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   Dear Editor,
This  letter  investigates  the  cooperative  localization  problem  for

multiple  autonomous  underwater  vehicles  (AUVs)  in  underwater
anchor-free environments, where AUV localization errors grow with-
out  bound  due  to  the  accumulated  errors  in  inertial  measurements
(termed accumulated errors  hereafter)  and the lack of  anchors  (with
known positions). Different from previous works, this letter is based
on a  message-passing distributed framework and the designed algo-
rithm improves  the  localization  accuracy  mainly  by  the  cooperation
among AUVs and the use of depth information to mitigate the influ-
ence  of  the  accumulated  errors  and  harsh  environments.  Through
simulations, the advantages of the proposed algorithm are verified by
comparisons with different state-of-the-art alternative methods.

With the development of AUV technologies, multiple-AUV (multi-
AUV) cooperative task execution has gradually become a trend [1].
However, due to the complex underwater environments, AUV local-
ization  has  always  been  a  challenging  problem  [2].  Usually,  it  is
achieved with  the  assistance  of  anchors  to  obtain  position  reference
information.  Considering  the  limited  coverage  of  current  deployed
underwater networks,  AUVs should often work in anchor-free envi-
ronments  [3],  and  the  error  accumulation  in  inertial  measurements
would make localization errors grow unbounded [4]. Under these cir-
cumstances,  cooperation  could  be  applied  to  improve  the  localiza-
tion  accuracy  by  exchanging  information  among  AUVs  [5].
Recently,  cooperative  localization  methods  have  been  designed  [3],
[6], [7], among which belief propagation (BP) is commonly used for
underwater scenarios due to its distributed nature and low complex-
ity. Moreover, its extensions [8], [9] have verified their advantages in
non-Gaussian  nonlinear  problems.  However,  most  works  rely  on
anchors  to  achieve  accuracy  improvement.  In  anchor-free  environ-
ments, works [3], [10], [11] try to alleviate the localization degrada-
tion  for  AUVs  by  modifying  the  use  of  yaw  angles.  Although  the
designed  strategies  can  also  be  applied  to  pitch  angles,  the  method
designed specifically for the error accumulation in them is still lack-
ing.

In  underwater  anchor-free  environments,  in  addition  to  inertial
measurements,  the  depth  is  the  only  available  absolute  information
that  can  be  directly  measured  on  board.  Usually,  depth  measure-
ments are used to correct the predicted AUV depths [3]. Furthermore,
with known depth information, many works have treated localization
as  a  2-dimensional  (2D)  problem [12].  However,  such  a  simplifica-
tion cannot reflect the true conditions of the ocean [13]. Since depth
measurements could be proprioceptively obtained and do not contain
accumulated  errors,  considering  the  information  scarcity  in  anchor-
free  scenarios,  exploring  the  use  of  depth  measurements  could  be  a
viable way to improve the localization accuracy of AUVs.

This  letter  aims  to  improve  the  localization  accuracy  of  multiple
AUVs by designing a distributed cooperative localization algorithm,
named cooperative localization aided by depth information (CLADI).
The  contributions  of  this  letter  are  as  follows:  1)  In  the  designed
position prediction, the misleading of the accumulated errors is  cor-
rected  using  depth  measurements  from  different  timesteps.  2)  The
accuracy of relative information between AUVs is improved by com-
pressing the particle coverage using depth information, and the pro-
posed  transmitted  messages  could  adapt  to  the  harsh  underwater
environments, such as sounding ray bending, asynchronization, etc.
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System model: A group of N AUVs are considered, whose labels
are  contained  in  set .  The  position  variables  of  AUVs
are  modeled  as  (  for  parti-
cles), where  is the AUV index,  denotes timestep.

As  mobile  vehicles,  AUV localization  usually  involves  a  position
prediction process that is based on the inertial measurements
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where  symbols  ^  and − respectively  indicate  the  estimated and pre-
dicted outputs,  denotes the inertial  mea-
surements  that  contain  speed ,  yaw  and  pitch .  In
addition, the models of the inertial measurements are
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where ,  and  are zero-mean Gaussian noises with variances
,  and ,  respectively.  Considering  speeds  could  be  mea-

sured  with  high  accuracy  using  the  Doppler  velocity  log  and  the
treatments  for  the  accumulated  errors  in  yaw  and  pitch  angles  are
often  similar,  only  the  error  accumulation  in  pitch  angles  is  shown
since it could be further corrected by depth information.
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Moreover, we consider the models of depth measurements  and
relative distance measurements  as
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where  and  are  zero-mean  Gaussian  noises  with  variances
 and ,  respectively,  function  calculates  the Euclidean dis-

tance,  and  the  subscript  indicates  the  measured  distance  is
between the jth and ith AUVs and used for the localization of the ith
AUV. Note that the designed CLADI is particle-based and could be
used for various noise models, not limited to Gaussian [11].
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Algorithm design: In this part, we introduce the proposed CLADI
algorithm. It  is designed based on BP, and the so-called belief is an
estimate of  the position distribution of AUV. The belief  of
the ith AUV at the timestep  is defined as
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where  denotes a proportional relationship,  indicates the neigh-
bors that could establish communication with the ith AUV, 
is  the  prior  position  distribution  (termed  the  prior),  and 
denotes the message transmitted from the jth AUV to the ith AUV.
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inertial measurements according to (1) as
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Based  on  the  aforementioned  distance  measurement  model,  the

message  expresses  the  position  information  of  the ith
AUV from the perspective of the jth AUV and is defined as
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Thus,  with  the  obtained  messages,  AUVs  could  locally  calculate
their  own beliefs  by multiplication as  in  (7).  Thus,  the  performance
of CLADI largely depends on whether the prior and the messages can
accurately  express  the  position  information.  In  the  following,  parti-
cle-realized prior and message are designed to obtain higher informa-
tion accuracy as well as better environmental adaptability.

The prior: Since inertial measurements are used in the prediction
process, the design of the prior is the key to alleviate the localization
accuracy degradation caused by the accumulated errors.
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Assuming the output belief of the ith AUV at the timestep  is
represented  by K weighted  particles ,  the  particles

 of the prior at the timestep  can be predicted as
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where τ is  the  duration  between  two  adjacent  timesteps, 
denotes  follows  a  Gaussian  distribution.  In  (10),  since , 
and  can  be  directly  measured,  the  corresponding  particles  are
sampled  from  the  measurements.  However,  due  to  the  accumulated
errors  in  pitch  measurements,  an  angle  corrected  with  depth
information is used instead, which is calculated as
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i − ẑ(t−1)

i

v̂(t−1)
i τ

. (11)

φ̂
(t−1)
i

γ̂
(t)
i σ

(t)
φ,i = σ

(t−1)
φ,i +∆σi

∆σi

Since depth measurements do not contain accumulated errors, the use
of  would significantly alleviate the influence of the error accu-
mulation  in .  Moreover,  is  designed  in  an
additive  manner  to  cope  with  the  uncertainty  accumulation  during
navigation, and  simulates the accumulated uncertainty.{

x(t−1)
b,k,i ,w

(t−1)
b,k,i
}K
k=1
w(t)

p,k,i = w(t−1)
b,k,i{

x(t)
p,k,i,w

(t)
p,k,i
}K
k=1

Since the particles in  are equally treated, the cor-
responding weights remain unchanged . In this way, the

particles  of the prior are obtained.
The message: In CLADI, the message indicates the relative posi-

tion  information  between  AUVs.  In  this  part,  the  designed message
improves the information accuracy by compressing the particle distri-
bution with depth measurements. It is also able to overcome the mea-
surement  bias  caused  by  the  bending  of  sound  rays,  asynchroniza-
tion between AUVs, etc.
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Assuming the prior  and the message  are  represented by

 and ,  respectively,  with  the
relative distance , the traditional way of the message generation
for 3D localization is as follows:
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Since  no  direction  is  involved,  and  are  uniformly  distributed
with , and the generated particles would cover a sphere.

With  the  depth  measurements  of  both  the ith  and jth  AUVs,  the

particle distribution can be compressed into a ring,
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In this way, with the same number of particles, a much smaller area
needs to be covered and, accordingly, the distance between adjacent
particles has been narrowed, leading to higher representation resolu-
tion of the relative position information.

To  further  explore  the  available  information,  a  rough  direction
from the jth AUV to the ith AUV can be obtained.
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j ≤ ŷ(−,t)

i

−ρ, x̂(−,t)
j ≤ x̂(−,t)

i and ŷ(−,t)
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where .  The  predicted  positions

 and  can be calculated by averaging the weighted particles
of  the priors of  AUVs.  With  the  rough  direction ,  the  particle
distribution in (13) can be further compressed by replacing the direc-
tion particles  with
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where ϑ is  designed  to  alleviate  the  influence  of  the  uncertainties
brought by the rough direction .
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Moreover,  to  overcome  the  distance  measurement  bias,  a  time-
varying compensation  for  is designed as
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It  can  be  seen  that  the  value  of  varies  with  measurements  and
position  estimates.  If  the  compensated  distance  is
smaller  than  the  calculated  value ,  it  means  the  current
compensation is too big and should be decreased.
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Furthermore,  a  similar  approach in (15)  is  applied to  generate  the
distance particles 
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where ι is  also  used  to  overcome  the  uncertainties  caused  by  mea-
surement biases and errors. The main idea that we extend the cover-
age  of  particles  with  (15)  and  (17)  is  that  we  would  like  to  ensure
part  of  the  particles  could  be  distributed  near  the  true  value  even
under  the  condition  of  unknown  biases  and  errors.  When  the mes-
sages multiply as in (7), the particles near the true value would obtain
higher weights and dominate the localization results. In this way, the
influence of biases and errors can be alleviated.

By replacing the distance and direction particles in (13) with (15)
and (17),  the proposed message is  obtained.  Then,  the belief  can be
calculated as (7). Details are described in [11].

600×600×400 m3

5 m/s
100 s

Simulation results: In this part, we validate the proposed CLADI
algorithm through various simulations, where two 
scenarios are considered. In the first scenario, four anchors and a sin-
gle  AUV  is  involved  to  validate  the  effectiveness  of  the  proposed
message. The use of anchors is to avoid the influence of the accumu-
lated errors. In the second scenario, four AUVs are used to compare
the  localization  accuracy  of  CLADI  with  state-of-the-art  alternative
methods. In both scenarios, the speeds of AUVs are set to  and
the  duration  of  navigation  is .  The  variances  of  yaw,  pitch,
speed,  depth,  and  distance  measurements  are  0.1,  12,  0.1,  1,  and  4,
respectively.  The  number  of  used  particles  is  200.  The  localization
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accuracy  is  measured  by  root-mean-square  errors  (RMSEs),  which
are calculated through 1000 Monte-Carlo runs.

20 m

In Fig. 1(a),  different  messages  and  two conditions,  with  or  with-
out  measurement  bias,  are  applied  to  validate  the  advantages  of  the
proposed  messages.  The  traditional  message  is  generated  with  (12),
and the converted message is a compressed version using depth mea-
surements with (13). Fig. 1(a) also demonstrates the effectiveness of
(15)−(17) in the message design. When the measurement bias is not
considered,  the  converted  message  enjoys  a  clear  advantage  com-
pared  with  the  traditional  one  due  to  higher  particle  resolution.  In
addition, the rough direction brought by (15) further reduces the cov-
erage requirement of the message and accordingly improves the rela-
tive position information accuracy. Under the measurement-bias con-
dition, the initial biases are set within  and randomly grow with
time.  By  involving  the  bias  compensation  (16),  the  error  growth  is
alleviated.  Moreover,  through  condensing  the  particle  coverage  and
compensating  the  measurement  bias,  the  proposed  message,  gener-
ated based on (15) and (17), could provide the best localization accu-
racy.

In Fig. 1(b),  the  localization  accuracy  of  different  algorithms  is
shown.  Dead-reckoning  (DR)  is  noncooperative  and  directly  uses
inertial  measurements  to  predict  position  estimates,  which  are  seri-
ously  misled  by  the  accumulated  errors.  Compared  with  DR,  non-
parametric  BP  (NBP)  [8]  and  sigma  point  BP  (SPBP)  [9]  improve
localization accuracy by cooperation among AUVs.  However,  since
the accumulated errors are not specifically considered,  the improve-
ment is limited. By involving depth measurements and the design in
(11),  a  clear  accuracy  improvement  of  NBP is  achieved  and  proves
the validity of our design. In BPUCL [3] and UABP [10], the accu-
mulated errors have been dealt with by compensation and expanding
the  particle  coverage  of  the  prior.  However,  the  use  of  depth  is  not
fully exploited. In CLADI, the proposed prior applies the pitch angle
corrected  with  depth  measurements  and  avoids  the  impact  of  accu-
mulated errors. Combined with a growing particle coverage, CLADI
provides the best localization accuracy compared with the aforemen-
tioned methods.

PL

PL = 0.5

To  further  validate  CLADI  in  practical  uses, Fig. 1(c)  shows  the
localization performance when the accumulated errors are contained
in  both  yaw  and  pitch  measurements.  Moreover,  packet-loss  condi-
tions are also involved to simulate the effect of harsh communication
environments  and network changes,  where  denotes the probabil-
ity that an AUV loses all the messages. As a result, the accuracy drop
of  CLADI  is  limited  and  it  still  provides  better  accuracy  compared
with  others  even  under  harsh  conditions  (  indicates  the
packet-loss probability of each communication reaches 0.8).

Conclusion: In  this  letter,  multi-AUV  cooperative  localization  in
3D anchor-free environments has been studied and a distributed mes-
sage-passing  localization  algorithm  named  CLADI  is  proposed.  In
CLADI,  the  accumulated  errors  in  pitch  angles  are  corrected  using
depth  measurements,  leading  to  higher  prediction  accuracy.  Depth
information is also used to improve the relative position accuracy by

compressing the space among particles. Moreover, measurement bias
caused by harsh  underwater  environments  is  alleviated  with  a  time-
varying compensation strategy. Simulation results validate the supe-
riority of CLADI by comparisons with the alternative ones.
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Fig. 1. RMSE comparisons.
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