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Abstract—This paper concerns a novel optimal self-learning
battery sequential control scheme for smart home energy systems.
The main idea is to use the adaptive dynamic programming
(ADP) technique to obtain the optimal battery sequential con-
trol iteratively. First, the battery energy management system
model is established, where the power efficiency of the battery
is considered. Next, considering the power constraints of the
battery, a new non-quadratic form performance index function
is established, which guarantees that the value of the iterative
control law cannot exceed the maximum charging/discharging
power of the battery to extend the service life of the battery.
Then, the convergence properties of the iterative ADP algorithm
are analyzed, which guarantees that the iterative value function
and the iterative control law both reach the optimums. Finally,
simulation and comparison results are given to illustrate the
performance of the presented method.

Index Terms—Adaptive critic designs, adaptive dynamic pro-
gramming (ADP), approximate dynamic programming, battery
management, energy management system, neuro-dynamic pro-
gramming, optimal control, smart home.

I. INTRODUCTION

NOWADAYS, the need of the smart grid is continuously
increasing [1]−[3]. Smart home energy management

system is an important component of the smart grid. In smart
home energy management systems, the intelligent optimal
control of battery is a key technology for saving the power con-
sumptions. In [4], a battery management method was proposed
by battery dynamics modeling. In [5], the development of bat-
tery management systems was summarized which was applied
in the smart grid and electric vehicles. In [6], the operating
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schedule of battery energy storage system was solved by the
particle swarm optimization approach. However, in previous
researches on the battery management, the properties of the
battery management, such as convergence and optimality, were
not provided, which limited the applications of the battery
control. Adaptive dynamic programming (ADP), proposed by
Werbos [7], [8], has been widely used in optimal energy
management [6], [9]−[15]. There are several synonyms of
ADP, including “adaptive critic designs” [16], “approximate
dynamic programming” [11], “neuro-dynamic programming”
[17], and “relaxing dynamic programming” [18].

Iterative methods are widely used in ADP to obtain
the solution of Hamilton-Jacobi-Bellman (HJB) equation
indirectly [14], [19]−[34]. Policy and value iterations are
two primary iterative ADP algorithms [35]. Policy iteration
algorithms for optimal control of continuous-time (CT)
systems with continuous states and action spaces were
first given in [36], [37]. In [38], a complex-valued ADP
algorithm was discussed, where for the first time the optimal
control problem of complex-valued nonlinear systems was
successfully solved by ADP. In [39], based on neurocognitive
psychology, a novel controller based on multiple actor-critic
structures was developed for unknown systems and the
proposed controller traded off fast actions based on stored
behavior patterns with real-time exploration using current
input-output data. In [40], an effective off-policy learning
based integral reinforcement learning (IRL) algorithm was
presented, which successfully solved the optimal control
problem for completely unknown continuous-time systems
with unknown disturbances. In [41], a policy iteration
algorithm for discrete-time nonlinear systems was developed.
Value iteration algorithms for optimal control of discrete-time
nonlinear systems were given in [17]. In [18] and [42], the
convergence properties of the value iteration were proposed.
Value iteration algorithms are generally initialized by a “zero”
performance index function [18], [42], [43], which guarantees
the convergence properties of the iterative value functions.
In [44], a Q-learning based ADP algorithm was proposed
to obtain the optimal control law for the battery, which
solved the optimal energy management for the microgrid of
smart homes. In [9], considering renewable electricity, such
as electricity generated from wind and solar energies, the
optimal control for the battery was solved by ADP method.
In [10], a particle swarm optimization (PSO) method was
proposed to pre-train the weights of the action and critic
neural networks, which facilitated the implementation of
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the ADP method for the optimal control of the battery. In [45],
an effective dual Q-learning based iterative ADP algorithm
was developed to obtain the optimal battery management for
the microgrid of smart homes, where the convergence and
optimality of the dual Q-learning based ADP algorithm were
proven to guarantee the optimal battery control. However, in
[45], the charging/discharging constraints of the battery were
not considered in the performance index function. Actually, for
all the energy management systems of the microgrid of smart
homes, the charging and discharging power of the battery
cannot reach infinity. Hence, the optimal control of the battery
with power constraints of the battery is a key technique for
real-world smart home energy management systems.

In this paper, inspired by [45], a new iterative ADP al-
gorithm is developed to solve the optimal battery control
for the smart home energy management system, where the
charging/discharging constraints of the battery are consid-
ered. First, the models of the smart home energy systems
and the battery are established, where the efficiency of the
battery is considered. Second, inspired by [37], a new non-
quadratic performance index function is constructed, where
the charging/discharging power of the battery is defined in the
performance index function. Then, the iterative ADP algorithm
is derived for the optimal control law of the battery. Via the
system transformation and the definition of the performance
index function, the expression of the iterative sequential con-
trol law for the battery can be obtained. The convergence and
optimality of the algorithm are presented, which guarantees
that the iterative value function will converge to the optimal
performance index function, as the iteration index increases to
infinity.

The rest of this paper is organized as follows. In Section II,
the problem formulation is presented. The model of the smart
home energy system is constructed. The operation principle of
the battery is introduced. The optimization objectives of the
control problem are also declared. In Section III, the iterative
ADP algorithm for battery management system is established.
According to the system transformation and the optimality
principle, the iterative ADP algorithm is derived. The con-
vergence properties will also be proven in this section. In
Section IV, numerical results are presented to demonstrate the
effectiveness of the developed algorithm. Finally, in Section
V, the conclusion is drawn.

II. PROBLEM FORMULATION

In this section, smart home energy systems with a battery
will be described. The optimization objectives of our research
will be defined and the corresponding principle of optimality
will be introduced.

A. Smart Home Energy Systems

In this paper, the optimal battery control problem is treated
as a discrete time problem with the time step of 1 hour and it
is assumed that the home load varies hourly. The home load
PLt and the electricity rate Ct are periodic functions with
the period λ = 24 hours. The battery will make decisions to

meet the demand of the home load, according to the real-
time electricity rate. There are three operational modes for the
battery of the home energy system, which are charging mode,
idle mode, and discharging mode, respectively.

B. Battery Model
The battery model used in this work is based on [6], [44],

[46] where battery efficiency is considered to extend the
battery’s lifetime as far as possible. Let Ebt be the battery
energy at time t and let η(·) be the charging/discharging
efficiency of the battery. Then, the battery model can be
expressed as

Eb(t+1) = Ebt − Pbt × η(Pbt) (1)

where Pbt is the battery power output at time t. Let Pbt > 0 de-
note battery discharging. Let Pbt < 0 denote battery charging
and let Pbt = 0 denote battery idle. The efficiency of battery
charging/discharging is derived by [6], [44], [46], which is
expressed as

η(Pbt) = 0.898− 0.173|Pbt|/Prate (2)

where Prate > 0 is the rated power output of the battery.
To extend the battery’s lifetime, two constraints need to be
considered:

1) The storage limit is considered:

Emin
b ≤ Ebt ≤ Emax

b (3)

where Emin
b and Emax

b are the minimum and maximum storage
energy of the battery, respectively.

2) The charging and discharging power limits are consid-
ered:

Pmin
b ≤ Pbt ≤ Pmax

b (4)

where Pmin
b and Pmax

b are the minimum and maximum
charging/discharging powers of the battery, respectively.

C. Optimization Objectives
Given the home load and real-time electricity rate, the

objective of the optimal control is to find the optimal battery
charging/discharging/idle control law at each time step which
minimizes the total expense of the power from the grid while
considering the battery limitations. To find the optimal control
law, the load balance should be considered. Let PTt be the
power of the home load at time t and let Pgt be the power
from the power grid.

To establish the equation of the home energy system,
we introduce a delay in Pbt and then we have PTt =
Pb(t−1)η(Pb(t−1)) + Pgt. We denote PL(t−1) = PTt and then
we can define the load balance as

PL(t−1) = Pb(t−1)η(Pb(t−1)) + Pgt. (5)

In this paper, the power flow from the battery to the grid
is not permitted, i.e., we define Pgt ≥ 0, to guarantee the
power quality of the grid. To extend the lifetime of the battery,
according to (3), we desire that the stored energy of the battery
is close to the middle of storage limit Eo

b , where

Eo
b =

1
2
(Emin

b + Emax
b ). (6)
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In [45], a quadratic form performance index function was
proposed, which was expected to be minimized

∞∑
t=0

(
m1(CtPgt)

2 + m2(Ebt − Eo
b )2 + m3(Pbt)2

)
(7)

where m1, m2, and m3 are given positive constants. In the
performance index function (7), the first term aims to minimize
the total cost from the grid. The second term avoids fully
charging/discharging of the battery and the third term aims to
minimize the charging/discharging power of the battery.

III. ITERATIVE ADP ALGORITHM FOR BATTERY
MANAGEMENT SYSTEM

In [45], a Q-learning based iterative ADP algorithm was
developed to obtain the optimal control law of the battery,
which minimized the performance index function (7). In this
section, inspired by [45], considering the power efficiency and
the power constraint of the battery, a new system function will
be constructed and a new performance index function will be
established.

A. System Transformations

First, we define the system states. Let x1t = Pgt and Pbt =
ut. According to (5), we have

x1,t+1 = PLt − utη(ut). (8)

Let x2t = Ebt − Eo
b . According to (1), we can get

x2,t+1 = x2,t − utη(ut). (9)

Letting xt = [x1t, x2t]T , the equation of the home energy
system can be written as

xt+1 = F (xt, ut, t) =
(

PLt − utη(ut)
x2t − utη(ut)

)
. (10)

In [45], the performance index function was defined as (7).
However, in (7), the power constraint of the battery was not
considered. In this paper, inspired by [37], a non-quadratic
performance index function will be defined for the battery
management system, which is expressed as

∞∑
t=0

(
m1(CtPgt)

2 + m2(Ebt − Eo
b )2

+ m3

∫ Pbt

0

(Φ−1(s))
T
ds

)
(11)

where Φ(·) is a monotonic odd function with its first derivative
bounded by a constant M. An example is the hyperbolic
tangent Φ(·) = tanh(·). R is a positive definite matrix. In (11),
the upper bound of the parameter s is not larger than Pbt.
However, in (11), the power efficiency of the battery is not
described. Thus, we further define a new performance index
function as

∞∑
t=0

(
m1(CtPgt)

2 + m2(Ebt − Eo
b )2

+ m3

∫ Pbtη(Pbt)

0

(Φ−1(s))
T
ds

)
. (12)

Remark 1: The smart home energy system (10) is different
from the one in [45]. First, in equation (3) of [45], the battery
efficiency of the battery was not considered in the power
balance of the load, while in (10) of this paper, the battery
efficiency is considered both in the power balance of the load
and the battery power balance. Second, the performance index
function defined in [45] did not consider the efficiency of the
battery. This makes it possible for the optimal control law to
exceed the max/min power of the battery, which may make the
optimal control invalid. In this paper, both the max/min power
of the battery and the efficiency of the battery are considered
in the performance index function (12). Thus, the models of
the system (10) and performance index function (12) are more
reasonable.

B. Optimality Principle

Let ut = (ut, ut+1, . . .) denote the control sequence from

t to ∞. Let Mt =
[

m1C
2
t 0

0 m2

]
. The performance index

function (12) can be written as

J(xt, ut, t) =
∞∑

i=t

γiU(xi, ui, i) (13)

where the utility function is expressed as

U(xt, ut, t) = xT
t Mtxt + m3

∫ utη(ut)

0

(Φ−1(s))
T
ds. (14)

Define the control sequence set as Ut =
{
ut : ut =

(ut, ut+1, . . .), ut+i ∈ Rm, i = 0, 1, . . .
}

. Then, for an arbi-
trary control sequence ut ∈ Ut, the optimal performance index
function can be defined as

J∗(xt, t) = inf
ut

{J(xt, ut, t) : ut ∈ Ut} . (15)

According to Bellman’s principle of optimality [47], we can
obtain the following discrete-time HJB equation

J∗(xt, t) = inf
ut

{
U(xt, ut, t) + J∗(xt+1, t + 1)

}
. (16)

The optimal sequential control law can be expressed as

u∗(xt, t) = inf
ut

{
U(xt, ut, t) + J∗(xt+1, t + 1)

}
. (17)

Remark 2: We can see that the home energy system (10)
is a nonlinear dynamic system. The optimal battery control
is actually an infinite horizon optimal control problem for
nonlinear system with a non-quadratic performance index
function. In this situation, many static mathematical program-
ming methods, such as linear programming, are not effective.
Dynamic programming is a powerful method to solve these
problems. However, if we adopt the traditional dynamic pro-
gramming method to obtain the optimal performance index
function one step at a time, then we have to face the “curse
of dimensionality”. Thus, a new iterative ADP algorithm will
be developed in this paper.



WEI et al.: OPTIMAL CONSTRAINED SELF-LEARNING BATTERY SEQUENTIAL MANAGEMENT IN MICROGRID VIA · · · 171

C. Derivations of the Iterative ADP Algorithm

From (10) we know that the battery management system
is time-varying. It means that the control law is also time-
varying. This makes the controller design difficult. To over-
come this difficulty, in [45], [48], by defining a new sequence
of control for a period, the time-varying optimal control
was transformed into a time-invariant one, which significantly
relaxed the computation burden. In this paper, inspired by
[45], [48], we will define the sequence of control for a period,
where the constraints of the battery are considered. For any
k = 0, 1, . . ., we define Uk as the control sequence from k to
k + λ− 1, i.e., Uk = (uk, uk+1, . . . , uk+λ−1). We can define
a new utility function as

Λ (xk,Uk) =
λ−1∑

θ=0

U(xk+θ, uk+θ, θ). (18)

Then, for any k = 0, 1, . . ., the optimal performance index
function is obtained as

J∗(xk) = min
Uk

{
Λ(xk,Uk) + γ̄J∗(xk+λ)

}
(19)

where γ̄ = γλ. The optimal sequential control law sequence
can be expressed by

U∗(xk) = arg min
Uk

{Λ(xk,Uk) + γ̄J∗(xk+λ)}. (20)

Define an iteration index i = 0, 1, . . .. The iterative value
function is defined as

Vi+1(xk) = min
Uk

{Λ(xk,Uk) + γ̄Vi(xk+λ)} (21)

where V0(xk) = Ψ(xk) and Ψ(xk) is a positive semi-definite
function. The iterative sequential control law sequence Ui can
be computed as follows

Ui(xk) = arg min
Uk

{Λ(xk,Uk) + γ̄Vi(xk+λ)}. (22)

For any i = 0, 1, . . ., we define a new iteration index
j = 0, 1, . . . , 23. We can get

V j+1
i (xk) = min

uk

{U(xk, uk, j) + γV j
i (xk+1)}

= U(xk, uj
i (xk), j) + γV j

i (xk+1) (23)

and

uj
i (xk) = arg min

uk

{U(xk, uk, j) + γV j
i (xk+1)} (24)

where we let V 0
i (xk) = Vi(xk) and Vi+1(xk) = V 23

i (xk).
The system function is defined as

xk+1 = f(xk, j) + gvk (25)

where f(xk, j) = [PL(λ−1−j), x2k]T , g = [−1,−1]T , and
vk = ukη(uk). According to the principle of optimality, for
any i = 0, 1, . . . and j = 0, 1, . . . , 23, the iterative control law
vj

i (xk) satisfies

∂V j+1
i (xk)

∂vj
i (xk)

= 0. (26)

Then, we can obtain that

vj
i (xk) = −Φ

(
1
2
m−1

3 gT dV j
i (xk+1)
dxk+1

)
. (27)

We can see that for any i = 0, 1, . . ., we use j = 0, 1,
. . . , λ − 1 iterations to obtain the optimal sequential control
law sequence for a day.

Remark 3: From (27), we can see that the expression of the
iterative sequential control law in this paper is different from
the one in [45]. In [45], the iterative sequential control law
was obtained by minimizing a Q function, such as

uj
i (xk) = arg min

uk

Qj
i (xk, uk). (28)

Generally, the Q function is not an analytical function.
In this situation, the iterative control law in [45] does not
possess an analytical expression. In this paper, according to
the iterative value function V j

i (xk), the expressions of the
iterative control law can be obtained according to (27), which
is simpler than the one in [45]. This is a merit of the algorithm
developed in this paper. On the other hand, in [45], the
iterative control law could be obtained directly by minimizing
the iterative Q function, where the system function was not
required. However, in this paper, to obtain the expression of
the iterative control law, the system function (25) is required.
This is a disadvantage of the method in this paper.

Now, we let vk = G(uk) = ukη(uk). Then, we can obtain

uk = G−1(vk). (29)

Hence, for any i = 0, 1, . . . , and j = 0, 1, . . . , 23, we can
get uj

i (xk) = G−1(vj
i (xk)). For a given vj

i (xk), if there exist
several iterative control laws uj

i (xk) that satisfy (29), we use
the iterative control law that minimizes the norm ‖uj

i (xk)‖.

D. Properties of the Iterative ADP Algorithm

In this subsection, the convergence and optimality properties
of the proposed iterative ADP algorithm will be developed. It
will be shown that the iterative value function and iterative
control law will converge to their optimums as the iteration
index i increases to infinity.

Theorem 1: For i = 0, 1, . . . , and j = 0, 1, . . . , 23, let
the iterative value function V j

i (xk) and the iterative control
law vj

i (xk) be obtained by (23) and (24). Then, the iterative
control law sequence can be expressed by

Ui(xk) = {u23
i (xk), u22

i (xk+1), . . . , u0
i (xk+23)}. (30)

Proof : The statement can be proven by mathematical in-
duction. For any i = 0, 1, . . ., we have

V j+1
i (xk)

=min
uk

(
U(xk, uk, j) + γV j

i (xk+1)
)

=min
uk

(
U(xk, uk, j) + γ min

uk+1

(
U(xk+1, uk+1, j − 1)

+ · · ·+ γ min
uk+j

(
U(xk+j , uk+j , 0) + γV 0

i (xk+j+1)
)))
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= min
(uk,uk+1,...,uk+j)

( j∑

l=0

γlU(xk+l, uk+l, j − l)

+ γj+1Vi

(
xk+j+1

))
. (31)

First, let j = 0. According to (24), we can derive that

u0
i (xk) = arg min

uk

{U(xk, uk, 0) + γV 0
i (xk+1)} (32)

where xk+1 = f(xk, 0) + gvk. The function f(xk, 0) can be
expressed as f(xk, 0) = [PL(23), x2k]T . For j = 0, 1, . . . , 23,
(24) holds. Hence, the sequential sequence of iterative control
law in (31) can be expressed as

(uk, uk+1, . . . , uk+j)

= (u23
i (xk), u22

i (xk+1), . . . , u
λ−1−j
i (xk+j)). (33)

Let j = 23. We can obtain that (30) holds. ¥
From Theorem 1, for i = 0, 1, . . . , we can say that the

total cost in each period can be minimized by the iterative
sequential control law sequence Ui(xk) according to the local
iteration (23)−(27). In [18], [20], an effective “functional
bound” method was proposed by Rantzer for the iterative ADP
algorithm. Next, inspired by [18], [20], the convergence prop-
erty of the iterative value function Vi(xk) will be developed.

Theorem 2: For i = 0, 1, . . ., let Vi+1(xk) and Ui(xk) be
obtained by (21) and (22). Then, the iterative value function
Vi(xk) converges to the optimal performance index function,
i.e.,

lim
i→∞

Vi(xk) = J∗(xk). (34)

Proof : According to the control law sequence Uk =
(uk, uk+1, . . . , uk+λ−1), we can obtain

xk+λ = F(xk,Uk). (35)

Inspired by [18], [20], assume that there are constants ψ1,
ψ2, and λ, such that 0 ≤ ψ1 ≤ 1 ≤ ψ2 < ∞ and 0 < χ < ∞,
which satisfy J∗(F(xk,Uk)) ≤ χU(xk,Uk), and ψ1J

∗(xk) ≤
V0(xk) ≤ ψ2J

∗(xk).
For i = 0, 1, . . ., the iterative value function Vi(xk) satisfies
(

1 +
ψ1 − 1

(1 + χ−1)i

)
J∗(xk) ≤ Vi(xk)

≤
(

1 +
ψ2 − 1

(1 + χ−1)i

)
J∗(xk). (36)

Inequality (36) can be proven by mathematical induction.
Let i = 0. From (21), we have

V1(xk) = min
Uk

{U(xk,Uk) + γ̄V0(xk+λ)}

≥min
uk

{(
1 + χ

ψ1 − 1
1 + χ

)
U(xk,Uk)

+ γ̄

(
ψ1 − ψ1 − 1

1 + χ

)
J∗(xk+λ) }

≥
(

1 +
ψ1 − 1

(1 + χ−1)

)
min
uk

{U(xk,Uk) + γ̄J∗(xk+λ)}

=
(

1 +
δ − 1

(1 + γ −1)

)
J∗(xk). (37)

Following a similar procedure, we can prove inequality (36)
using mathematical induction for i = 0, 1, . . .. Letting i →∞,
we can obtain

lim
i→∞

{(
1 +

ψ1 − 1

(1 + χ−1)i

)
J∗(xk)

}

= lim
i→∞

{(
1 +

ψ2 − 1

(1 + χ−1)i

)
J∗(xk)

}

= J∗(xk). (38)

¥
Corollary 1: For i = 0, 1, . . ., let Vi+1(xk) and Ui(xk)

be obtained by (21) and (22). Then the iterative control
law sequence Ui(xk) converges to the optimal control law
sequence, i.e., lim

i→∞
Ui(xk) = U∗(xk).

Remark 4: In [45], for a dual Q-learning based iterative
ADP algorithm, inspired by [18], [20], it was proven that the
iterative Q function converges to the optimal Q function as
the iteration index i →∞. In this paper, inspired by [18],
[20], we have shown that the iterative value function Vi(xk)
with the constraints of the battery can also converge to the
optimal performance index function J∗(xk). We should point
out that the implementation of the above two iterative ADP
algorithms are different. First, for the dual iterative Q-learning
algorithm in [45], the system model is not necessary. This
is a remarkable advantage of the dual iterative Q-learning
algorithm. However, in each iteration of the dual iterative
Q-learning algorithm, it is required to search both of the
state and control spaces to update the iterative Q function.
Hence in this case, the computation load is high. In the
proposed iterative ADP algorithm (21)−(27), we can see that
the iterative value function can be updated only in state space.
Thus, the computation burden of the present algorithm is
relaxed. This is an advantage of the iterative ADP algorithm
in this paper. On the other hand, from (27) we can see that
the system model is necessary to obtain the iterative control
law. This is a disadvantage of the algorithm.

IV. SIMULATION ANALYSIS

In this section, the performance of the iterative ADP
algorithm with constraints will be examined by numerical
experiments. The simulation results for the developed iterative
ADP algorithm with constraints will be compared with the
dual Q-learning algorithm in [45]. The profiles of the home
load demand (kW) and the real-time electricity rate (in cents)
are taken from [44], where the home load demand and the real-
time electricity rate for four weeks (672 hours) are shown in
Figs. 1 (a) and (c), respectively. We can see that the home load
demand and the real-time electricity rate are quasi-periodic
functions and the periods are λ = 24 hours. According to
the functions of the home load demand and the real-time
electricity rate for 672 hours, we can obtain the average
trajectories of the home load demand and the electricity rate
which are shown in Figs. 1 (b) and (d).
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Fig. 1. Home load demand and electricity rate. (a) Home load demand for
672 hours. (b) Average home load demand in a day. (c) Real-time electricity
rate for 672 hours. (d) Average electricity rate in a day.

Let the capacity of the battery be chosen as in [45], which
is 100 kWh. Let the upper and lower storage limits of the
battery be Emin

b = 20 kWh and Emax
b = 80 kWh, respectively,

which are the same as those in [45]. The rated power output
of the battery namely the maximum charging/discharging rate
is 10 kW. Let the initial battery energy be 65 kWh. Let the
performance index function be expressed as in (7), where we
set m1 = 0.9, m2 = 0.5 and m3 = 0.5. Let the initial function
Ψ(xk) = xT

k Πxk, where Ψ is arbitrarily chosen as a positive
semi-definite matrix with

Π =
[

0.2894 0.6852
0.6852 2.3505

]
.

Neural networks are used to implement the iterative ADP
algorithm. There are two neural networks, which are critic
and action networks, respectively. Both neural networks are
chosen as three-layer back-propagation (BP) network. The
structures of the critic and action networks are chosen as
2−8−1 and 2−8−1, respectively. The training methods of
the neural networks are shown in [45], [49] and omitted here.
Now we let the real maximum charging/discharging power be
4.5 kW. According to these data, we implement the iterative
ADP algorithm (21)−(27) for 15 iterations to guarantee the
computation precision ε = 10−2. The plots of the iterative
value function are shown in Fig. 2.

From Fig. 2, we can see that under the power constraints
of the battery, the iterative value function converges to the
optimum in 15 iterations. The optimal battery charging/dis-
charging management is shown in Fig. 3. From Fig. 3, we
can see that the charging and discharging power of the
battery cannot exceed the bound of 4.5 kW, which shows the
effectiveness of the developed algorithm. The plot of battery
energy is shown in Fig. 4. From Fig. 4, we can see that the
energy of the battery does not exceed the maximum energy of
the battery.

Fig. 2. The trajectories of the iterative value function.

Fig. 3. Optimal management of battery with constraints in four weeks.

In [45], a dual Q-learning based iterative ADP algorithm
was developed to solve the optimal battery management where
the constraints for the power of the battery were not consid-
ered. The performance index function is defined as in (7),
where the parameters are kept unchanged. Choosing the initial
Q function as Q0 = [xk, uk]T Π̄[xk, uk], where Π̄ is chosen
as

Π̄ =




0.3479 0.8594 0.4914
0.8594 2.8694 1.4634
0.4914 1.4634 4.1274


 .

We implement the dual Q-learning based iterative ADP
algorithm [45] for 15 iterations which makes the iterative
Q learning algorithm converge to the optimum. The optimal
battery management with no constraints is shown in Fig. 5.
From Fig. 5, we can see that if the power constraints are
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Fig. 4. Optimal battery energy with constraints in four weeks.

Fig. 5. Optimal management of batteries with no constraints in four weeks.

not considered, the maximum battery power reaches 16 kW.
The energy of the battery is shown in Fig. 6. However, adding
the constraints of battery, we can see that the power of the
battery does not exceed 4.5 kW, which prevents the large
charging/discharging of the battery. In Fig. 6, we can see that
the battery reaches its maximum and minimum energies of the
battery under the un-constrained optimal battery management.
In Fig. 4, the battery nearly does not reach the maximum
and minimum energies of the battery. Hence, the proposed
algorithm is preferred for the long term operation of the
battery. Fig. 7 shows the real-time cost comparisons in a day.
We can see that the real-time cost using the iterative ADP with
constraints is smaller than the iterative ADP with no constraint,
which shows the effectiveness of the developed method.

Fig. 6. Optimal battery energy with no constraints.

Fig. 7. Numerical comparisons in a day.

V. CONCLUSION

In this paper, a new iterative ADP algorithm is developed
to solve the optimal battery control problem for the smart
home energy systems. Considering the efficiency and the
charging/discharging constraints of the battery, the model of
the smart home energy system is constructed. A new non-
quadratic form performance index function is established,
which guarantees the iterative control amplitude not to exceed
the upper bound of the battery. Iterative ADP algorithm is
developed, where in each iteration, the expressions of the iter-
ative control law can be obtained. The convergence properties
of the iterative ADP algorithm are given, which guarantees that
the iterative value function and the iterative control law both
reach the optimal ones. Finally, simulation and comparison
results are given to illustrate the performance of the presented
method.
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In this paper, to extend the lifetime of the battery, we aim
to draw the stored energy of the battery close to the middle
of storage limit and minimize the large charging/discharging
power of the battery. On the other hand, the frequency of the
battery is not considered in this paper. Since frequent quick
charging/discharging frequency may also damage the battery,
how to avoid frequent charging/discharging of the battery will
be our main future research topic.
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