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   Dear Editor,

This  letter  focuses  on  the  distributed  optimal  containment  control
of  continuous-time  multi-agent  systems  (CTMASs)  with  respect  to
the  minimum-energy  performance  index  over  fixed  topology.  To
achieve  this,  we  firstly  investigate  the  optimal  containment  control
problem using the inverse optimal control method, where all states of
followers asymptotically converge to the convex hull spanned by the
leaders while some quadratic performance indexes get minimized. A
sufficient  condition for  existence of  the  distributed optimal  contain-
ment control protocol is derived. By introducing the parametric alge-
braic  Riccati  equation  (PARE),  it  is  strictly  proved  that  the  global
performance  index  can  be  used  to  approximate  the  standard  mini-
mum-energy  performance  index  as  the  parameters  tends  to  infinity.
In  consequence,  the  standard  minimum-energy  cooperative  contain-
ment control can be solved by local steady state feedback protocols.
Finally,  numerical  examples  are  given  to  demonstrate  the  effective-
ness of theoretical results.

For  decades,  cooperative  control  of  MASs has  sparked a  surge  in
interest  for  its  extensive  applications  in  formation  control,  flocking
and  aggregation  problem,  see  in  [1]–[5].  The  MASs  with  multiple
leaders  are  more  typical.  Then  the  containment  control  problem
arises, where the followers are to be impelled into a given geometric
space spanned by the leaders. Distributed dynamic containment pro-
tocol is established for the continuous-time/discrete-time MASs with
general  linear  dynamics  under  fixed  directed  topologies  in  [6].  The
distributed containment control problem is investigated over directed
communication networks in [7].

Researchers have attached great importance to the distributed opti-
mal cooperative control problem for MASs [8]–[10], whose goal is to
find  distributed  protocols  to  achieve  consensus  while  optimizing
quadratic  performance  indexes.  For  the  purpose  of  addressing  the
globally  optimal  cooperative  control  problem,  the  linear  quadratic
regulator  (LQR)  method  is  employed  in  [8].  The  inverse  optimal
method is  employed to establish the necessary and sufficient  condi-
tion for the designed performance index on global optimality in [9].
Based  on  the  network  approximation  (NA)  technique,  Chen  and
Chen  [10]  proposes  a  distributed  optimal  consensus  algorithm  to
minimize  the  global  energy  cost.  However,  MASs  may  require  a
restricted energy supply in mobility and vehicle coordination.  Thus,
the existence of distributed optimal solution is still worth discussing.
The  unavailability  of  the  global  information  for  the  whole  MASs

makes  the  design  of  a  distributed  protocol  contradictory.  Therefore,
it’s  quite  challenging to  design the distributed containment  protocol
to  optimize  the  global  performance  index,  which  motivates  our
present work.

1) For CTMASs over fixed topology, the sufficient condition of the
distributed  optimal  containment  control  protocol  with  respect  to
some  global  performance  indexes  is  proposed  by  employing  the
inverse optimal control method.

2)  The  standard  minimum-energy  distributed  containment  control
problem  is  solved  by  local  steady  state  feedback  protocols.  It’s
shown that, for marginally stable MASs, the energy cost can be arbi-
trarily  small;  for  MASs  with  strictly  unstable  dynamics,  the  mini-
mum-energy type performance index exists a strict lower bound since
energy expenditure to stabilize the system is essential.

⊗
SRn×n

ρ(A)

Notations: The Kronnecker product is denoted by . The set of all
symmetric positive definite (SPD) matrices is denoted by . The
spectral radius of matrix A is defined as .

Problem formulation: Consider the CTMAS with N nodes,
 

ẋi = Axi +Bui, ∀i ∈ N (1)
xi ∈ Rn ui ∈ Rmwhere  and  are,  respectively,  state vector and control

vector,  And  the  system  matrix A  and  the  input  matrix B  are  with
compatible dimensions. The compact form of MAS (1) is
 

ẋ = (IN ⊗A)x+ (IM ⊗B)u (2)
x = (xT

1 , x
T
2 , . . . , x

T
N )T ∈ RnN u =

(uT
1 ,u

T
2 , . . . ,u

T
M)T ∈ RmM

M(M < N)
(N −M)

1, . . . ,M M+1, . . . ,N
(N −M)

α ≜ {M+1, . . . ,N} β ≜ {1, . . . ,M}

where  are  global  state  vector  and 
 are global control input vector respectively.

Assume that there are  followers, described by undirected
graph,  while  leaders  do  not  receive  information  from  any
other  agent.  Attaching  to  M  followers  and  to

 leaders,  then the leader set  and the follower set,  which are,
respectively,  and .

Assumption  1:  For  each  follower,  there  exists  at  least  one  leader
who has a directed path to that follower.

(N −M)
ẋl = Axl, l ∈ α

There  are  leader  agents  in  system  (1),  behaving  auto-
nomously,  whose dynamic is  where  .  In  consequence,
MAS (1) can be written as
 

ẋ f = Ax f +Bu, ∀ f ∈ β (3a)
 

ẋl = Axl ∀l ∈ α. (3b)
G

L
The topology of MAS (1) could be represented by graph , whose

characteristics are described by Laplacian matrix , divided into
 

L =
[

L f Ll
0(N−M)×M 0(N−M)×(N−M)

]
(4)

L f ∈ SRM×M Ll ∈ RM×(N−M)

(N −M) G f
L f ∈ SRM×M

U ∈ RM×M UTL f U = Π = diag{λ1,
λ2, . . . ,λM}

where  is  formed by the followers  and 
is  associated  with  leaders.  For  subtopology ,  It  is  con-
nected. Then, the Laplacian matrix . Consequently, the-
re is an unitary matrix  that makes 

 true.
Consider  linear  static  distributed  containment  controller  for  opti-

mal containment control problem.
 

ui = −cFεi = −cF
∑

j∈α∪βai j
(
xi − x j

)
, i ∈ N (5)

c > 0 ∈ R F ∈ Rm×n ai j (i, j)
A u = −c(L f ⊗F){x f+

[(L−1
f Ll)⊗ In]xl}

where ,  and   is  the -th  entry  of  the  adja-
cency matrix . Then the compact form of (5) is 

. The compact form of MAS (3) in the sense of con-
tainment control can be written as
 

ẋ f =
[
(IM ⊗A)− cL f ⊗ (BF)

]
x f − cLl ⊗ (BF)xl

ẋl = (IN−M ⊗A) xl, ∀l ∈ α, ∀ f ∈ β. (6)
ϖ =

−
[
(L−1

f Ll)⊗ In
]

xl,

δ = x f −ϖ

The  convex  hull  spanned  by  leaders  can  be  defined  as 
 then the error between followers and convex hull

in MAS (1) is .
Problem 1 (globally optimal containment control): It is to design a
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distributed  optimal  containment  protocol  (5)  for  (1)  such  that  the
state of all followers can asymptotically converge to the convex hull
while optimizing some global quadratic performance index:
 

J =
w +∞

0

[
Q(δ)+uT (Im ⊗R)u

]
dt

Q(δ) ≥ 0where .
Problem 2 (distributed minimum-energy control):  It  is  to design a

distributed  optimal  containment  protocol  (5)  for  (1)  such  that  the
state of all followers can asymptotically converge to the convex hull
while optimizing standard minimum-energy performance index:
 

J =
w +∞

0
uT udt. (7)

Main results: A distributed global optimal containment protocol is
proposed for Problem 1.

F = R−1BT P
AT P+PA−PBR−1BT P+Q = 0

c ≥ cmin cmin = 1/mini∈β {λi}

Theorem  1:  The  distributed  protocol  (5),  where  by
solving  (ARE) and the coupling gain

 with  ,  solves  Problem  1  and  the  mini-
mized global quadratic performance index follows:
 

J̃ =
w +∞

0

{
uT (IM ⊗R)u+ c2δT [L2

f ⊗ (PBR−1BT P)]δ

−cδT [(IM ⊗AT )(L f ⊗P)+ (L f ⊗P)(IM ⊗A)]δ
}
dt. (8)

Proof: To generate a function associated with δ, we derive that
 

ẋ f +
[(
L−1

f Ll
)
⊗ In

]
ẋl =

d
dt

[
x f +

[(
L−1

f Ll
)
⊗ In

]
xl
]
.

The controller (5) follows:
 

u = −
{
(IN ⊗R)−1(IN ⊗B)T [c(L f ⊗P)]

}
δ. (9)

P ∈ SRn×n L f ⊗P ∈ SRMn×MnIt  is  known  that ,  indicating  that  as
well. So we establish the following Lyapunov function:
 

V(δ) = δT (cL f ⊗P)δ (10)

V̇(δ)| 1
2 u

V(δ) δ̇ = [IM⊗
A− (c/2)L f ⊗ (BF)]δ.

so as to create the sufficient condition  in [9], take the deriva-
tive  of  with  respect  to  time  along  error  system 

 The result is
 

V̇(δ)| 1
2 u = cδT (U ⊗ In)×diag {Ω1,Ω2, . . . ,ΩM}

× (U ⊗ In)T δ (11)
Ωi = λi(AT P− (cλi/2)FT BT P+PA− (cλi/2)PBF), i ∈ β.where 

Ωi Ωi =
λi(AT P+PA− cλiPBR−1BT P), i ∈ β

Q > 0 cλi > 1,Ωi < 0
V̇(δ)| 1

2 u < 0.

Substituting  the  solution F  for  ,  we  obtain  that 
. In the light of structure of ARE

and ,  when .  In  further  terms,  it  is  obvious  that
 By  the  inverse  optimal  control  in  [9],  the  optimal  con-

tainment control in Problem 1 is solved. ■
As an  application  of  the  inverse  optimal  control,  we focus  on  the

distributed minimum-energy containment control in Problem 2.
Consider the following parametric ARE (PARE):

 

AT P+PA− 1
τ

PBBT P+Q = 0 (12)

Q ∈ SRn×n τ > 0where ,  is a scalar.

ρ(P/τ)
ρ(P/τ)→ 0 τ→ +∞

Lemma  1:  If A  is  marginally  stable,  then  for  the  solution P  of
PARE (12), the spectral radius  is monotonically decreasing as
τ increases. Furthermore,  as .

Proof: Taking the following LQR problem into account:
 

ẋ = Ax+Bu, x(0) = x0

J(τ) =
w +∞

0

(
xT Qx+τuT u

)
dt (13)

which is equivalent to
 

J(τ)
τ
=

w +∞
0

(xT Q
τ

x+uT u)dt (14a)
 

AT P
τ
+

P
τ

A− P
τ

BBT P
τ
+

Q
τ
= 0. (14b)

d
dτ

[ J(τ)
τ

]
= − 1

τ2

r +∞
0 xT Qxdt < 0. J(τ)

τ

u∗

Then, we have  Apparently,   is
monotonically  decreasing  as τ  increases.  Based  the  inverse  optimal
control, the optimal controller  corresponding to scalar τ satisfies

 

u∗ = −F(τ)x (15)
F(τ) = (1/τ)BT P(τ)

J∗(τ) = xT
0 P(τ)x0

where .  Meanwhile,  the  quadratic  performance
index in (13) has the optimal value .

τ2 > τ1 > 0For arbitrary , consider the performance index
 

J(τi)
τi
=

w +∞
0

(xT Q
τi

x+uT
i ui)dt, i = 1,2. (16)

J∗(τi)
τi
= xT

0
Pi
τi

x0, i = 1,2.The optimal value is bound to follow  As a
result, it can be deduced that
 

J∗ (τi)
τi

∣∣∣∣∣
u∗i =−Fi x

=
w +∞

0

(
xT Q
τi

x+uT
i ui

)
dt

= xT
0

Pi

τi
x0, i = 1,2.

τ = τ2 u1

τ = τ1
J(τ)
τ

J(τ2)
τ2

∣∣∣∣
u1=−F1 x

=
r +∞

0 (xT Q
τ2

x+uT
1 u1)dt.

Set ,  under  the  control  of  the  optimal  controller  corre-
sponding  to  the  fixed  value ,  can  be  transformed  into

J(τ)
τBecause  is monotonically decreasing as τ increases with a fixed

controller u, then the following inequalities are obtained:
 

J∗(τ1)
τ1

∣∣∣∣∣
u∗1=−F1 x

>
J(τ2)
τ2

∣∣∣∣∣
u1=−F1 x

>
J∗(τ2)
τ2

∣∣∣∣∣
u∗2=−F2 x

.

J∗(τ)
τ

u∗ ρ( P
τ )

ρ( Q
τ )→ 0 τ→∞

P
τ = 0

Q
τ ≡ 0

ρ( P
τ )

ρ( P
τ )→ 0 τ→∞

Apparently,  is monotonically decreasing as τ increases with a
corresponding  optimal  controller ,  and  is  monotonically
decreasing as well. Moreover, because  as , then it’s
obvious that  is a solution of ARE (14b) when . Due to the
continuity  of  the  solution,  the  spectral  radius  decreases  mono-
tonically with the increase of τ, and  as . ■

τ→ +∞

Theorem  2:  For  the  marginally  stable  MAS  (1),  the  distributed
global  optimal  containment  control  protocol  (15)  minimizes  the
global  performance  index  (8),  and  the  global  performance  index
tends to the standard minimum-energy performance index (7) as the
parameter .

Proof: The global performance index for PARE (12) is
 

J̃(τ) =
w +∞

0

(
δT Q̃δ+τuT u

)
dt (17)

Q̃ = c[ c
τL2

f ⊗ (PBBT P)−L f ⊗ (AT P+PA)]. Q̃
τ =

c[cL2
f ⊗ ( P

τ BBT P
τ )−L f ⊗ (AT P

τ +
P
τ A)]

where  Naturally,  
.

δT Q̃δ
ρ( Q̃
τ )

ρ( P
τ ) Q̃

τ→∞
J̃(τ)
τ ≈ J.

It  is  explicable  that  the  positive  semi-definite  global  state  penalty
term  is  added to drive the states  of  all  followers  to  achieve a
synchronization  with  the  convex hull.  By Lemma 1,  is  mono-
tonically  decreasing as τ  increases  because  of  the  decreasing mono-
tonicity  of .  Moreover,  the  value  of  converges  to  zero  as

.  Therefore,  the  performance  index  (17)  can  be  used  to
approximate the performance index (7) as 

By  Theorem  1,  the  distributed  containment  controller  (5)  is  opti-
mal  to  the  performance  index  (17),  hence  approximately  optimal  to
the minimum-energy performance index (7). ■

P
τ

ρ( P
τ )

ρ( P
τ ) τ→∞

Q̃
τ

τ→∞

Theorem 2  indicates  that  the  energy  cost  can  be  arbitrarily  small.
When the matrix A is strictly unstable, because  is the unique posi-
tive definite solution of PARE (14b), a similar conclusion holds that
the  spectral  radius  is  monotonically  decreasing  as τ  increases
and  asymptotically converges to a strict lower bound as ,
so does . Eventually, the minimum-energy type performance index
in (7) asymptotically converges to a strict lower bound as .

F =
R−1BT P c ≥ cmin cmin =

1
mini∈β{λi}

Algorithm  1:  Problem  1  is  solved  by  protocol  (5),  where 
 and the coupling gain , with .

τ ≥ τ0 τ0

Algorithm 2: Based on Algorithm 1, Problem 2 is solved by proto-
col  (5)  where  in PARE (12) and  a  positive number that  is
large enough.

L f

Numerical examples: The MAS in this section is presented by the
communication graph described in Fig. 1. Note that  in (4) has the
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λmin = 0.4491
λmax = 6.9127
minimum  eigenvalue  and  the  maximum  eigenvalue

.
Case 1 (Marginally stable MAS): Consider a CTMAS with margi-

nally stable dynamics where
 

A =
[
−0.020 0.020

0.015 −0.015

]
, B =

[
0.9
7.2

]
.

2.2267 Q = I2
F|τ=1 =

[
0.4652 0.9490

]According  to  Theorem 1  and  Algorithm 1,  the  coupling  gain c  is
.  Let ,  by  solving  the  ARE,  the  optimal  feedback  gain

matrix  is  in  Fig. 2 (a).  In  consequence,
the  global  optimal  containment  control  protocol  (5)  is  obtained,  the
states of the agents are shown in Fig. 3. Meanwhile, we simulate the
graph of performance index with parameter τ, shown in Fig. 4(a).
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Fig. 2. Feedback gain F with scalar τ. (a) Case 1; (b) Case 2.
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Fig. 3. The state transition curve of the agents.
 

Case  2  (Strictly  unstable  MAS):  Consider  another  CTMAS  with
strictly unstable dynamics where
 

A =
[

1.020 0.020
0.015 −0.015

]
, B =

[
0.9
7.2

]
.

2.2267 Q = I2 F(τ)
τ = 1000 F|τ=1000 =

[
2.3675 0.0170

]According  to  Theorem 2  and  Algorithm 2,  the  coupling  gain c  is
still .  Let ,  in  (15)  changes  continuously.  Set

, we obtain  in Fig. 2(b). The
performance index evolution curve is shown in Fig. 4(b).

J̃(τ)
τ

It is clearly seen in Fig. 1 that the approximate performance index
 decreases  monotonically  as τ  increases.  Compared  with  Case  1,

Case 2 exists a strict lower bound.
Conclusion: In this letter, the distributed optimal containment con-

trol  problem for  CTMASs has  been investigated with  respect  to  the
minimum-energy performance index over fixed topology. The suffi-
cient condition of the distributed global optimal containment control
protocol has been given based on the inverse optimal control method.
Besides,  the  minimum-energy  distributed  containment  control  prob-
lem  has  been  addressed  by  local  state  steady  feedback  protocols.
Finally,  numerical  examples  have  been  given  to  demonstrate  the
effectiveness of theoretical results.
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