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Bad-scenario-set Robust Optimization Framework
With Two Objectives for Uncertain

Scheduling Systems
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Abstract—This paper proposes a robust optimization frame-
work generally for scheduling systems subject to uncertain input
data, which is described by discrete scenarios. The goal of robust
optimization is to hedge against the risk of system performance
degradation on a set of bad scenarios while maintaining an ex-
cellent expected system performance. The robustness is evaluated
by a penalty function on the bad-scenario set. The bad-scenario
set is identified for current solution by a threshold, which is
restricted on a reasonable-value interval. The robust optimization
framework is formulated by an optimization problem with two
conflicting objectives. One objective is to minimize the reasonable
value of threshold, and another is to minimize the measured
penalty on the bad-scenario set. An approximate solution frame-
work with two dependent stages is developed to surrogate the bi-
objective robust optimization problem. The approximation degree
of the surrogate framework is analyzed. Finally, the proposed
bad-scenario-set robust optimization framework is applied to a
scenario job-shop scheduling system. An extensive computational
experiment was conducted to demonstrate the effectiveness and
the approximation degree of the framework. The computational
results testified that the robust optimization framework can
provide multiple selections of robust solutions for the decision
maker. The robust scheduling framework studied in this paper
can provide a unique paradigm for formulating and solving
robust discrete optimization problems.

Index Terms—Approximate solution, bad-scenario set, bi-
objective problem, job shop, robust optimization framework.

I. INTRODUCTION

IN scheduling environments where uncertainty is a major
issue, robustness is a new scheduling performance measure,

which is particularly concerned for robust scheduling [1], [2].
Input data uncertainty, such as variation in processing times,
is frequently considered in the research of robust scheduling.
Difficulties with input data uncertainty are typically dealt
with by proactive scheduling policy, which tries to ensure
that the preventive schedules maintain a high level of system
performance [2]. Scenario approach is a significant modeling
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tool of input data uncertainty to develop proactive scheduling.
Mulvey et al. [3] proposed a scenario-based representation
and analysis of uncertainty rather than using stochastic models
in their pioneering work. They developed the scenario-based
robust optimization to handle the tradeoff associated with so-
lution robustness and model robustness for several real-world
applications. Up to now, robust optimization methodology has
been applied to develop proactive scheduling in wide discrete
optimization fields [4]−[7].

Li et al. [5] classified the scenario-based robust scheduling
formulations into two groups: the scenario-based stochastic
programming formulation [3], [8], [9] and the robust coun-
terpart optimization formulation [10]. The scenario-based
stochastic programming aims at optimizing expected system
performance and tries to achieve optimality of scheduling
system in the average sense. As an alternative to the scenario-
based stochastic programming formulation, the robust coun-
terpart optimization, which comes from mathematical pro-
gramming formulations developed by Soyster [11], avoids
the shortcomings of the stochastic programming formulation.
The pioneering works by Ben-Tal and Nemirovski [12] and
Bertsimas and Sim [13] extended the framework of robust
counterpart optimization, and developed sophisticated solution
techniques.

In the face of uncertainty, the attitude toward the risk of per-
formance degradation is a particularly concerned issue when
assessing performance robustness. Following the scenario-
based formulation, most studies have evaluated performance
robustness in different ways. A typical pessimistic attitude to
risk usually focuses on a sole worst-case scenario [14]−[16].
Daniels and Kouvelis [14], [15] evaluated schedule robustness
by focusing on the worst-case performance among all possible
scenarios to hedge against processing time variability. Artigues
et al. [16] used the same way to hedge against the performance
degradation on the worst-case contingency by evaluating a
given ordered group assignment. However, the worst-case
scenario formulation would result in an extremely conservative
decision due to without considering any optimality on other
scenarios.

System performance degradation may occur not only in the
worst-case scenario but among a set of bad scenarios. In the
face of the risk of performance degradation, it is reasonable
to concern more bad scenarios. Thus it is necessary to give a
standard for explicitly differentiating standard performances
from substandard (bad) ones across scenarios. Given a target
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performance, Daniels et al. [17] developed the beta-robust
scheduling model for single-machine scheduling with uncer-
tain processing times. The beta-robustness objective is to
maximize the likelihood of that a schedule yields actual perfor-
mance no worse than the given target performance. The beta-
robust scheduling formulation restricts its attention on good
performances (better than the given standard performance) and
hedge against the risk of performance degradation through
enlarging the likelihood of achieving excellent performances
as possible as they can. Other than that, we consider another
paradigm to realize the robust scheduling goal. We restrict
our attention on poor performances on bad scenarios, which
are identified still by a given standard performance. Wang
et al. [18] proposed the bad-scenario-set robust scheduling
model based on a standard performance, whose objective
is to minimize the total penalties on bad scenarios due to
their worse performances than the given standard performance.
The beta-robust scheduling model and the bad-scenario-set
scheduling model can provide less conservative robust solution
than the worst-case scenario model.

In either the beta-robust scheduling model or the bad-
scenario-set scheduling model, a given threshold named stan-
dard performance by Wang et al. [18] and target perfor-
mance by Daniels et al. [17] plays an important role. In
production reality, a reasonable value of threshold can be
given based on empirical data or provided in other ways.
That will result in a one-stage robust scheduling, exactly like
what Daniels and Carrillo [17] had done. The beta-robust
scheduling [17] did not provide a method to determine the
required target performance. Wu et al. [19] proposed a two-
stage decision-making structure to handle the single-machine
beta-scheduling problem using constraint propagation. They
presented a procedure of determining a target performance,
which was generated by combining average performance and
variance. Such a two-stage approach is consistent with the
robust decision-making formulations presented by Kouvelis et
al. [20] and Assavapokee et al. [21]. Wang et al. [18] also
did not provide a procedure to determine reasonable values of
threshold although they noticed it is an important issue for the
bad-scenario-set scheduling model.

We consider a more complicated situation than that in [18]
in this paper. Assume that the reasonable value of threshold
is not given in advance. We have to determine a reasonable
value of threshold in advance and accordingly generate a
corresponding robust schedule. This is a two-stage decision-
making structure. Regarding both the value of threshold and
the robust solution as decision variables, a robust optimization
framework is formulated by a problem with two objectives
generally for scheduling systems with input data uncertainty.
The aim of the problem is at hedging against the risk of
performance degradation while keeping excellent traditional
expected performance. The robustness is evaluated based on
the concept of bad-scenario set [18], which is identified by
a reasonable value of threshold. Since reasonable values of
threshold are restricted in an interval, two extra optimization
problems need to be solved while solving the bi-objective
problem. In order to avoid handling three intractable problems,
an approximate solution framework with two dependent stages

is developed to surrogate the bi-objective problem. A feedback
adjusting mechanism is embedded in the approximate frame-
work from the second stage to the first stage. The significance
of the approximate solution framework is that it can transfer
the procedure of solving three optimization problems into an
iteration procedure of approximately solving two approximate
problems. The third problem can be handled by the feedback
adjusting mechanism in the search of two-stage algorithms.

We discuss the properties of the robust scheduling frame-
work and conclude that the approximation degree of robust
solution obtained by the framework is determined by the
approximation degree of two solved problems. We apply
the robust optimization framework to a scenario job-shop
scheduling problem in this paper. The analysis conclusions
are testified by the computational results.

II. BAD-SCENARIO-SET ROBUST SCHEDULING
FRAMEWORK

We consider a general scheduling system to minimize
certain performance measure of interest under input data
uncertainty. Scenario approach is used to structure uncertain
input data. Some notations are given as follows: Given the
set of scenarios of uncertain input data denoted by Λ, and
the number of scenarios in Λ is denoted by |Λ|. A scenario
λ ∈ Λ represents a possible realization of the uncertain input
data. Let s represent a feasible solution satisfying all required
constraints, and let C(s, λ) represent the system performance
corresponding to any feasible solution s on any scenario λ.
The set of all possible feasible solutions is denoted by S.
In the following, we refer to a scheduling problem in such
an uncertain scenario environment as the scenario scheduling
problem (SSP).

A. Formulating a Robust Scheduling Problem Under a Given
Threshold

For the discussed SSP, system performance varies as sce-
nario varies and may be very poor on some scenarios. Our
goal to a schedule is to hedge against the risk of system per-
formance degradation, which occurs on a set of bad scenarios.
The bad-scenario set is defined based on a given threshold
denoted by T . Referred to Wang et al. [18], for any feasible
solution s, a scenario λ on which system performance is worse
than T is regarded as a bad scenario. Generally, given T a
value of interest performance for the scenario set Λ, the bad-
scenario set based on T is a subset of Λ for a feasible solution
s ∈ S as follows:

ΛT (s) = {λ|C(s, λ) ≥ T, λ ∈ Λ}. (1)

The performance value T is actually a threshold of identi-
fying bad scenarios from all possible scenarios. We refer to
ΛT (s) as a threshold bad-scenario set (TBS) for the feasible
solution s. Thus both the value of T and the solution s affect
the TBS ΛT (s). The number of bad scenarios (NBS) will vary
as the solution s or the value of T varies.

The value of T can also be regarded as a standard per-
formance. TBS includes all bad scenarios on which system
performances of the solution s are substandard to the standard
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performance T . We intend to generate robust schedules, where
substandard performances on TBS will be hedged against as
possible as we can. Actually, a solution may incur a penalty if
system performances are substandard on some bad scenarios.
We consider adding a penalty on the bad scenarios of TBS.
The amount of the penalty may be associated with not only the
likelihood of generating substandard performances but also the
degree of deviation of poor performances from the standard
performance. The bad-scenario-set robust scheduling model
was proposed to minimize the total penalties incurred by
substandard performances across the identified bad scenarios
by Wang et al. [18]. The effectiveness as well as the robust
solution obtained by the bad-scenario-set robust scheduling
model is proved to be dependent on the given value of
threshold. Therefore, the value of threshold is a significant
parameter for the bad-scenario-set robust scheduling model.

The amount of penalty on TBS (PT) is measured based on
the value of given threshold as follows:

PT (s) =
∑

λ∈ΛT (s)

[C(s, λ)− T ]2. (2)

The square item in the formula (2) is applied in the penalties
in order to intensively hedge against worse scenarios. This
will benefit the decision maker’s preference of risk averse
much more than a linear item. A PT-robust scheduling problem
(PSP) is formulated by minimizing the penalty PT (s).

(PSP) min
s∈S

PT (s). (3)

Obviously, the PSP is formulated based on the TBS, and
the TBS is defined based on a given value of T , i.e., the
PSP corresponds to the value of T . In order to differ PSPs
for different values of T , we might as well denote the PSP
for the value of T by PSP|T . For the PSP, if the value
of T is too big, ΛT (s) could be empty for some feasible
solutions. In this situation, the penalty PT (s) is zero and the
corresponding PSP|T is invalid because the model may lose
the ability of differing some elite solutions [18]. In principle,
we have Definition 1 as follows:

Definition 1: The value of T is referred to as a reasonable
value for the PSP|T if ΛT (s) is always nonempty for any
feasible solution s ∈ S. We call the PSP|T as effective model
if the value of T is reasonable.

In any case, the effectiveness of PSP|T depends on the
value of T . An effective PSP|T model concerns a set of bad
scenarios more than the worst-case scenario. It will generate
robust solutions with less conservatism than the worst-case
scenario problem. Thus the degree of solution conservatism of
the PSP|T also depends on the value of T . A reasonable value
of T is vital for an effective PSP. To establish the effective
PSP|T , a reasonable value of T needs to be determined in
advance.

B. Determining Reasonable Values of Threshold

The value of T is used not only as a threshold to identify
bad-scenario set but also as a standard performance to measure
the PT objective for the discussed SSP. For the discussed
SSP herein, what value of T is reasonable depends on system

input data. Different values of T represent different decision
preferences, and further establish different PSP|T models that
generate different robust solutions. In the following, we have
to handle the issue regarding how to determine a reasonable
value of T .

On one side, a reasonable value of T must guarantee the
effectiveness of PSP|T . A reasonable value of T should be
located on the common interval of all possible performances
that the system is able to achieve for all possible feasible
solutions among all possible scenarios. We denote the op-
timal worst-case performance among all possible scenarios
by WC∗, then WC∗ is the upper bound of the common
interval. If T > WC∗, TBS is possibly null for some elite
solutions. Therefore, a reasonable value of T should be subject
to T ≤ WC∗, which is a compulsory condition to formulate
an effective PSP|T .

On the other side, our scheduling goal is to hedge against the
risk of performance degradation among bad scenarios while
keeping an excellent expected performance. The reasonable
value of T should also help the PSP|T model achieve our
robust scheduling goal, i.e., a robust solution of PSP|T could
represent a risk-averse preference, just like what Daniels et al.
[14] declared, the value of threshold should be required to be
bigger than the optimal expected performance. We denote the
optimal expected-case performance among all possible sce-
narios by EC∗, and determine that EC∗ should be the lower
bound of the common interval, i.e., T ≥ EC∗ is required. In
summary, to achieve our robust scheduling goal, the reasonable
values of T should be located on the interval [EC∗,WC∗].
We name the interval [EC∗,WC∗] as the reasonable-value
interval of T . Referring to [18], we present Proposition 1
without proof as follows:

Proposition 1: Any value of T on the reasonable-value inter-
val [EC∗,WC∗] can guarantee that the corresponding PSP|T
is effective and the PSP|T model is capable of generating a
PT robust solution.

Obviously, the interval [EC∗,WC∗] can provide infinite
number of reasonable values of T , which correspond to infinite
number of PSP|T models. Each PSP|T model can generate a
PT robust solution, which can be represented by PT (s). The
PT robust solutions generated by PSP|T models with different
reasonable values of T could be regarded as different decision
choices provided to the decision maker, which can realize
different degrees of tradeoff between the robustness and the
optimality. We represent a decision choice by a pair of perfor-
mances (T, PT (s, T )). In the following, we intend to propose
a bi-objective optimization problem formulation, which is
able to generate all decision choices (T, PT (s, T )). The bi-
objective optimization problem provides a robust scheduling
framework, which can accommodate all PSP|T models for all
possible reasonable values.

C. Formulating a Robust Scheduling Framework

Regarding the reasonable value of T and the PT robust
solution as decision variables, we can formulate a bi-objective
optimization problem. In fact, the PSP|T models involve two
objectives. One objective is to minimize the penalty PT (s).
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A smaller value of PT (s) should benefit the robustness of
scheduling system. Another objective is to minimize the value
of T . The reason is that a smaller value of T results that more
bad scenarios are concerned in the PSP|T model, and should
benefit a better expected performance, i.e., a smaller value of T
should benefit the statistical optimality of scheduling system.
However, two objectives are conflicting because a smaller
value of T leads to the bigger value of PT (s). Therefore,
we accommodate all the PSP|T models in a PSP framework
(PSPF), which is a bi-objective optimization problem.

(PSP|T) min PT (s, T ) =
∑

λ∈ΛT (s)

[C(s, λ)− T ]2 (4)

min T (5)
s.t. EC∗ ≤ T ≤ WC∗ (6)

(ECP) EC∗ = min
s∈S

∑

λ∈Λ

C(s, λ) (7)

(WCP) WC∗ = min
s∈S

max
λ∈Λ

C(s, λ). (8)

See the expressions (4)−(8), where the expected-case prob-
lem (ECP) is referred to the model with the criterion of
expected performance across all possible scenarios of Λ, the
worst-case problem (WCP) is referred to the model with
the criterion of worst-case scenario performance among all
possible scenarios of Λ, and the PSP|T is the model with the
objective PT (s) for the value of T . Thus the PSPF is actually
a scheduling framework implicitly involving three problems:
PSP|Ts, the ECP, and the WCP. Each candidate value of T is
subject to the (6), where EC∗ and WC∗ are determined by
optimally solving the ECP and the WCP. The ECP and the
WCP are extra two problems need to handle. They are at least
the same intractable as the original SSP because they can be
reduced to the SSP when |Λ| = 1.

It is worth recalling that a solution of bi-objective problem
is said to be efficient (or non-dominated) if it is impossible
to improve it with respect to two objectives without violating
any constraint. The solution quality and the solution diversity
of efficient solutions are two aspects of evaluating the efficient
solutions of bi-objective problem. For more studies of bi-
objective scheduling problems, one can refer to the literature
[22]−[24].

For the PSPF, equilibrium of two objectives could be
achieved at each efficient solution (T, PT (s, T )), which con-
sists of a reasonable value of T and the corresponding PT
performance. We might as well denote the PT solution of
PSP|T by s(T ), denote the PT objective of s(T ) by PT (s(T ))
instead of PT (s, T ) of (4), and denote an efficient solution of
PSPF by (T, PT (s(T ))). We have Proposition 2 as follows.

Proposition 2: The PSPF must be effective on the
reasonable-value interval [EC∗,WC∗] and it is capable of
generating a set of efficient solutions.

Proof : Since each value of T subject to the inequality (6) is
on the reasonable-value interval [EC∗,WC∗], the PSPF must
be effective due to that each PSP|T is effective according to
Proposition 1.

Let s∗(T ) be the optimal robust solution of PSP|T, i.e.,
{s∗(T ) = arg mins(T )∈S PT (s(T ))}. We denote the objective

of s∗(T ) by PT (s∗(T )). Then T and PT (s∗(T )) are bi-
objective performances of PSP|T for the solution s∗(T ).
PT (s∗(T )) must be the smallest value for the value of T and
is impossibly improved further without increasing the value
of T . Conversely, the value of T must be the smallest value
for the PT (s∗(T )) because a smaller value than PT (s∗(T ))
has to correspond to a bigger value of T . Thus s∗(T ) is an
efficient solution of PSPF, and (T, PT (s∗(T ))) is an efficient
solution of PSPF. That is, for each value of T subject to the
inequality (6), an efficient solution of PSPF can be generated.
As the value of T varies from EC∗ to WC∗, there exists a set
of reasonable values of T , correspondingly a set of efficient
solutions of PSPF can be generated. ¥

The PSPF is a framework consisting of a set of PSP|Ts for
different values of T . The PSPF is unconditionally effective
for any values of T on the reasonable-value interval. To solve
the PSPF, the prerequisite is to determine the reasonable-value
interval [EC∗,WC∗]. It seems that the ECP and the WCP
should be solved optimally in advance of solving the PSPF.
However, each one of three problems is NP-hard only if the
deterministic SSP is NP-hard. All of them will be intractable
and exact solution algorithms will be computationally expen-
sive for them.

Fortunately, the PSPF is a special bi-objective problem, in
which the objectives (4) and (5) are not aggressive for each
other though they are conflicting. The reasonable value of T
should be determined before a PT robust solution is solved.
The PT robust solution is actually a function of the value of
T . Therefore, the PSPF can actually reduce to solving PSP|Ts
for different values of T . Therefore, we plan to develop an
approximate solution framework of PSPF to generate a set of
efficient solutions for the PSPF. The approximate framework
is presented and analyzed in the following.

III. APPROXIMATE SOLUTION FRAMEWORK
FOR THE PSPF

A. Formulating a Surrogate Framework

The aim of the solution framework of PSPF is to generate
a set of efficient solutions of PSPF. We plan to provide an
approximate solution framework based on a surrogate model
of PSPF. For an efficient solution (T, PT (s(T ))) of PSPF,
PT (s(T )) is actually measured depending on the value of T
according to(2). Each efficient solution can be sequentially
determined in a two-stage surrogate decision-making mecha-
nism. The first stage is to determine the first reasonable value
of T , and the second stage is to solve a series of PSP|Ts
formulated by (4) with respect to the first value of T . Thus a
surrogate model is proposed instead of the PSPF to determine
a set of reasonable values of T without optimally solving both
the ECP and the WCP. We reformulate the PSPF by a surrogate
framework with two-stage approximate problems (SFTAP) as
follows.

The first-stage approximate problem:

(ECP∼) EC∼ ≈ min
s∈S

EC(s)

=
∑

λ∈Λ

C(s, λ)). (9)



WANG et al.: BAD-SCENARIO-SET ROBUST OPTIMIZATION FRAMEWORK WITH TWO OBJECTIVES FOR UNCERTAIN SCHEDULING SYSTEMS 147

The second-stage approximate problem:

(PSP∼) min
s(T )∈S

PT (s(T ))

=
∑

λ∈ΛT (s)

[C(s, λ)− T ]2 (10)

T = β · EC∼ (11)

where β = β1, β2, . . . , βx

β1 = 1; βk+1 = βk + ∆β;∆β > 0
k = 1, 2, . . . , x− 1
ΛT (s) is not empty. (12)

In the first stage of SFTAP, the problem ECP∼ is to
approximately solve the ECP to obtain an approximate value
of EC∗, denoted by EC∼. In the second stage, the problem
PSP∼ is to approximately solve a set of PSP|Ts to get a serial
of PT (s(T )) under a serial of values of T . The serial of
efficient solutions (T, PT (s(T ))) constitute the set of efficient
solutions (SES) for the PSPF. In the SFTAP, the expression
(9), (11) and the constraint (12) are used to surrogate the
expressions (6)−(8) respectively. Seen from (11), the set
values of T is provided by EC∼ and ∆β. The value of EC∼

is the first value of T in the SES. The parameter ∆β is used
to locate specific reasonable values of T within the interval
[EC∗,WC∗] for the SES. In order to discuss the surrogate
framework SFTAP, we give another definition as follows:

Definition 2: We call the SFTAP an effective surrogate
framework for the PSPF only if the SFTAP is capable of
generating at least one efficient solution of PSPF for the SES.

The reason that we use the approximate problems to surro-
gate the PSPF is that the following analysis is given based
on considering approximate (heuristic) algorithms to solve
the ECP∼ and the PSP∼. Moreover, we will also discuss the
situation of approximate solutions approaching exact solutions.
We might as well consider iterative search structures to provide
solution algorithms for two stages of SFTAP. We denote two
approximate solution algorithms respectively for the ECP∼

and the PSP∼ by algorithms A1 and A2. In the situation that
A1 and A2 solve the ECP∼ and the PSP∼ approximately, the
effectiveness of SFTAP for the PSPF probably can not be
guaranteed. In fact, the SFTAP may be ineffective if EC∼

is a rather poor approximation. In order to guarantee the
effectiveness of SFTAP, a feedback adjusting mechanism is
designed which is embedded in the surrogate framework from
the first stage to the second stage. The solution framework of
SFTAP is illustrated in Fig. 1.

B. Handling the Approximate Problem ECP∼ in the First
Stage

In the SFTAP, EC∼ is a baseline to provide a family of
reasonable values of T and it is vital for the effectiveness
of SFTAP. An eligible EC∼ that guarantees the effectiveness
of the SFTAP should satisfy the relationship EC∼ ≤ WC∗.
Thus we have Proposition 3 as follows.

Proposition 3: The SFTAP is effective for the PSPF only if
EC∼ is eligible.

Proof : According to (11), when β = 1, the first value
of T provided by the SFTAP is exactly EC∼. If EC∼ is
eligible, it satisfies EC∼ ≤ WC∗. Since EC∼ is obtained
through solving the ECP∼, EC∼ must be an upper bound
of EC∗, i.e., EC∼ ≥ EC∗. Therefore, the value of EC∼

is a reasonable value of T . According to Proposition 1, the
corresponding PSP|T is effective and it can generate a PT
robust solution, which exactly constitutes an efficient solution
of PSPF. According to Definition 2, the SFTAP is effective
for the PSPF. ¥

Seen from Proposition 3, the degree of approximation of
EC∼ is vital for the effectiveness of SFTAP. How can we
ensure an eligible EC∼ ? If EC∼ is obtained through solving
the ECP∼ by use of an approximate algorithm A1, the degree
of approximation of EC∼ depends on the A1. Suppose that
the search structure of A1 is given, the solution quality
of the ECP∼ depends on the specific setting of algorithm
parameters including the termination condition of A1. We
name Termination 1 as the termination condition of A1. We
might as well focus on Termination 1 to affect the degree of
approximation of EC∼ while supposing that other algorithm
parameters of A1 are already appropriately set by tuning.
Therefore, here Termination 1 is the only parameter of A1,
which is used to adjust the degree of approximation of EC∼,
see Fig. 1.

C. Handling the Approximate Problem PSP∼ in the Second
Stage

Observe the whole solution process of SFTAP, we see that
the WCP is actually not handled. Then how can the SFTAP
ensure EC∼ ≤ WC∗ ? In fact, a checking segment undertakes
this mission in the search algorithm of the second stage. The
aim of the second stage is to solve a family of PSPs by
iteratively performing A2. Suppose that a search algorithm
is adopted as an alternative of A2, once ΛT (s) is identified,
the SFTAP checks ΛT (s) to testify if ΛT (s) is empty or not.
We name this segment of A2 as the checking segment, which
indicates different situations corresponding to specific value
of β. If null TBS occurs in a checking segment at β = 1,
it demonstrates that EC∼ is ineligible. In order to guarantee
the effectiveness of SFTAP, a feedback adjusting mechanism
(shaded segments illustrated in Fig. 1) is embedded in the
SFTAP from A2 to A1. Once null TBS occurs in A2 at β = 1,
the feedback adjusting mechanism is started up, i.e., A2 stops
temporarily, and the algorithm returns back to A1 to adjust
Termination 1 and solve the ECP∼ once again by use of the
renewed Termination 1 until an eligible EC∼ is obtained. The
feedback adjusting mechanism is actually a guarantee for an
eligible value of EC∼. As long as the value of EC∼ obtained
in the first stage is eligible, the feedback adjusting mechanism
would not be started up.

Let the minimum value of T obtained by the SFTAP be
Tmin, then Tmin = EC∼. The SFTAP can provide a family
of reasonable values of T by the values of EC∼ and β in the
second stage. The subsequent values of T will get an increment
∆β based on the former one. Since both the value of T and
the current solution s will affect ΛT (s), there exist two layers
of iterations in A2. The inner-layer iterations are driven by
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Fig. 1. The approximate solution framework of SFTAP.

updating the current solution, and the outer-layer iterations are
driven by updating the value of T . Since the value of EC∼

is determined in the first stage, updating the value of T is
exactly updating the value of β. The inner-layer iterations run
at β = 1 until the termination condition of A2 (referred to as
Termination 2) is satisfied and an efficient solution is included
into the SES. Accordingly, the outer-layer iterations run at an
updated value of β by β = 1 + ∆β until one more efficient
solution is included into the SES or the SFTAP is terminated.
For each value of β, A2 runs for the corresponding PSP|T for
only one time. As the value of β is updated, A2 is performed
for a family of PSP|T . The SFTAP is terminated only if the
result of checking segment is null TBS while satisfying β > 1.
This situation demonstrates that the provided value of T at this
time is beyond the reasonable-value interval [EC∗,WC∗]. In
summary, the checking segment has two different functions
in the SFTAP: a null TBS at β = 1 will start the feedback
adjusting mechanism, and a null TBS at β > 1 will terminate
the SFTAP.

In the second stage of SFTAP, since Termination 2 is the
termination condition of the inner-layer iterations, Termination
2 affects the quality of SES. If A2 is an approximate algo-
rithm, probably not all possible feasible solutions are checked
by the checking segment. Let Tmax be the last value of T
in (11). Maybe Tmax > WC∗ occurs and pseudo efficient
solutions may be included into the SES. We refer to a value

of T provided by the SFTAP as a pseudo reasonable value if
it is in fact beyond the reasonable-value interval [EC∗,WC∗]
and refer to an efficient solution as a pseudo efficient solution
if it is obtained under a pseudo reasonable value. Two pseudo
reasonable values are illustrated in Fig. 2. Pseudo reasonable
values are included in the SES because we apply the checking
segment in the SFTAP instead of solving the WCP and
adopt an approximate algorithm for A2. The SFTAP generates
pseudo reasonable values just due to its approximate nature.
We hope that the number of pseudo efficient solutions would
decrease till to be zero as the approximation degree of A2
is improved. This will be proved in the following analysis in
next section.

Fig. 2. Two pseudo reasonable values T
′

and T
′′

.

D. The Analysis of the Approximation of SFTAP

In fact, for the SFTAP, the quality of SES and the cardi-
nality of SES indicate the solution quality and the solution
diversity of efficient solutions respectively. We discuss the
approximation of the SFTAP by assessing the quality of SES
and the cardinality of SES.

Let sb(T ) denote the PT solution obtained by the SF-
TAP. sb(T ) is an approximation of the optimal PT solution
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s∗(T ), i.e., s∗(T ) = arg mins(T )∈S PT (s(T )) and sb(T ) ≈
arg mins(T )∈S PT (s(T )). The values T obtained by the SF-
TAP are within the interval [Tmin, Tmax], then the SES can
be represented by

SES = {(T, PT (sb(T ))) : T = Tmin, . . . , Tmax} (13)

We evaluate the quality of SES by two elements of
efficient solution (T, PT (s(T ))) including the quality of the
interval [Tmin, Tmax] and the quality of PT (sb(T )). Espe-
cially, we define the right gap gr and left gap gl between
the obtained reasonable-value interval [Tmin, Tmax] and the
optimal reasonable-value interval [EC∗,WC∗] respectively by
gr = |Tmax−WC∗| and gl = |EC∗−Tmin|. Of course, smaller
values of both gr and gl indicate better quality of [Tmin, Tmax].
Pseudo efficient solutions in the SES are the result of the
SFTAP to surrogate the PSPF. The number of pseudo efficient
solutions (exactly the number of pseudo reasonable values)
in the SES should be an index of approximation degree
of SFTAP. In order to discuss the approximation degree of
SFTAP, we give the following definition.

Definition 3: ∀ε ≥ 0, if |gr| ≤ ε, |gl| ≤ ε, and |PT (sb(T ))
−PT (s∗(T ))| ≤ ε are satisfied, we refer to the SFTAP as an
ε− optimal solution framework for the PSPF.

Thus we have the following Theorem 1.
Theorem 1: If A1 and A2 can generate ε-optimal solutions

with ε = 0 for the ECP∼ and the PSP∼ respectively, the
SFTAP is an ε-optimal solution framework with ε = 0 for the
PSPF, i.e., if both A1 and A2 are exact algorithms respectively
for the ECP∼ and the PSP∼, the SFTAP is an exact solution
framework for the PSPF, and no pseudo effective solution
exists in the SES.

Proof : According to the expression (10), Tmin = EC∼. If
A1 can generate the ε-optimal solution with ε = 0 for the
ECP∼, it means that the obtained solution of ECP∼ can be ex-
actly the optimal solution of ECP, then Tmin = EC∼ = EC∗.

If A2 can generate the ε-optimal solutions with ε = 0
for the PSP∼, it means that A2 can generate the ε-optimal
solution with ε = 0 to each PSP|T on the interval [Tmin, Tmax].
It demonstrates that each PSP|T is effective. For any value of T
on the interval [Tmin, Tmax], the optimal solution s∗(T ), where
s∗(T ) = arg mins∈S PT (s), can be obtained by performing
A2 on the PSP|T. s∗(T ) must have been checked in the SFTAP
and the result is nonempty ΛT (s∗(T )) because if not the
SFTAP must have been terminated at T and the value of T
has been discarded. According to (1) and (2), there must be
PT (s∗(T )) ≥ 0. Thus any feasible solution s other than s∗(T )
satisfies 0 ≤ PT (s∗(T )) ≤ PT (s(T )). If PT (s∗(T )) = 0
, there must be T = WC∗ due to nonempty ΛT (s∗(T )).
If PT (s∗(T )) > 0, then PT (s(T )) > 0, ΛT (s) is bound
to be nonempty, and T < WC∗. Anyway, for any value
of T on the interval [Tmin, Tmax], we have T ≤ WC∗.
The optimal solution (T, PT (s∗(T ))) must be an effective
solution and is impossibly a pseudo effective solution. Spe-
cially for T = Tmax, we have Tmax ≤ WC∗. Conversely,
let T = Tmax + ε, for any ε > 0, the value of T is
beyond the interval [Tmin, Tmax], the SFTAP must have been
terminated by a checking segment in an inner iteration, i.e.,
there must exist a feasible solution s∧ making ΛT (s∧) be

empty, this result testifies that Tmax+ε > WC∗. Thus we have
WC∗ − ε < Tmax ≤ WC∗ for any ε > 0. When ε → 0, we
have Tmax = WC∗. Then the interval [Tmin, Tmax] is exactly
[EC∗,WC∗].

Due to s∗(T ) = arg mins∈S PT (s) for any value of T
on the interval [Tmin, Tmax], it demonstrates that ∀ε ≥ 0,
|PT (sb)− PT (s∗(T ))| ≤ ε is satisfied for any sb ∈ S and
sb 6= s∗(T ) and for any value of T on the interval [EC∗,
WC∗]. To summarize, the SFTAP is a ε-optimal solution
framework with ε = 0 to the PSPF, i.e., the SFTAP is an
exact solution framework to the PSPF, and no pseudo effective
solution exists in the SES. ¥

Theorem 2: If A1 and A2 generate ε-optimal solutions with
ε > 0 to the ECP∼ and the PSP∼ respectively, the SFTAP
is an ε-optimal approximate framework with ε > 0 to the
PSPF. The number of pseudo effective solutions is at most
Nps = [ε/∆β].

Proof : If A1 generates ε-optimal solutions with ε >
0 to the ECP∼, then there exists ε > 0 satisfying |gl| =
|EC∗ − Tmin| ≤ ε. If A2 generates ε-optimal solutions with
ε > 0 to each PSP|T on the interval [Tmin, Tmax], referring
to the proof of Theorem 1, we have Tmax + ε > WC∗ and
it testifies |gr| = |Tmax − WC∗| ≤ ε. In addition, for any
value of T on the interval [Tmin, Tmax], A2 generates an ε-
optimal solution with ε > 0 for the PSP|T , it means that
there exists a solution sb to PSP|T satisfying |PT (sb(T ))
−PT (s∗(T ))| ≤ ε. Therefore, the SFTAP is a ε-optimal
solution framework with ε > 0 for the PSPF.

If Tmax ≤ WC∗, Tmax is a reasonable value of T , then
no pseudo effective solution will be generated for any value
of T on the interval [Tmin, Tmax]. If Tmax > WC∗, due to
gr = Tmax − WC∗ ≤ ε, the value of T locating between
WC∗ and Tmax must be pseudo effective reasonable values,
as seen in Fig. 2. And the number of pseudo effective-solution
pairs is the number of pseudo effective reasonable values of
T , which is at most Nps = [Tmax −WC∗/∆β] ≤ [ε/∆β]. ¥

We can conclude from Theorem 2 that A1 can affect the
left gap gl, and A2 can affect the right gap gr as well as
the solution quality of PT (s(T )). Especially in the second
stage of SFTAP, Tmax is approaching WC∗ and the number
of pseudo efficient solutions in the SES is decreasing to
zero while A2 is approaching a complete enumeration. The
constraint T ≤ WC∗ is regarded as a soft constraint in the
SFTAP but not a hard constraint like in the PSPF. The
constraint T ≤ WC∗ is handled through checking segments
without solving the WCP while the PSP|T s are solved by
the approximate algorithm A2 during the second stage. That
is just the reason that the SFTAP will generate pseudo effi-
cient solutions. We might say that generating pseudo efficient
solution is exactly the cost for the SFTAP to surrogate the
PSPF.

Although the value of T bigger than WC∗ can make PSP|T
ineffective with respect to Definition 1, pseudo efficient solu-
tion may have practical meaning in reality. Pseudo reasonable
value T actually means that the corresponding PSP|T will
lose the ability of differentiating elite solutions because their
objective values PT (s(T )) are identically zero.

Seen in the expression (11), the cardinality of SES should
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be x. In fact, the cardinality of SES is unknown until the
SFTAP is terminated. The cardinality of SES depends on
the approximation degree of the interval [Tmin, Tmax] and
the value of ∆β. A rougher interval [Tmin, Tmax] and big-
ger value of ∆β will result in smaller cardinality of SES.
Obviously, the cardinality of SES obtained by the SFTAP is
x = [Tmax − Tmin/∆β]. We of course hope bigger SES in
order to get better solution diversity. However, in fact, the
SES may include not only a number of real efficient solutions
but also possible pseudo efficient solutions. According to the
conclusion of Theorem 2, pseudo efficient solutions will be
eliminated only if ε < ∆β. Thus, we may set bigger values
of ∆β to avoid getting more pseudo efficient solutions into
the SES for certain ε. Unfortunately, bigger values of ∆β
will make the cardinality of SES smaller. Thus, the best way
to improve the diversity of efficient solutions of SFTAP is to
improve the approximation of two-stage problems of SFTAP.

As a whole, the SFTAP is actually a procedure to inte-
grate both identification and optimization of robust scheduling
model. The value of T is a variable to be determined in
the identification of robust scheduling model, and the robust
solution s(T ) is a variable to be solved in the optimization of
robust scheduling model. The first stage of SFTAP undertakes
the mission of providing an initial standard performance T for
robust scheduling model.

There is a need to note that the proposed robust optimization
framework is actually not limited to be applied in scheduling
problems. In fact, the procedure proposed here can also be
applied to other discrete scenario optimization problems. Spe-
cific solution algorithms for A1 and A2 should be developed
for specific discrete optimization systems. Efficient solution
algorithms will be developed in our future work. Due to the
limitation of the length of this paper, we just applied the
approximate solution framework of SFTAP to a scenario job-
shop scheduling problem by using two algorithms developed
before to testify the aforementioned analysis conclusions.

IV. COMPUTATIONAL EXPERIMENT AND RESULT
ANALYSIS

Job-shop scheduling problem (JSP) is a typical manufac-
turing scheduling problem, and it can be basically taken as
a research example for other complex discrete optimization
problems. It has been well-known as one of the hardest discrete
optimization problems and numerous exact and heuristic algo-
rithms have been proposed for deterministic JSPs [25], [26].
Much research efforts have been made on robust JSPs, which
can be referred to literatures [27]−[32].

The tested scenario job-shop scheduling problem (SJSP) in
this paper is stated as follows: n jobs are to be processed
on m machines. Each job is processed on each machine
exactly one time, which is called an operation. Each machine
can process only one job at a time and preemption is not
allowed. A sequence in which a job visits each machine
(i.e., precedence relations) is known a priori. Each operation
has a processing time. Assume that processing times of all
operations are uncertain. Let the scenario set Λ describe all
possible processing times. Each scenario λ of Λ is designated

by a vector Pλ = (pλ
i , i = 1, . . . , N), where pλ

i represents
a possible realization of processing time of the operation i
on the scenario λ, and N = n×m is the number of all
operations. A feasible solution s represents the sequences
of jobs on all machines, which are subject to precedence
relations. The system performance C(s, λ) to be minimized
is the makespan, which is the completing time of the last
operation to be processed. Even if all processing times of
operations are deterministic, the JSP with the criterion of
makespan is already strongly NP-hard [33], thus the ECP, the
WCP, and the PSP|T s for the SJSP are all strongly NP-hard.

In this section, we plan to apply the SFTAP to the SJSP.
The genetic simulated-annealing (GSA) algorithm [34], whose
main framework come from adapting an efficient hybrid
algorithm ever designed for deterministic job-shop scheduling
problems [35], was adopted to solve the ECP∼ as alternative
of A1. We set the maximal generation of evolution (denoted
by MaxGen) as the termination condition of Termination 1,
which differs from that in [35]. The reason is that an identical
termination condition for different instances is required in the
first stage of SMTF in order to ensure that different degrees of
approximation of EC∼ can be obtained when Termination 1 is
adjusted. The scenario-merging tabu search (SNTS) algorithm
[36] specialized for the PSP|T was used as alternative of A2.
A2 involves two termination conditions respectively for two
layers of iterations. Termination 2 is the termination condition
of the inner-layer iterations of SNTS. Once Termination 2 is
satisfied, the inner-layer iterations on the current value of T
will stop and an efficient solution is output into the SES. We
define Termination 2 as the maximum number of iterations
(denoted by Maxiter) of SNTS without improving the best
solution obtained so far.

An extensive experiment was conducted to investigate the
SFTAP for the SJSP. We tested the effectiveness of the solu-
tion framework of SFTAP by examining the efficient-solution
quality and the cardinality of SES. Due to the complexity of
SJSP, the tested instances are derived only from the determin-
istic classical JSP benchmark FT10 designed by Fisher and
Thompson [37]. We made processing times of all operations
of the benchmark JSP instance uncertain and use scenario
sets to describe uncertain processing times. Each scenario set
includes 20 possible scenarios for all operations, i.e., |Λ| = 20.
Each possible processing time is generated randomly from the
uniform distribution on the interval [pmin, pmax] = [10 100].
Ten instances were generated in each test. All tests were
performed in C language under the Microsoft Visual C++ 6.0
programming environment. The experiment was conducted on
the computer with Pentium G630 2.7 GHz CPU and 2.0 GB
RAM.

Firstly, we plan to observe the effects of Termination 1 and
2 as well as the parameter ∆β on the solution quality and the
solution diversity of SES. We tested an instance to observe
the variation of SES as Termination 1 or Termination 2 varies
respectively. Given ∆β = 0.02, Termination 1 was given under
two different conditions: MaxGen = 30 and MaxGen = 60
respectively, and Termination 2 was given under five different
conditions from Maxiter = 200 to Maxiter = 5000. The
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TABLE I
COMPARISONS OF SES OBTAINED UNDER DIFFERENT CONDITIONS OF TERMINATION 1 AND

TERMINATION 2 ( ∆β = 0.02)

Termination 2: Termination 1: MaxGen=30 Termination 1: MaxGen=60
(Maxiter) SES : (T, PT (s(T ))) SES : (T, PT (s(T )))

200 (1268, 475.8) (1293, 171.1) (1318, 32.6) (1199, 2258) (1223, 1089) (1247, 395.3) (1271, 91.3) (1295, 7.3)
500 (1268, 475.8) (1293, 28.3) (1318, 12.6)p (1199, 2258) (1223, 1089) (1247, 395.3) (1271, 91.3) (1295, 7.3)

1000 (1268, 416.5) (1293, 28.3) (1199, 2258) (1223, 1089) (1247, 283.7) (1271, 52.0) (1295, 7.3)
2000 (1268, 87.4) (1293, 28.3)p (1199, 2258) (1223, 1089) (1247, 283.7) (1271, 52.0) (1295, 7.3)p

5000 (1268, 87.4) (1199, 1265) (1223, 1089) (1247, 283.7) (1271, 52.0)

The superscriptp: pseudo efficient solution

obtained efficient solutions of SES under different conditions
of Termination 1 and 2 are presented in details in Table I.

Table I shows that more efficient solutions were obtained
under a higher condition of Termination 1 because a better
value of EC∼ was obtained under MaxGen = 60 and it en-
larged the interval [Tmin, Tmax]. Comparing the results under
different conditions of Termination 2, we can also notice that
the solution quality was improved for any provided values of T
under MaxGen = 30 when Termination 2 got a higher condi-
tion. Consistent results were observed under MaxGen = 60.
Moreover, it is shown that the cardinality of SES was consis-
tently getting smaller as Termination 2 got higher conditions
under both MaxGen = 30 and MaxGen = 60. The reason
may be that pseudo efficient solutions obtained under lower
conditions of Termination 2 were identified and removed from
the SES when more feasible solutions were checked under
higher conditions of Termination 2. Until Maxiter = 5000,
we got the best result of SES, which includes the best solution
quality of PT objective and the least number of pseudo efficient
solutions. It demonstrates that the number of pseudo efficient
solutions decreased as the quality of efficient solutions was
improved by A1 and A2. In summary, the results of Table I
testified the conclusions of Theorem 2.

Further, the variation of cardinality of SES under dif-
ferent conditions of Termination 1 and Termination 2 was
investigated in all ten instances and the computational results
are presented in Table II. It is shown that the cardinality
of SES was consistently getting smaller in ten instances as
Termination 2 was given higher conditions of Termination 1,
and the bigger cardinality of SES under MaxGen = 60 than
MaxGen = 30 was obtained for all conditions of Termination
2 in ten instances. Until Maxiter= 5000, the smallest SES
was gotten respectively under two conditions of Termination
1, where at least one efficient solution was obtained under
MaxGen = 30 and more efficient solutions were obtained
under MaxGen = 60 in all ten instances. The results of
Table II testified that the SFTAP is effective for decision
maker to generate at least one pair of efficient solution.
Promoting Termination 1 can make the SFTAP enlarge the
interval [Tmin, Tmax] and generate more number of efficient
solutions for a specific value of ∆β. Promoting Termination 2
can make the SFTAP improve the quality of PT robust solution
and reduce the cardinality of SES due to eliminating pseudo
efficient solutions.

Finally, we tested all ten instances to observe the influences

TABLE II
COMPARISONS OF THE CARDINALITY OF SES UNDER

DIFFERENT CONDITIONS OF TERMINATION 1 AND

TERMINATION 2 (∆β = 0.02)

Instances MaxGen
Maxiter

200 500 1000 2000 5000
1 30 2 2 2 2 2

60 5 5 5 4 4
2 30 3 3 3 3 2

60 5 5 5 5 4
3 30 3 3 2 2 1

60 5 5 5 5 4
4 30 2 2 2 2 1

60 5 4 4 4 4
5 30 3 3 2 2 2

60 5 4 4 4 4
6 30 2 2 1 1 1

60 4 3 3 3 3
7 30 2 2 2 2 1

60 4 4 4 4 4
8 30 3 2 2 2 2

60 5 5 5 5 5
9 30 2 2 2 2 2

60 5 5 5 5 5
10 30 3 2 2 1 1

60 5 5 5 4 4
Average 30 2.5 2.3 2.0 1.9 1.5

60 4.8 4.5 4.5 4.3 4.1

TABLE III
COMPARISONS OF THE CARDINALITY OF SES OBTAINED UNDER

DIFFERENT VALUES OF ∆β

Instances ∆β

0.010 0.015 0.020
1 8 6 4
2 8 7 4
3 7 5 4
4 6 5 4
5 8 5 4
6 7 4 3
7 6 5 4
8 9 6 5
9 6 5 5
10 8 4 4

of different values of ∆β on the cardinality of SES. Given
MaxGen = 60 and Maxiter = 5000, ∆β is given by three
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different values: 0.01, 0.015, and 0.02. The computational
results are presented in Table III. The results of Table III
testified that the value of ∆β affects the solution diversity of
SES and a smaller value of ∆β will generate better diversity
of SES. Among ten instances, the instance got the biggest
cardinality of SES at ∆β = 0.01, where the frontier of nine
efficient solutions is presented in Fig. 3.

Fig. 3. The frontier of efficient solutions ∆β = 0.01.

V. CONCLUSIONS

A robust scheduling formulation PSPF for uncertain discrete
optimization system under various scenarios is proposed in this
paper. This formulation aims at hedging against the risk of sys-
tem performance degradation while keeping excellent expected
system performance. In fact, the PSPF is a bi-objective prob-
lem, which represents a robust scheduling framework. In order
to solve the bi-objective problem, a surrogate approximate
approach with two stages called SFTAP is proposed to obtain
the SES of PSPF instead of an exact approach. Two problems
are approximately handled instead of handling three problems
with the same intractability. Approximate search algorithm
structures are developed for two-stage problems of SFTAP.
Due to the approximate nature, pseudo efficient solutions may
appear in the SES. The approximation degree of SFTAP is
analyzed. The number of pseudo efficient solutions in the SES
can indicate the approximation degree of SFTAP. We conclude
that the approximation degree of SFTAP is dependent on
the approximation degree of two-stage approximate problems.
The framework SFTAP was applied to a scenario job-shop
scheduling problem. The computational results testified the
conclusions of analysis. It demonstrates that the framework
SFTAP is effective. It can provide multiple selections for the
decision maker and is able to obtain better robust solutions for
the bi-objective problem as long as two approximate problems
obtain better solutions. The robust scheduling framework
studied in this paper can provide a specific paradigm for
formulating and solving robust discrete optimization problems.
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