, hk), en, (mk, hk))
such that: 1) L(σ) = (e0, e1, . . . , ek−1, (ek, . . . , en)∞), and
2) hk = N , and vice versa.

Proof: Since the Petri net is bounded by Assumption
A3, the path λ obviously ends with a cycle, i.e., L(σ) =
(e0, e1, . . . , ek−1, (ek, . . . , en)∞). Moreover, σ does not con-
tain a fault in T i

f iff the sequence L(σ) does not contain a
fault in T i

f by Property 2. Hence, it holds that hk = N .
Similarly, we can prove that if the path λ is ending with a

cycle such that L(σ) = (e0, e1, . . . , ek−1, (ek, . . . , en)∞) and
hk = N , then there exists an infinitely long sequence σ that
does not contain a fault in T i

f .
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Property 5: Let σ be a sequence of infinite length in
Li

E(N, m0). If σ contains a fault tf ∈ T i
f , then there exists a

path λ ending with a cycle in Gi
O, where

λ = ((m0, h0), e0, . . . , (mk−1, hk−1), ek−1, (mk, hk),

ek, . . . , (mn, hk), en, (mk, hk))
such that: 1) L(σ) = (e0, e1, . . . , ek−1, (ek, . . . , en)∞), and
2) hk = F , and vice versa.

Proof: The proof follows the same lines of the proof of
Property 4 and is omitted.

Lemma 2: Given a labeled Petri net (N, m0,L) that satisfies
Assumptions A1−A3, T i

f is diagnosable iff there do not exist
two paths λ1 and λ2 ending with cycles in Gi

O, where

λ1 = ((m1
0, h

1
0), e0, . . . , (m1

k−1, h
1
k−1), ek−1, (m1

k, h1
k),

ek, . . . , (m1
n, h1

k), en, (m1
k, h1

k)) and

λ2 = ((m2
0, h

2
0), e0, . . . , (m2

k−1, h
2
k−1), ek−1, (m2

k, h2
k),

ek, . . . , (m2
n, h2

k), en, (m2
k, h2

k))
such that h1

k 6= h2
k.

Proof: (If) By contradiction, suppose that T i
f is not diag-

nosable. According to Lemma 1 and Definition 1, there must
exist two sequences of infinite length σ1, σ2 ∈ Li

E(N, m0)
such that: L(σ1) = L(σ2), T i

f ∈ σ1 and T i
f /∈ σ2. From

Properties 3, 4 and 5, we know that there exist two paths λ1

and λ2 in Gi
O, where

λ1 = ((m1
0, h

1
0), e0, . . . , (m1

k−1, h
1
k−1), ek−1, (m1

k, h1
k),

ek, . . . , (m1
n, h1

k), en, (m1
k, h1

k)) and

λ2 = ((m2
0, h

2
0), e0, . . . , (m2

k−1, h
2
k−1), ek−1, (m2

k, h2
k),

ek, . . . , (m2
n, h2

k), en, (m2
k, h2

k))

such that: 1) (e0, e1, . . . , ek−1, (ek, . . . , en)∞) = L(σ1) =
L(σ2), and 2) h1

k 6= h2
k. This is a contradiction.

(Only if) By contradiction, suppose that there exist two
paths λ1 and λ2 in Gi

O, where

λ1 = ((m1
0, h

1
0), e0, . . . , (m1

k−1, h
1
k−1), ek−1, (m1

k, h1
k),

ek, . . . , (m1
n, h1

k), en, (m1
k, h1

k)), and

λ2 = ((m2
0, h

2
0), e0, . . . , (m2

k−1, h
2
k−1), ek−1, (m2

k, h2
k),

ek, . . . , (m2
n, h2

k), en, (m2
k, h2

k))

such that: h1
k 6=h2

k. According to Properties 4 and 5, there must
exist two sequences of infinite length σ1, σ2 ∈ Li

E(N, m0)
such that L(σ1)=L(σ2) = (e0, e1, . . . , ek−1, (ek, . . . , en)∞),
T i

f ∈ σ1 and T i
f /∈ σ2. From Lemma 1, we know that T i

f is
not diagnosable. This is a contradiction.

Consider the EBRG wrt Tf shown in Fig. 2. According to
Algorithm 2, we construct the the EO wrt Tf , which is shown
in Fig. 3.

Fig. 3. Extended observer wrt Tf .

Remark 1: We can test diagnosability of a labeled Petri
net by examining all cycles and the paths that lead from
the initial node to each cycle in Gi

O, ∀i ∈ {1, 2, . . . , r}.
However, this test is analogous to the method in [7], and thus
its complexity is exponential in the number of nodes in Gi

O. In
the next subsection, an approach with polynomial complexity
is developed.

C. Verifier

In this subsection, we propose an approach to test diagnos-
ability of a labeled Petri net satisfying Assumptions A1−A3
by analyzing the verifier of each fault class respectively.

Here we present the definition of a verifier.
Definition 9: A verifier wrt T i

f is a (non-deterministic)
graph. Each node is labeled with (d1; d2), where d1 and d2

are nodes in Gi
O. Arcs are labeled with symbols in L. More

precisely, an arc e exists from a node (d1; d2) to a node
(d′1; d

′
2) if in Gi

O there exists an arc labeled e from d1 to
d2 and an arc labeled e from d′1 to d′2.

In the following, we use Gi
V to denote the verifier wrt T i

f .
Algorithm 3 summarizes the main steps for the construction
of Gi

V .

Algorithm 3 Construction of the verifier wrt T i
f

Input: Gi
O .

Output: Gi
V .

1. Let (m0, N ; m0, N) be the initial node and tag it “new”.
2. While nodes with “new” exist

2.1. select a node d = (m1, h1; m2, h2) with “new”,
2.2. for all e ∈ L, do

2.2.1. if (m1, h1) and (m2, h2) both have output arcs labeled
e in Gi

O , then
let M be the set of all output nodes in Gi

O ,
for all (m′

1, h
′
1) ∈ M , do

for all (m′
2, h

′
2) ∈ M , do

if h′1 = N ∨ h′2 = N

if (@ a node d′ = (m′
1, h

′
1; m

′
2, h

′
2))∧

(@ a node d′′ = (m′
2, h

′
2; m

′
2, h

′
1))

add a node d′ and tag it “new”,
add an arc e from d to d′,

2.3. remove the tag of d.

From Algorithm 3, we can directly derive the following
lemma.

Lemma 3: Let λ be a path in Gi
V ending with a cycle, where

λ = (x0, e0, . . . , xk, ek, . . . , xn, en, xk),
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xj = (m1
j , h

1
j ;m

2
j , h

2
j ), j = 0, 1, 2, . . . , n

the following holds:
There exist two paths λ1 and λ2 ending with cycles in Gi

O,
where

λ1 = ((m1
0, h

1
0), e0, . . . , (m1

k−1, h
1
k−1), ek−1, (m1

k, h1
k),

ek, . . . , (m1
n, h1

k), en, (m1
k, h1

k)), and

λ2 = ((m2
0, h

2
0), e0, . . . , (m2

k−1, h
2
k−1), ek−1, (m2

k, h2
k),

ek, . . . , (m2
n, h2

k), en, (m2
k, h2

k)).
Next we present a necessary and sufficient condition for

diagnosability of a labeled Petri net.
Theorem 1: Given a labeled Petri net (N, m0,L) that

satisfies Assumptions A1−A3, a fault class T i
f is diagnosable

iff for each cycle c = (x1, e1, x2, . . . , xn, en, x1) in Gi
V ,

where xj = (m1
j , h

1;m2
j , h

2) and j = 1, 2, . . . , n, we have
h1 = h2.

Proof: Straightforward from Lemmas 2 and 3.
Algorithm 4 summarizes the main steps for testing di-

agnosability of a labeled Petri net (N, m0,L) that satisfies
Assumptions A1−A3.

Algorithm 4 Diagnosability-Test Algorithm
Input: (N, m0,L).
Output: Diagnosability of (N, m0,L).
1. For all T i

f , i = {1, 2, . . . , r}, do
1.1. construct Gi

E by Algorithm 1,
1.2. compute Gi

O from Algorithm 2,
1.3. obtain Gi

V by Algorithm 3,
1.4. check whether there exists in Gi

V a cycle
c = (x1, e1, x2, . . . , xn, en, x1), xj = (m1

j , h
1
j ; m

2
j , h

2
j ),

j ∈ {1, 2, . . . , n}, such that h1
j 6= h2

j ,
1.4.1. if the answer is yes, then

output T i
f is not diagnosable,

1.4.1. else
output T i

f is diagnosable.
2. If all fault classes are diagnosable, then

2.1. output (N, m0,L) is diagnosable.

We conclude this subsection with a discussion on the
complexity of the proposed approach.

Theorem 2: Let (N, m0,L) be a labeled Petri net that
satisfies Assumptions A1−A3, and x be the maximum number
of nodes in Gi

E for all i in {0, 1, . . . , r}. The complexity of
testing diagnosability of the net is O(x4 × |T | × r).

Proof: From Definition 8, we know that the number of nodes
in Gi

O is at most 2x, and the number of arcs in Gi
O is at most

4x2 × |T |. According to Definition 9, the number of nodes in
Gi

V is at most 4x2, and the number of arcs in Gi
V is at most

16x4×|T |. Moreover, we need to check all cycles in Gi
V . This

can be computed by Tarjan’s strongly connected components
algorithm [1], whose complexity is linear in the number of
nodes and arcs in Gi

V , i.e., O(x4 × |T |). Hence, the overall
complexity is O(x4 × |T | × r).

V. EXAMPLE

Let us continue to consider the labeled Petri net in Fig. 1,
whose EBRG wrt Tf is shown in Fig. 2 and EBMs wrt Tf

are detailed in Table I. Its EO wrt Tf and verifier wrt Tf are
shown in Figs. 3 and 4, respectively.

In Fig. 4, there are two cycles (x1, a, x2, b, x1) and
(x′1, a, x′2, b, x

′
1) surrounded by dash lines, where x1 =

(m0, N ;m0, F ), x2 = (m1, N ;m1, F ), x′1 = (m0, F ;m0, N)
and x′2 = (m1, F ;m1, N). According to Theorem 1, we know
that the labeled Petri net is not diagnosable.

Fig. 4. F -verifier.

VI. COMPARISON WITH THE APPROACH IN [11]

Cabasino et al. propose a general diagnosability test ap-
proach in [11] for both bounded and unbounded labeled Petri
nets. For the bounded case, they first construct a verifier net
(VN) and its reachability graph (RG). Then, cycles in the RG
after the occurrence of a fault transition are computed. Note
that the number of states in the RG grows exponentially wrt
the size of the VN, and the complexity of computing cycles is
linear in the sum of the number of states and arcs of the RG.

According to Theorem 2, we know that the complexity of
our approach is also linear in the sum of the number of states
and arcs of the verifier. In the following, we compare these
two approaches from the complexity point of view.

Let (N, m0,L) be a labeled Petri net satisfying Assump-
tions A1−A3, n be the number of places in N and k − 1 be
the upper bound of the number of tokens in every place, i.e.,
∀m ∈ R(N, m0),∀p ∈ P, m(p) ≤ k − 1. Then the number
of states in the RG and EBRG of N , in the worst case, are
km and αkm respectively, where 0 < α ≤ 1. According to
the construction of the VN in [11], we know that the upper
bound of the number of tokens in every place in VN is still
k− 1. Therefore, the sum of the number of states and arcs of
the RG of the VN, and the sum of the number of states and
arcs of the verifier are k2m + k4m and 4α2k2m + 16α4k4m,
respectively. Our approach is preferable to the one proposed
in [11] if the following inequality holds:

k2m + k4m > 4α2k2m + 16α4k4m. (1)

The solution of (1) is α < 1/2. In other words, given
a bounded labeled net, our method is preferable to the one
proposed in [11] if the number of EBMs is less than half of
that of reachable markings.
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VII. CONCLUSION

In this paper, an approach is proposed for testing diagnos-
ability of bounded labeled Petri nets. It reduces the computa-
tional complexity of the diagnosability method presented by
Cabasino et al. [11] from the exponential complexity in terms
of the number of nodes of basis reachability diagnoser to the
polynomial one. Our future work will focus on extending the
proposed approach to deal with large and complex discrete
event systems [19]−[23] in a decentralized setting.
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