
IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 1, JANUARY 2017 1

PDP: Parallel Dynamic Programming
Fei-Yue Wang, Fellow, IEEE, Jie Zhang, Member, IEEE, Qinglai Wei, Member, IEEE, Xinhu Zheng, Student

Member, IEEE, and Li Li, Fellow, IEEE

Abstract—Deep reinforcement learning is a focus research area
in artificial intelligence. The principle of optimality in dynamic
programming is a key to the success of reinforcement learning
methods. The principle of adaptive dynamic programming (ADP)
is first presented instead of direct dynamic programming (DP),
and the inherent relationship between ADP and deep reinforce-
ment learning is developed. Next, analytics intelligence, as the
necessary requirement, for the real reinforcement learning, is
discussed. Finally, the principle of the parallel dynamic pro-
gramming, which integrates dynamic programming and analytics
intelligence, is presented as the future computational intelligence.

Index Terms—Parallel dynamic programming, Dynamic pro-
gramming, Adaptive dynamic programming, Reinforcement
learning, Deep learning, Neural networks, Artificial intelligence.

I. INTRODUCTION

Google DeepMind’s deep reinforcement learning based Al-
phaGo computer program [1] won the historic Go match
against world champion Lee Sedol in March 2016. The
combination of Monte-Carlo tree search and deep reinforce-
ment learning makes a breakthrough at Go playing which
is believed impossible with brute-force search, and brings
artificial intelligence a focus for the year. Most people pay
more attention to the intuitive highly brain-like deep learning

Manuscript received November 11, 2015; accepted December 21, 2016.
This work was supported by National Natural Science Foundation of China
(61533019, 61374105, 71232006, 61233001, 71402178).

Citation: F.-Y. Wang, J. Zhang, Q. L. Wei, X. H. Zheng, and L. Li, “PDP:
parallel dynamic programming,” IEEE/CAA Journal of Automatica Sinica,
vol. 4, no. 1, pp. 1-5, Jan. 2017.

Fei-Yue Wang is with The State Key Laboratory of Management and
Control for Complex Systems (SKL-MCCS), Institute of Automation, Chi-
nese Academy of Sciences (CASIA), Beijing 100190, China, and School
of Computer and Control Engineering, University of Chinese Academy
of Sciences, Beijing 100049, China, and also with the Research Center
for Military Computational Experiments and Parallel Systems Technology,
National University of Defense Technology, Changsha 410073, China (e-mail:
feiyue.wang@ia.ac.cn).

Jie Zhang is with The State Key Laboratory of Management and Con-
trol for Complex Systems, Institute of Automation, Chinese Academy of
Sciences (SKL-MCCS, CASIA), Beijing 100190, China, and also with the
Qingdao Academy of Intelligent Industries, Shandong 266000, China (e-mail:
jie.zhang@ia.ac.cn).

Qinglai Wei is with The State Key Laboratory of Management and Control
for Complex Systems, Institute of Automation, Chinese Academy of Sciences
(SKL-MCCS, CASIA), Beijing 100190, China, and also with School of
Computer and Control Engineering, University of Chinese Academy of
Sciences, Beijing 100049, China (e-mail: qinglai.wei@ia.ac.cn).

Xinhu Zheng is with the Department of Computer Science and Engi-
neering, University of Minnesota, Minneapolis, MN 55414, USA (e-mail:
zheng473@umn.edu).

Li Li is with the Department of Automation, Tsinghua University, Beijing
100084, China (email: li-li@tsinghua.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2017.7510310

technologies. However, the other key to AlphaGo’s success,
the Principle of Optimality for dynamic programming, has
been taken for reinforcement learning (RL). As a matter of
fact, dynamic programming plays a very important role in
modern reinforcement learning. The victory of AlphaGo is
actually also the victory of dynamic programming.

Dynamic programming [2] has become well-known since
1950s in many fields. In 1977, Werbos combined DP, neural
networks and reinforcement learning, and introduced approx-
imate/adaptive dynamic programming (ADP) [3], [4] to solve
the “curse of dimensionality” [2]. However, trial-and-error
based reinforcement learning and deep learning both focus
on engineering complexity and ignore the social complexity.
In this article, we suggest another extension of dynamic
programming considering both engineering and social com-
plexities, aiming the “paradox of scientific methods” in com-
plex system’s “scientific solutions” [5]. We utilizing big data
analytics and the ACP approach [6], [7]: arttificial societies for
descriptive anlytics, computational experiments for predictive
analytics, and parallel execution for prescriptive analytics. We
name our approach Parallel Dynamic Programming.

This article is organized as follows. The next section reviews
dynamic programming and adaptive dynamic programming.
Then, we briefly discuss the neural network structure of ADP
and AlphaGo. We present the ACP approach of analytics
intelligence in Section IV. In Section V, we introduce the basic
structure of parallel dynamic programming. The last section
concludes the article.

II. FROM DYNAMIC PROGRAMMING TO ADAPTIVE
DYNAMIC PROGRAMMING

Dynamic programming (DP) is a very useful tool in solving
optimization and optimal control problems [8]–[10]. The dy-
namic programming technique rests on a very simple idea, the
Bellman’s principle of optimality [2]: “An optimal policy has
the property that no matter what the previous decision (i.e.,
controls) have been, the remaining decisions must constitute
an optimal policy with regard to the state resulting from those
previous decisions.”

DP can easily be applied to the optimal control of discrete-
time nonlinear systems. Let the system be

xk+1 = Fk(xk, uk), (1)

where xk, uk are the state and control, respectively, and Fk(·)
is the system function at time k. Suppose we associate with
this plant the performance index function

Ji(xi) = ϕ(N,xN ) +
N−1∑
k=i

Uk(xk, uk), (2)



2 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 1, JANUARY 2017

where [i,N ] is the time interval of interest. According to the
Bellman’s principle of optimality, the optimal performance
index function, which aims to minimize, satisfies the following
equation

J∗
k (xk) = min

uk

{Uk(xk, uk) + J∗
k+1(xk+1)}. (3)

Equation (3) is the Bellman’s optimality equation. Its im-
portance lies in the fact that it allow us to optimize over only
one control vector at a time by working backward from N .
It is called the functional equation of dynamic programming
and is the basis for computer implementation of the Bellman’s
method. However, it is often computationally untenable to
obtain the optimal control by directly solving the Bellman
equation (3) due to the backward numerical process required
for its solution, i.e., as a result of the well-known “curse of
dimensionality” [2]. We have to find a series of optimal control
actions that must be taken in sequence. This sequence will
give the optimal performance index, but the total cost of these
actions is unknown until the end of that sequence.

Approximate dynamic programming, proposed by Werbos
[3], [4], builds a critic system to circumvent the “curse
of dimensionality” by building a system, called “critic” to
approximate the cost function in dynamic programming. The
main idea of approximate dynamic programming as shown in
Fig. 1. There are three parts in the the structure of approximate

Fig. 1. ADP structure.

dynamic programming, which are dynamic system, the critic
module, and the action module, respectively. First, the action
module outputs a control policy according to the system state.
Second, according to the system implementation, the critic
module receives a evaluate signal. Third, a reinforcement
signal is created by the critic network, which aims to indicate
the action module to find a better control policy, at least
not worse. The whole implementation is self-learning and
the critic and action modules can be regarded as an agent.
According to the principle in Fig. 1, the dynamic programming
problem is desired to solve forward-time. In [11], [12], the
approximate dynamic programming method was implemented,
where each part in Fig. 1 was modeled by a neural network and
hence is called “Neuro-Dynamic Programming”. Its several
synonyms are used, such as “Adaptive Critic Designs” [13],
[14], “Asymptotic Dynamic Programming” [15], “Adaptive
Dynamic Programming” [16]–[21], and “Neural Dynamic

Programming” [22]. In 2006, the synonyms were unified as
“Adaptive Dynamic Programming (ADP)” [23]–[36].

III. NEURAL NETWORK STRUCTURE OF ADP

HDP is the most basic and widely applied structure of ADP
[11], [13]. The structure of HDP is shown in Fig. 2. HDP
is a method for estimating the performance index function.
Estimating the performance index function for a given policy
only requires samples from the instantaneous utility function
U , while models of the environment and the instantaneous
reward are needed to find the performance index function
corresponding to the optimal policy.

k
x

k
u

k
x

k k
U x u

k
J x

k
J x

Fig. 2. The HDP structure diagram.

In the HDP structure, the model network aims to describe
the dynamic of the system. The action network aims to
approximate the control policy of the system, and the critic
network aims to approximate the performance index function.
If each neural network in HDP is chosen as three-layer back-
propagation (BP) network, then the neural network structure
of HDP can be expressed as in Fig. 3.

k
x

k
x

n k
x

k
u

k
u

m k
u

k
x

k
J

Fig. 3. Deep neural network structure of HDP.

In Fig. 3, we can say that we use three BP neural networks
to implement the learning of the optimal control. However, if
the three neural networks are regarded as one neural network,
then we can say that we implement the learning of the optimal
control by at least a nine-layer deep BP network [37]. In this
point of view, the structure of HDP is a structure of a deep
neural network. For all the other structures of ADP [13], such
as dual heuristic programming (DHP), global dual heuristic
programming (GDHP), and their action-depended versions,
the structures can also be transformed into one deep neural
network. Thus, the structure of ADP is naturally a deep neural
network. The training target of the deep neural network is
desired to force the following error

ek = Uk(xk, uk) + Jk+1(xk+1)− Jk(xk) (4)

to zero. Obviously, the training error ek can be chosen as
the reinforcement signal, which optimizes the control policy



WANG et al.: PDP: PARALLEL DYNAMIC PROGRAMMING 3

to minimize the distance between ek and the equilibrium
point. Hence, the optimization process by ADP is actually a
reinforcement learning process via a deep neural network. This
is an amazing similar with the implementation of AlphaGo.
Earlier works in [38], [39] also provided neural network based
control method with knowledge architecture embed.

IV. ANALYTICS INTELLIGENCE: FROM ACP TO DPP
Reinforcement learning is a computational approach to

understanding and automating goal-directed learning and
decision-making. During the implementation process of ADP,
it is emphasized that reinforcement learning is a key technique
to find a better control policy of the system via trial-and-
error. However, it should be pointed out that shortcomings
inherently exist for the trial-and-error approach. Many real-
world control systems cannot be “tried” sufficiently for the
fact of security and cost. Particularly, for systems that involve
human and societies (Cyber-Phisical-Social systems, CPSS)
[40], sometimes the “error” is intolerable. The success of
AlphaGo suggests the possibility of conducting reinforcement
learning with a virtual Go-game played by two virtual players.
However, we do not know the exact rules or dynamic systems
in most of our real-world control and management problems
as the Go-game.

Data driven parallel systems in cyberspace are the key to
solve the trial-and-error challenge. Two founding pioneers
of modern management sciences stated famous maxims for
operations: W. Edwords Deming, “In God we trust; all others
must bring data” and Peter F. Drucker: “The best way to
predict the future is to create it”. Our suggestion is to integrate
artificial intelligence and analytics [6]: artificial societies (or
systems) for descriptive analytics, computational experiments
for predictive analytics, and parallel execution for prescriptive
analytics. The DPP (descriptive, predictive and prescriptive)
analytics intelligence can be built based on the ACP approach
as is shown in Fig. 4.

Fig. 4. The ACP approach of descriptive, predictive, and prescriptive
analytics.

The representation procedure of descriptive models is to
speak with data, which generally aims to tell us “what hap-
pened in history”, “when did it happen”, and “why did it
happen”. However, in real-world cases, people can only collect
“small data” for decision making. Before we make a decision,
a lot of possible “futures” (“big data” or artificial societies)
are created during the analytics based on the collected “s-
mall data”. Moreover, “futures” can be “created” by imaging
and designing. Hence, in our ACP approach, the descriptive
analytics by artificial societies are not only the model of real-
world data, but also the model of virtual “predicted future”
and “created future” in cyberspace.

Predictive analysis [41]–[43] should be made according to
the descriptive model and historical data to predict the future
by reasoning. It tells us “what will happen”, “when will it
happen,” and “why will it happen”. In our ACP approach,
predictive analytics are conducting computational experiments
to predict the future for certain artificial society with certain
control and management policy. “Big data” are created in the
computational experiments in cyberspace.

Finally, no matter how many possible futures or policies,
we can choose only one to implement in our real world.
Hence, after the predictive analytics of different policies and
different artificial societies, we reduce the “big data”, extract
rules, and create the real future through learning and adaption.
In our ACP approach, prescriptive analytics are developed to
find benefit policy from predictions based on the descriptive
models and historical data through parallel execution. Data
are collected for further descriptive analytics and predictive
analytics during the parallel execution.

V. PARALLEL DYNAMIC PROGRAMMING

In the practice of AlphaGo, one of the key ideas is to extract
supervised learning policy, and to improve it to get a sub-
optimal policy during the reinforcement learning procedure.
In parallel dynamic programming (PDP), we suggest the
ACP approach for decision making in CPSS with analytics
intelligence.

Fig. 5. Parallel dynamic programming with three parallel systems.

The descriptive analytics of parallel dynamic programming
are data driven for systems with unknown or imperfect in-
formation. We collect state-action-reward-state data from real-
world controls and observations, as is shown in Fig. 5. Since
the highly complexity of real-world system, and the highly
unpredictable of human behaviors, the data are not directly
used for fitting the state equations of the dynamic system.
On the contrary, in parallel dynamic programming, we focus
on how to construct “possible” data consistent with the real-
world observations. Combining these virtual data and the
historical real-world data, we can build the artificial systems
parallelized to the real-world system. The data driven virtual
systems model the state equations of the artificial world, and
the objectives of agents. An artificial system in PDP indicates
feasibility and possibility, instead of similarity.

Within each artificial system, the predictive analytics can be
viewed as optimal control problems with known dynamics in



4 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 1, JANUARY 2017

PDP. Hence, assume we have n-artificial systems (n = 3 in
Fig. 5) parallelized with the real-world system, we can employ
dynamic programming or adaptive dynamic programming to
solve the optimal control problems with known state equations
in the trial-and-error approach in the virtual parallel system
without any cost or risk, and get n optimal (or sub-optimal)
decisions. Note that, this procedure is naturally distributed, and
previous decisions in real-world can be used as an initial guess
in the reinforcement learning iterations to reduce the compu-
tation. Then, the computational experiments can be conducted
in a bionic manner: based on a voting mechanism n-virtual
systems will vote for the n-decisions. Hence, we can get a
winning decision and its corresponding critic network. Note
that, the computational experiments search for an acceptable
artificial system and an admissible decision, rather than the
optimal control.

The parallel execution will based on the optimality principle
of dynamic programming, and the critic network selected
in the computational experiments. We adjust the decision
according to the winning critic network and the observed
real-world state. The virtual-real system interaction can be
conducted by observing states and errors, updating the artificial
systems and adjusting the voting mechanism.

The detailed implementation of the PDP algorithm for
unknown discrete systems has been conducted and the result
is very interesting and promising [44], more works are under-
taking and will be reported.

VI. REMARK AND CONCLUSION

“Scientific solutions” need to satisfy two conditions: triable
and repeatable [6]. In real-world systems that involves human
and societies, the trial-and-error based reinforcement learning
can not be conducted unless we already know the “error”
will be harmless. On the other hand, the suggested parallel
dynamic programming conduct computational experiments in
virtual systems with the idea of optimality principle. Unlike
the game of AlphaGo, PDP is based on parallel systems [45],
[46] instead of the exact rules of real-world systems, and will
be more flexible and feasible for complex problems.

REFERENCES

[1] D. Silver et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature 529.7587, pp. 484-489, 2016.

[2] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton Uni-
versity Press, 1957.

[3] P. J. Werbos, “Advanced forecasting methods for global crisis warning
and models of intelligence,” General Syst. Yearbook, vol. 22, 1977.

[4] P. J. Werbos, “A menu of designs for reinforcement learning over time,”
in Neural Networks for Control, W. T. Miller, R. S. Sutton and P. J.
Werbos (Eds.), Cambridge: MIT Press, 1991, pp. 67−95.

[5] F.-Y. Wang, et al., “Where does AlphaGo go: from church-turing thesis
to AlphaGo thesis and beyond”, IEEE/CAA J. Autom. Sinica, vol. 3, no.
2, pp. 113−120, April 2016.

[6] F.-Y. Wang, “A big-data perspective on AI: Newton, Merton, and
analytics intelligence”, IEEE Intell. Syst., vol. 27, no. 5, pp. 2−4, 2012.

[7] L. Li, Y.-L. Lin, D.-P. Cao, N.-N. Zheng, and F.-Y. Wang, “Parallel
learning-a new framework for machine learning,” Acta Autom. Sinica,
vol. 43, no. 1, pp. 1−8, 2017 (in Chinese).

[8] J. Li, W. Xu, J. Zhang, M. Zhang, Z. Wang, and X. Li, “Efficient video
stitching based on fast structure deformation,” IEEE Trans. Cybern.,
article in press, 2015. DOI: 10.1109/TCYB.2014.2381774.

[9] C. Vagg, S. Akehurst, C. J. Brace, and L. Ash, “Stochastic dynamic
programming in the real-world control of hybrid electric vehicles,” IEEE
Trans. Control Syst. Technol., vol. 24, no. 3, pp. 853−866, Mar. 2016.

[10] P. M. Esfahani, D. Chatterjee, and J. Lygeros, “Motion planning for
continuous-time stochastic processes: A dynamic programming ap-
proach,” IEEE Trans. Autom. Control, vol. 61, pp. 2155−2170, 2016.

[11] P. J. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches, D.A. White and D.A. Sofge (Eds.), New York:
Van Nostrand Reinhold, 1992, ch. 13.

[12] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA: Athena Scientific, 1996.

[13] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE
Trans. Neural Netw., vol. 8, no. 5, pp. 997−1007, Sep. 1997.

[14] J. Han, S. Khushalani-Solanki, J. Solanki, and J. Liang, “Adaptive critic
design-based dynamic stochastic optimal control design for a microgrid
with multiple renewable resources,” IEEE Trans. Smart Grid, vol. 6, no.
6, pp. 2694−2703, Jun. 2015.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[16] J. J. Murray, C. J. Cox, G. G. Lendaris, and R. Saeks, “Adaptive dynamic
programming,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 32,
no. 2, pp. 140−153, May 2002.

[17] Q. Wei, F. L. Lewis, D. Liu, R. Song, and H. Lin, “Discrete-time local
value Iteration adaptive dynamic programming: Convergence analysis,”
IEEE Trans. Syst., Man, Cybern. A, Syst., article in press, 2016. DOI:
10.1109/TSMC.2016.2623766.

[18] Q. Wei, F. L. Lewis, Q. Sun, P. Yan, and R. Song, “Discrete-time
deterministic Q-learning: A novel convergence analysis,” IEEE Trans.
Cybern., article in press, 2016. DOI: 10.1109/TCYB.2016.2542923.

[19] Q. Wei, D. Liu, and G. Shi, “A novel dual iterative Q-learning method
for optimal battery management in smart residential environments,”
IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2509−2518, Apr. 2015.

[20] Q. Wei and D. Liu, “A novel iterative θ-Adaptive dynamic programming
for discrete-time nonlinear systems,” IEEE Trans. Autom. Sci. Eng., vol.
11, no. 4, pp. 1176−1190, Oct. 2014.

[21] Q. Wei, D. Liu, Q. Lin, and R. Song, “Discrete-time optimal control
via local policy iteration adaptive dynamic programming,” IEEE Trans.
Cybern., article in press, 2016. DOI: 10.1109/TCYB.2016.2586082.

[22] R. Enns and J. Si, “Helicopter trimming and tracking control using direct
neural dynamic programming,” IEEE Trans. Neural Netw., vol. 14, no.
4, pp. 929−939, Aug. 2003.

[23] R. Kamalapurkar, J. R. Klotz, and W. E. Dixon, “Concurrent learning-
based approximate feedback-Nash equilibrium solution of N-player
nonzero-sum differential games,” IEEE/CAA J. Autom. Sinica, vol. 1,
no. 3, pp. 239−247, Jul. 2014.

[24] Q. Wei, D. Liu, and Q. Lin, “Discrete-time local iterative adap-
tive dynamic programming: Terminations and admissibility analysis,”
IEEE Trans. Neural Netw. Learn. Syst., article in press, 2016. DOI:
10.1109/TNNLS.2016.2593743.

[25] Q. Wei, R. Song, and P. Yan, “Data-driven zero-sum neuro-optimal
control for a class of continuous-time unknown nonlinear systems with
disturbance using ADP,” IEEE Trans. Neural Netw. Learn. Syst., vol.
27, no. 2, pp. 444−458, Feb. 2016.

[26] H. Zhang, C. Qin, B. Jiang, and Y. Luo, “Online adaptive policy
learning algorithm for H∞ state feedback control of unknown affine
nonlinear discrete-time systems,” IEEE Trans. Cybern., vol. 44, no. 12,
pp. 2706−2718, Dec. 2014.

[27] F.-Y. Wang and G. N. Saridis, “Suboptimal control for nonlinear
stochastic systems,” Proc. 31st IEEE Conf. Decision Control, 1992.

[28] G. N. Saridis and F.-Y. Wang, “Suboptimal control of nonlinear stochas-
tic systems,” Control Theory and Advanced Technology, vol. 10, no. 4,
pp. 847−871, 1994.

[29] Q. Wei, D. Liu, and X. Yang, “Infinite horizon self-learning optimal
control of nonaffine discrete-time nonlinear systems,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 26, no. 4, pp. 866−879, Apr. 2015.

[30] Q. Wei, D. Liu, Y. Liu, and R. Song, “Optimal constrained self-learning
battery sequential management in microgrid via adaptive dynamic pro-
gramming,” IEEE/CAA J. Autom. Sinica, article in press, 2016. DOI:
10.1109/JAS.2016.7510262.

[31] Q. Zhao, H. Xu, and S. Jagannathan, “Near optimal output feedback
control of nonlinear discrete-time systems based on reinforcement neural
network learning,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 4, pp.
372−384, Oct. 2014.

[32] Q. Wei, D. Liu, G. Shi, and Y. Liu, “Optimal multi-battery coordination
control for home energy management systems via distributed iterative



WANG et al.: PDP: PARALLEL DYNAMIC PROGRAMMING 5

adaptive dynamic programming,” IEEE Trans. Ind. Electron., vol. 42,
no. 7, pp. 4203−4214, Jul. 2015.

[33] Q. Wei, D. Liu, and H. Lin, “Value iteration adaptive dynamic pro-
gramming for optimal control of discrete-time nonlinear systems,” IEEE
Trans. Cybern., vol. 46, no. 3, pp. 840−853, Mar. 2016.

[34] Q. Wei, F. Wang, D. Liu, and X. Yang, “Finite-approximation-error
based discrete-time iterative adaptive dynamic programming,” IEEE
Trans. Cybern., vol. 44, no. 12, pp. 2820−2833, Dec. 2014.

[35] H. Li and D. Liu, “Optimal control for discrete-time affine non-linear
systems using general value iteration,” IET Control Theory Appl., vol.
6, no. 18, pp. 2725−2736, Dec. 2012.

[36] W. Gao and Z.-P. Jiang, “Adaptive dynamic programming and adap-
tive optimal output regulation of linear systems,” IEEE Trans. Autom.
Control, vol. 61, no. 12, pp. 4164−4169, Dec. 2016.

[37] Y. Duan, Y. Lv, J. Zhang, X. Zhao, and F.-Y. Wang, “Deep learning for
control: The state of the art and prospects,” Acta Autom. Sinica, vol 42,
no. 5, pp. 643−654, 2016.

[38] F.-Y. Wang, “Building knowledge structure in neural nets using fuzzy
logic,” Robotics and Manufacturing: Recent Trends in Research Edu-
cation and Applications, M. Jamshidi (Eds.), New York, NY, ASME
(American Society of Mechanical Engineers) Press, 1992.

[39] F.-Y. Wang and H.-A. Kim, “Implementing adaptive fuzzy logic con-
trollers with neural networks: a design paradigm,” J. Intell. Fuzzy Syst.,
vol. 3, no. 2, pp. 165-180, 1995.

[40] F.-Y. Wang, “The emergence of intelligent enterprises: From CPS to
CPSS,” IEEE Intell. Syst., vol. 25, no. 4, pp. 85-88, 2010.

[41] C. Nyce, “Predictive analytics white paper,” American Institute for Char-
tered Property Casualty Underwriters/Insurance Institute of America,
2007.

[42] W. Eckerson, “Extending the value of your data warehousing investmen-
t,” The Data Warehouse Institute, USA, 2007.

[43] J. R. Evans and C. H. Lindner, “Business analytics: The next frontier for
decision sciences,” Decision Line, vol. 43, no. 2, pp. 1−4, Mar. 2012.

[44] J. Zhang, Q. Wei, and F.-Y. Wang, “Parallel dynammic program-
ming with an average-greedy mechanism for discrete systems, ” SKL-
MCCS/QAII Tech Report 01-09-2016, ASIA, Beijing, China.

[45] F.-Y. Wang, “Parallel control: a method for data-driven and computa-
tional control,” Acta Autom.a Sinica, vol.39, no. 2, pp. 293−302, 2013.

[46] F.-Y. Wang, “Control 5.0: From Newton to Merton in Popper’s Cyber-
Social-Physical Spaces,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 3, pp.
233−234, 2016.

Fei-Yue Wang (S’87-M’89-SM’94-F’03) received
his Ph. D. in Computer and Systems Engineering
from Rensselaer Polytechnic Institute, Troy, New
York in 1990. He joined the University of Arizona
in 1990 and became a Professor and Director of the
Robotics and Automation Lab (RAL) and Program
in Advanced Research for Complex Systems (PARC-
S). In 1999, he founded the Intelligent Control
and Systems Engineering Center at the Institute of
Automation, Chinese Academy of Sciences (CAS),
Beijing, China, under the support of the Outstanding

Oversea Chinese Talents Program from the State Planning Council and “100
Talent Program” from CAS, and in 2002, was appointed as the Director of the
Key Lab of Complex Systems and Intelligence Science, CAS. In 2011, he be-
came the State Specially Appointed Expert and the Director of The State Key
Laboratory of Management and Control for Complex Systems. Dr. Wang’s
current research focuses on methods and applications for parallel systems,
social computing, and knowledge automation. He was the Founding Editor-
in-Chief of the International Journal of Intelligent Control and Systems (1995-
2000), Founding EiC of IEEE ITS Magazine (2006-2007), EiC of IEEE
Intelligent Systems (2009-2012), and EiC of IEEE Transactions on ITS (2009-
2016). Currently he is EiC of China’s Journal of Command and Control. Since
1997, he has served as General or Program Chair of more than 20 IEEE,
INFORMS, ACM, ASME conferences. He was the President of IEEE ITS
Society (2005-2007), Chinese Association for Science and Technology (CAST,
USA) in 2005, the American Zhu Kezhen Education Foundation (2007-2008),
and the Vice President of the ACM China Council (2010-2011). Since 2008,
he is the Vice President and Secretary General of Chinese Association of
Automation. Dr. Wang is elected Fellow of IEEE, INCOSE, IFAC, ASME, and
AAAS. In 2007, he received the 2nd Class National Prize in Natural Sciences
of China and awarded the Outstanding Scientist by ACM for his work in
intelligent control and social computing. He received IEEE ITS Outstanding
Application and Research Awards in 2009 and 2011, and IEEE SMC Norbert
Wiener Award in 2014. Corresponding author of this paper.

Jie Zhang (M’16) is an associate professor with
The State Key Laboratory of Management and Con-
trol for Complex Systems, Institute of Automation,
Chinese Academy of Sciences. His current research
interests include mechanism design and optimal con-
trol in e-commerce and traffic systems. He received
his Ph.D. degree in Technology of Computer Ap-
plication from University of Chinese Academy of
Sciences in 2015. He received his BSc. degree in
Information and Computing Science from Tsinghua
University in 2005, and received MSc. degree in

Operations Research and Control Theory from Renmin University of China
in 2009.

Qinglai Wei (M’11) received Ph.D. degree in con-
trol theory and control engineering, from the North-
eastern University, Shenyang, China, in 2009. From
2009–2011, he was a postdoctoral fellow with The
State Key Laboratory of Management and Control
for Complex Systems, Institute of Automation, Chi-
nese Academy of Sciences, Beijing, China. He is
currently a Professor of the institute. He is also a
Professor of the University of Chinese Academy of
Sciences. He has authored two books, and published
over 60 international journal papers. His research

interests include adaptive dynamic programming, neural-networks-based con-
trol, optimal control, nonlinear systems and their industrial applications.

Dr. Wei is an Associate Editor of IEEE Transaction on Systems Man,
and Cybernetics: Systems since 2016, Information Sciences since 2016,
Neurocomputing since 2016, Optimal Control Applications and Methods since
2016, Acta Automatica Sinica since 2015, and has been holding the same
position for IEEE Transactions on Neural Networks and Learning Systems
during 2014–2015. He is the Secretary of IEEE Computational Intelligence
Society (CIS) Beijing Chapter since 2015.

Xinxu Zheng received the B.S. degree in control
science and engineering from Zhejiang University,
Hangzhou, China, in 2011. He is currently working
toward the Ph.D. degree in computer science and en-
gineering at the University of Minnesota, Minneapo-
lis, MN, USA. His research interests include social
computing, machine learning, and data analytics.

Li Li (S’05-M’06-SM’10-F’17) is currently an as-
sociate professor with Department of Automation,
Tsinghua University, China. His research interests
include complex and networked systems, intelligent
control and sensing, intelligent transportation sys-
tems and intelligent vehicles. Dr. Li had published
over 50 SCI indexed international journal papers
and over 50 international conference papers as a
first/corresponding author. He serves as an Associate
Editor for IEEE Transactions on Intelligent Trans-
portation Systems.


