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Adaptive Neural DSC for Nonlinear Switched
Systems With Prescribed Performance and

Input Saturation
Wenjie Si and Xunde Dong

Abstract—This paper solves the problem of an adaptive neural
dynamic surface control for a class of uncertain strict-feedback
nonlinear systems with guaranteed transient and steady-state
performance under arbitrary switchings. First, by utilizing the
prescribed performance control, the prescribed tracking control
performance can be ensured, while the requirement for the initial
error is removed. Second, radial basis function (RBF) neural
networks (NNs) are used to handle unknown nonlinear functions,
the Gaussian error function is employed to represent a continuous
differentiable asymmetric saturation model and the dynamic
surface control (DSC) technique is used to overcome the problem
of ‘explosion of complexity’ inherent in the control design. At last,
by using the common Lyapunov function method in combination
with the backstepping technology, a common adaptive neural
controller is constructed. The designed controller overcomes the
problem of the over-parameterization, and further alleviates the
computational burden. Under the proposed common adaptive
controller, all the signals in the closed-loop system are bounded,
and the prescribed transient and steady tracking control per-
formance are guaranteed under arbitrary switchings. Simulation
studies demonstrate the effectiveness of the proposed method.

Index Terms—Adaptive neural control, common Lyapunov
function, dynamic surface control (DSC), input saturation, non-
linear switched systems, prescribed performance control (PPC)

I. INTRODUCTION

SWitched systems have drawn a lot of attention during
past decades, due to their wide engineering application

such as chemical reactor, heat exchanger, flight control, robot
operating system and electric power systems [1]−[4]. A
common Lyapunov function approach was presented in [5]
to solve the stability problem for nonlinear switched sys-
tems under arbitrary switching. Subsequently, several studies
were investigated via common Lyapunov functions and then
stabilizing controllers for nonlinear switched systems were
designed in [6]−[8]. However, the above-mentioned methods
cannot be applied to unknown nonlinear systems. Therefore,
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to ensure the system stability and control performance, this
paper studies the neural tracking control scheme for a class
of nonlinear systems under arbitrary switchings with unknown
system dynamics and input constraint.

For the systems with unknown system dynamics, both fuzzy
logic systems (FLSs) and neural networks (NNs) have been
proved to be useful in the control design, where their univer-
sal approximation properties are utilized to model unknown
nonlinear functions. In the past decades, many approximation-
based adaptive control methods have also been developed in
[9], [10]. Adaptive fuzzy/neural control approaches for multi-
input and multi-output (MIMO) were studied by [11]−[14].
For uncertain stochastic nonlinear systems, [15]−[17] de-
signed adaptive fuzzy/neural control methods. When immea-
surable states were considered, in [18], the tracking control
was studied based on fuzzy logic system for airbreathing
hypersonic flight vehicle. Recently, by using the approximation
property of the neural network or fuzzy logic system, many
control methods for switched nonlinear uncertain systems
have been presented in [19]−[22]. Furthermore, stochastic
disturbances are also considered in the switched systems.
In [23]−[25], the fuzzy/neural adaptive control methods for
the switched stochastic nonlinear systems were investigated.
However, for the above-mentioned control schemes, the com-
putational complexity drastically increases with the order of
the system increases.

To overcome the ‘explosion of complexity’ caused in the
traditional backstepping design, the dynamic surface control
(DSC) technology has been proposed in [26] and a first-
order low-pass filter is introduced at each step during the
backstepping control design. In [27], the DSC technique was
incorporated into the decentralized adaptive control for a class
of large-scale nonlinear time-delay systems. Based on DSC
technology, [13], [28] presented adaptive neural tracking con-
trol schemes subject to input saturation. In [29], the adaptive
tracking control method was proposed by using the Nussbaum
function and dynamic surface control for a class of MIMO
non-affine nonlinear systems. By using using DSC technique,
[30] presented an adaptive fuzzy output-feedback backstepping
control approach. In [31], the DSC technique was extended to
the control of the stochastic nonlinear and then an adaptive
neural control scheme was investigated. Furthermore, when
the states were unmeasured, the problem of adaptive neural
observer-based dynamic surface control was addressed in
[32] for a class of the nonstrict-feedback nonlinear systems.
However, for nonlinear switched systems, to guarantee the
tracking control performance is difficult and challenging. In
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this paper, we try to solve the tracking control problem for
nonlinear switched systems with prescribed performance and
unknown input saturation.

In the control process, the system output error is only
required to converge to a small residual set, noting that the
transient and stead-state performance are not considered. In
practice, the industrial systems often meet certain prespecified
overshoot and convergence rate. More recently, the problem
was solved in [33] with prescribed performance control (PPC).
This method was further applied to the robot position tracking
control in [34], [35]. Combining PPC with dynamic surface
control, fuzzy logic control schemes were studied in [36]−[38]
to guarantee the tracking control performance. When states
were unmeasurable, an observer-based control was proposed
in [39] for large-scale nonlinear time-delay systems. The
prescribed performance control technology was extended to
MIMO nonlinear systems [40]−[42]. To the best of the au-
thors’ knowledge, by designing a new performance function,
there exist few tracking control methods for nonlinear switched
systems without the need for the initial error conditions.

Motivated by the aforementioned discussion, we will de-
velop a common adaptive neural tracking controller for a class
of strict-feedback nonlinear switched systems with prescribed
performance technique and the dynamic surface control sub-
ject to input constraint. RBF neural networks are employed to
approximate the unknown nonlinearities. A novel prescribed
performance function is designed to guarantee the prespecified
tracking performance, which does not need to consider the
initial error values. Then, based on the backstepping design
technique and the common Lyapunov function, we propose
an adaptive neural tracking control method to guarantee the
boundedness of the closed-loop system under arbitrary switch-
ings.

Compared with previous works, the main advantages of this
paper are summarized as follows: 1) A performance function
is given to ensure the tracking control performance, and the
requirement for the exact initial values is removed. 2) By using
the DSC technique, the designed control scheme can overcome
the defect of ‘explosion of complexity’. Furthermore, the norm
of the unknown weight vector themselves is estimated in
this paper, and thus the online computation burden is greatly
alleviated.

The rest of the paper is organized as follows. Section
II presents the preliminaries and problem formulation. In
section III, an adaptive neural tracking control scheme is given
for nonlinear switched system with prescribed performance
control. The simulation example is presented in Section IV
to illustrate the effectiveness of the proposed method in this
paper. Section V concludes this paper.

II. PRELIMINARY KNOWLEDGE AND SYSTEM
FORMULATION

A. System Representation

Consider a class of uncertain nonlinear switched systems
with input saturation in the following form





ẋi = xi+1 + fi,σ(t)(x1, . . . , xi)
ẋn = u(v) + fn,σ(t)(x)
y = x1 i = 1, 2, . . . , n− 1

(1)

where x = [x1, x2, . . . , xn]T ∈ Rn, u ∈ R and y ∈ R are the
system state variables, system input and output, respectively.
σ(t) : [0,+∞] → M = [1, 2, . . . , m] is the switching signal.
σ(t) = k (k ∈ M) means that the kth subsystem is active.
fi(·): Ri → R is the unknown locally Lipschitz smooth
function. v ∈ R and u ∈ R are the input and output of the
saturation nonlinearity to be expressed as follows

u(v) = Sat[v] =





u−, v < u−

v, u− ≤ v ≤ u+

u+, v > u+

(2)

where u+ and u− the upper and lower bounds of the actuator
u.

The main goal of this control scheme is to present a common
adaptive NN tracking controller such that the system output y
can track the desired signal yd under arbitrary switchings, and
all signals in the closed-loop system remain bounded.

Assumption 1: The desired signal yd and its nth order yn
d

are continuous and bounded.
lemma 1: (Young’s inequality [43]) For ∀(x, y) ∈ R2, the

following inequality holds:

xy ≤ εp

p
|x|p +

1
qεq

|y|q (3)

where ε > 0, p > 1, q > 1, (p− 1)(q − 1) = 1.

B. Asymmetric Saturation Model

In this paper, according to [28], an asymmetric saturation
nonlinearity with smooth form is employed as

u(v) = uM × erf(
√

π

2uM
v) (4)

where uM = u+ + u−/2+u+ − u−/2sign(v), u+and u− are
the upper and lower bounds. sign(·) is the standard sign and
erf(·) is a Gaussian error function defined as.

erf(x) =
2√
π

∫ x

0

e−t2dt (5)

shows different output results using the saturation model (2)
and (4), and (4) indeed guarantees the saturation limitation
with smooth form, where u− = 2, u+ = 2.5, and the input
signal v(t) = 5sin(t).

The following function is defined as

d(v) = u− cv (6)

where c is a positive constant, u and v are the functions of
time t. Then, for the following control design, the saturation
model (4) can be written as,

u = cv + d(v) (7)

For the following control design, we need make the follow-
ing assumptions:

Assumption 2: There exist positive constants ∆̄, c, c̄ such
that d(v) ≤ d∗, c ∈ [c, c̄].
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C. Prescribed Performance

A performance function is given, which will be used in the
following control design.

Definition 1: [33] A smooth function ρ(t) : R+ → R+

satisfies the following conditions, which will be called a
performance function:

1) ρ(t) is a strictly positive and decreasing function;
2) limt→+∞ ρ(t) = ρ∞ > 0
where ρ∞ is a positive constant.
According to Definition 1, a performance function in this

paper is chosen as:

ρ(t) = coth(κt + ι)− 1 + ρ∞ (8)

where κ, ι and ρ∞ are design parameters.
Based on the above description of the performance function

ρ(t), the performance bound for the tracking error ν1 = y−yd

is given by.

−δρ(t) < ν1(t) < δ̄ρ(t) (9)

where δ, δ̄ are positive constants.

Fig. 1. Prescribed performance on the error ν1(t).

Fig. 1 shows the tracking error curve with the designed
prescribed performance function (8). Apparently, for the initial
error ν1(0), one has the following inequality

−δρ(0) < ν1(0) < δ̄ρ(0) (10)

Therefore, the initial error ν1(0) covers the positive and
negative values.

To represent (9) by an unconstrained form, the following
state transformation is employed as [33]

ν1(t) = ρ(t)R(ζ1) (11)

where

R(ζ1) =
δ̄eζ1 − δe−ζ1

eζ1 + e−ζ1
(12)

where ζ1 is called as the transformed error. According to (12),
R(ζ1) has the following properties

1) R(ζ1) is smooth and strictly increasing function;
2) limζ1→−∞R(ζ1) = −δ and limζ1→+∞R(ζ1) = −δ̄.
Based on the analysis of R(ζ1), it implies

−δ < R(ζ1) < δ̄ (13)

Then, one can obtain

−δρ < ρR(ζ1) < ρδ̄ (14)

Thus, the equivalent unconstrained condition (11) can be
obtained by the constrained tracking error one (9). Then, the
transformed error ζ1 can be expressed as

ζ1 = R−1
(ν1

ρ

)
=

1
2

ln

(
ν1
ρ + δ

δ̄ − ν1
ρ

)
(15)

Its derivative is

ζ̇1 = %1

(
ν̇1 − ρ̇

ρ
ν1

)
(16)

where

%1 =
1
2ρ

(
1

ν1
ρ + δ

− 1
ν1
ρ − δ̄

)
> 0 (17)

ρ̇ = κ− κ(coth(κt + ι))2 (18)

D. RBF Neural Networks
It has been proved in [44] that neural networks are useful to

model unknown nonlinear functions in control design. In this
paper, RBF NNs will be used to approximate any continuous
function f(Z) : Rq → R over a compact set ΩZ ⊂ Rq as
follows

f(Z) = W ∗TS(Z) + ε(Z) (19)

where Z ∈ ΩZ is the input vector with q being the NNs
input dimension. W = [w1, w2, . . . , wl]T ∈ Rl is the NNs
weight vector with l > 1 being the neural network node
number, and W ∗ denotes the ideal constant weight vector.
ε(Z) is the approximation error, ‖ε(Z)‖ ≤ ε∗. S(Z) =
[s1(Z), s2(Z), . . . , sl(Z)]T is the basis function vector with
si(Z) being commonly used Gaussian function of the form

si(Z) = exp
[−(Z − ξi)T(Z − ξi)

η2

]
, i = 1, . . . , l (20)

where ξi = [ξi1, ξi2, . . . , ξiq]T is the center of the receptive
field and η is the width of Gaussian function [44].

The ideal constant weight vector is defined as

W ∗ := arg min
Ŵ∈Rl

{
sup

Z∈ΩZ

|f(Z)− ŴT S(Z)|
}

(21)

where Ŵ denotes the estimate of W ∗.
In fact, in the ith step of the backstepping design, as the

ideal constant weight vector, W ∗
i,k needs to be estimated by

Ŵi,k. However, in this paper, we do not directly update the
value of W ∗

i,k but the norm of W ∗
i,k. Noting that ‖W ∗

i,max‖2 is
an unknown constant, a positive constant θ∗i is used to express
as ‖W ∗

i,max‖2 = biθ
∗
i , where W ∗

i,max = max{Wi,k : k ∈ M}.
θ̂i denotes the estimate of θ∗i , and the resulting estimation error
θ̃i is defined as θ̃i = θ̂i − θ∗i .

III. ADAPTIVE DYNAMIC SURFACE CONTROL DESIGN
WITH PRESCRIBED PERFORMANCE

In this section, an adaptive control scheme will be presented
and the recursive design procedure contains n steps with DSC
and backstepping technology.
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The n-step backstepping design is based on the following
coordinate changes:

z1 = ζ1

zi = xi − πi, χi = πi − αi−1, i = 2, . . . , n (22)

where αi−1 is the common virtual control signal, which is
defined later. πi is the output of the following first order filter
with the time constant ςi

ςiπ̇i + πi = αi−1, πi(0) = αi−1(0), i = 2, . . . , n. (23)

Step 1: For the nonlinear switched systems (1), one has

ż1 = %1

(
x2 + f1,k(x)− ẏd − ρ̇

ρ
ν1

)
. (24)

Introduce a new variable π2 as the output of a first-order
filter, and let the virtual control α1 pass through it with time
constant ς2

ς2π̇2 + π2 = α1, π2(0) = α1(0). (25)

Since χ2 = π2−α1, one has π̇2 = −χ2/ς2. The differential
of χ2 is

χ̇2 = −χ2

ς2
+ B2(x1, χ2, θ̂1, yd, ẏd, ÿd) (26)

where B2 is a smooth functions and have its maximum value
denoted by M2 (please refer to [31] for details).

Consider the following Lyapunov function candidate as

V1 =
1
2
z2
1 +

1
2
χ2

2 +
θ̃2
1

2r1
(27)

where r1 is a positive parameter.
We have

V̇1 = z1%1

(
x2 + f1,k(x)− ẏd − ρ̇

ρ
ν1

)
+

θ̃1
˙̂
θ1

r1

+χ2(−χ2

ς2
+ B2). (28)

Consider z2 = x2 − χ2 − α1 and we can obtain

V̇1 = z1%1

(
z2 + χ2 + α1 + f1,k(x)− ẏd − ρ̇

ρ
ν1

)

+
θ̃1

˙̂
θ1

r1
+ χ2(−χ2

ς2
+ B2). (29)

Using the Young’s inequality, the following inequalities are
obtained as

z1%1z2 ≤ 1
2
z2
1%2

1 +
1
2
z2
2 (30)

z1%1χ2 ≤ 1
2
z2
1%2

1 +
1
2
χ2

2 (31)

χ2B2 ≤ 1
2
χ2

2 +
1
2
B2

2 ≤
1
2
χ2

2 +
1
2
M2

2 . (32)

Design the first common virtual control function α1 as

α1 = −k1
z1

%1
− b1θ̂1z1

2%1a2
1,min

ST
1 (Z1)S1(Z1) +

ρ̇

ρ
ν1 (33)

where k1 is a positive parameter. a1,min = min{a1,k : k ∈
M}.

Define the unknown function F1,k(Z1):

F1,k(Z1) = %1f1,k − %1ẏd + z1%
2
1. (34)

A RBF NN W ∗T
1 S1 is employed to approximate the unknown

function F1,k

F1,k(Z1) = W ∗T
1,kS1,k(Z1) + ε1,k(Z1), |ε1,k(Z1)| ≤ ε∗1,k. (35)

where Z1 = [x1, yd, ẏd]T ∈ R3 and ε1,k(Z1) is the approxi-
mation error. Because the input of RBF neural network is the
same in kth subsystem, S1,k(Z1) : k ∈ M is the same and is
rewritten as S1(Z1).

The following inequality holds:

z1F1,k = z1(W ∗T
1,kS1,k(Z1) + ε1,k(Z1))

≤ b1

2a2
1,k

z2
1θ∗1ST

1,kS1,k +
1
2
a2
1,k +

1
2
z2
1 +

1
2
ε∗21,k (36)

where ‖W ∗
1,max‖2 = b1θ

∗
1 , W ∗

1,max = max{W1,k : k ∈ M}.
Define the adaptive law as follows:

˙̂
θ1 =

b1r1

2a2
1,min

z2
1ST

1 (Z1)S1(Z1)− σ1θ̂1 (37)

where σ1 > 0 is a positive parameter. a1,min = min{a1,k :
k ∈ M}.

Substituting (30), (33), (36) and (37) into (29) results in

V̇1 ≤ 1
2
z2
2 − χ2(

χ2

ς2
− χ2)

+
1
2
M2

2 +
b1

2a2
1,k

z2
1θ∗1ST

1,kS1,k +
1
2
a2
1,k

+
1
2
z2
1 +

1
2
ε∗21,k − k1z

2
1 −

b1θ̂1z
2
1

2a2
1,k

ST
1 (Z1)S1(Z1)

+
θ̃1

r1
(
b1r1z

2
1

2a2
1,k

ST
1 (Z1)S1(Z1)− σ1θ̂1). (38)

Considering θ̃1 = θ̂1 − θ∗1 , the following inequality holds

−σ1

r1
θ̃1θ̂1 ≤ −σ1θ̃

2
1

2r1
+

σ1θ
∗2
1

2r1
(39)

and (38) is rewritten as

V̇1 ≤ −(k1 − 1
2
)z2

1 − χ2
2(

1
ς2
− 1)

−σ1θ̃
2
1

2r1
+

1
2
z2
2 +

1
2
M2

2

+
1
2
a2
1,max +

1
2
ε∗41,max +

σ1θ
∗2
1

2r1
(40)

where a1,max = max{a1,k : k ∈ M} and ε∗1,max = max{ε∗1,k :
k ∈ M}.

Step i (2 ≤ i ≤ n − 1): Choose the following Lyapunov
function candidate:

Vi = Vi−1 +
1
2
z2
i +

1
2
χ2

i +
θ̃2

i

2ri
(41)

Introduce a new variable πi+1 as the output of a first-order
filter, and let the virtual control αi pass through it with time
constant ςi+1

ςi+1π̇i+1 + πi+1 = αi, πi+1(0) = αi(0). (42)
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Since χi+1 = πi+1−αi, one has π̇i+1 = −χi+1/ςi+1. The
differential of χi+1 is

χ̇i+1 = −χi+1

ςi+1
+ Bi+1(x1, . . . , xi, χ2, . . . , χi+1,

θ̂1, . . . , θ̂i, yd, ẏd, ÿd) (43)

where Bi+1 is a smooth function and has its maximum value
denoted by Mi+1.

Define zi = xi − πi and the differential of zi

żi = xi+1 + fi,k(x̄i)− π̇i. (44)

Considering zi+1 = xi+1 − χi+1 − αi, according to Itô
differentiation rule, one has

V̇i = V̇i−1 + zi(zi+1 + χi+1 + αi + fi,k(x̄i)

−π̇i) +
θ̃i

˙̂
θi

ri
+ χi+1(−χi+1

ςi+1
+ Bi+1). (45)

Considering θ̃i = θ̂i − θ∗i , the following inequality is
obtained as

−σi

ri
θ̃iθ̂i ≤ −σiθ̃

2
i

2ri
+

σiθ
∗2
i

2ri
. (46)

Using the Young’s inequality, we have:

zizi+1 ≤ 1
2
z2
i +

z2
i+1

2
(47)

ziχi+1 ≤ 1
2
z2
i +

1
2
χ2

i+1 (48)

χi+1Bi+1 ≤ 1
2
χ1

i+1 +
1
2
B2

i+1 ≤
1
2
χ2

i+1 +
1
2
M2

i+1. (49)

Define the unknown function Fi,k(Zi):

Fi,k = fi,k(x̄i)− π̇i. (50)

A RBF NN W ∗T
i,k Si,k is employed to approximate the

unknown function Fi,k(Zi)

Fi,k = W ∗T
i,k Si,k(Zi) + εi,k(Zi), |εi,k(Zi)| ≤ ε∗i,k (51)

where Zi = [x1, . . . , xi, π̇i]T ∈ Ri+1.
Similar to the derivation (36), we have

ziFi,k = zi(W ∗T
i,k Si,k(Zi) + εi,k(Zi))

≤ bi

2a2
i,k

z2
i θ∗i ST

i,kSi,k +
1
2
a2

i,k +
1
2
z2
i +

1
2
ε∗2i,k (52)

where ‖W ∗
i,max‖2 = biθ

∗
i , and W ∗

i,max = max{Wi,k : k}.
During the ith step, note that the input of RBF neural network
is the same in kth subsystem, and thus Si,k(Zi) : k ∈ M is
also the same and can be rewritten as Si(Zi) for concision
purposes.

Define the adaptive law θ̂i as

˙̂
θi =

biriz
2
i

2a2
i,min

ST
i (Zi)Si(Zi)− σiθ̂i (53)

where σi > 0 is a positive parameter. ai,min = min{ai,k : k ∈
M}.

The intermediate common virtual control function αi is
defined as

αi = −kizi − biθ̂izi

2a2
i,min

ST
i (Zi)Si(Zi) (54)

where ki is a positive parameter.
Substituting (53) and (54) into (45), one has

V̇i ≤ V̇i−1 + z2
i +

z2
i+1

2
− kiz

2
i

− biθ̂iz
2
i

2a2
i,min

ST
i (Zi)Si(Zi)

+χi+1(−χi+1

ςi+1
+ χi+1) +

1
2
M2

i+1

+
bi

2a2
i,k

z2
i θ∗i ST

i Si +
1
2
a2

i,k +
1
2
z2
i +

1
2
ε∗2i,k

+
θ̃i

ri
(

biriz
2
i

2a2
i,min

ST
i (Zi)Si(Zi)− σiθ̂i)

≤ −(k1 − 1
2
)z2

1 −
i∑

j=2

(kj − 2)z2
j +

z2
i+1

2

−
i∑

j=1

σj θ̃
2
j

2rj
−

i∑

j=1

χ2
j+1(

1
ςj+1

− 1)

+
i∑

j=1

(1
2
M2

j+1 +
1
2
a2

j,max +
1
2
ε∗2j,max +

σjθ
∗2
j

2rj

)
(55)

where ai,max = max{ai,k : k ∈ M}, ε∗i,max = max{ε∗i,k : k ∈
M}.

Step n: Consider zn = xn − πn and choose the Lyapunov
function Vn as

Vn = Vn−1 +
1
2
z2
n +

1
2rn

θ̃2
n. (56)

According to Itô differentiation rule, one has

V̇n = V̇n−1 + zn(u + fn,k − π̇n) +
θ̃n

˙̂
θn

rn
. (57)

Define the adaptive law

˙̂
θn =

bnrn

2a2
n,min

z2
nST

n (Zn)Sn(Zn)− σnθ̂n (58)

where σn > 0 is a positive parameter. an,min = min{an,k :
k ∈ M}.

Consider θ̃n = θ̂n − θ∗n, and the following inequality

−σn

rn
θ̃nθ̂n ≤ −σnθ̃2

n

2rn
+

σnθ∗2n

2rn
(59)

(57) is rewritten as:

V̇n ≤ V̇n−1 + zn(cυ(t) + d(υ)) + znFn,k

+
θ̃n

rn

( bnrnz2
n

2a2
n,min

ST
n (Zn)Sn(Zn)− σnθ̂n

)
(60)

where the unknown nonlinear function Fn(Zn) is defined as:

Fn,k = fn,k − π̇n. (61)

A RBF NN W ∗T
n,kSn,k is employed to approximate the

unknown function Fn,k

Fn,k = W ∗T
n,kSn,k(Zn) + εn,k(Zn), |εn,k(Zn)| ≤ ε∗n,k (62)
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where Zn = [x1, . . . , xn, π̇n]T ∈ Rn+1, and εn,k(Zn) is the
approximation error.

Similar to the deviation in (36) and (52), the following
inequality holds

znFn,k = zn(W ∗T
n,kSn,k(Zn) + εn,k(Zn))

≤ bn

2a2
n,k

z2
nθ∗nST

n,kSn,k +
1
2
a2

n,k +
1
2
z2
n +

1
2
ε∗2n,k (63)

where ‖W ∗
n,max‖2 = bnθ∗n, with W ∗

n,max = max{W ∗
n,k : k ∈

M}.

znd(υ) ≤ 1
2
z2
n +

1
2
d∗2. (64)

The common control input u is defined as

v =
1
gn

(− knzn − bnθ̂nzn

2a2
n,min

ST
n (Zn)Sn(Zn)

)
(65)

where gn = c is a positive design parameter, and kn is a
positive parameter.

Substituting (63) and (65) into (60) yields

V̇n ≤ V̇n−1 − (kn − 1)z2
n −

σnθ̃2
n

2rn
+

σnθ∗2n

2rn

+
1
2
a2

n +
1
2
ε∗2n +

1
2
d∗2

≤ −(k1 − 1
2
)z2

1 −
n−1∑

i=2

(ki − 2)z2
i − (kn − 3

2
)z2

n

−
n∑

i=1

σiθ̃
2
i

2ri
+

n∑

i=1

(1
2
a2

i,max +
1
2
ε∗2i,max +

σiθ
∗2
i

2ri

)

+
1
2
d∗2 +

n−1∑

j=1

(1
2
M2

j+1 − χ2
j+1(

1
ςj+1

− 1)
)

(66)

Given li > 0 (i = 1, 2, . . . , n) and ξi > 0 (i = 2, . . . , n),
such that

l1 = k1 − 1
2

li = ki − 2, i = 2, . . . , n− 1

ln = kn − 3
2

ξi =
1
ςi
− 1, i = 2, . . . , n. (67)

Let a0 = min
{
2l1, 2li, 2ξi, σ1, σi

}
, n = 2, . . . , n,

and b0 =
∑n

i=1(1/2a2
i,max + 1/2ε∗2i,max + σiθ

∗2
i /2ri)

+
∑n−1

j=1 1/2M2
j+1 + 1/2d∗2, such that (66) is rewritten as:

LV ≤ −a0V + b0, t ≥ 0. (68)

Theorem 1: Considering the closed-loop system consisting
of plant (1), the common controller (65) together with the
common virtual control signal (33), (54) and adaptive laws
(37), (53) and (58). There exist suitable parameters li, ξi, σi

such that all signals of the closed-loop system remain bounded
under arbitrary switchings, and the error boundary can be
arbitrarily reduced by the designed parameters (li, ξi, σi), but
also achieves the prescribed performances.

Proof: Based on the comparison principle, (68) is expressed
as

V̇ (t) ≤ −a0V (t) + b0. (69)

It satisfies

0 ≤ V (t) ≤ (
V (0)− b0

a0

)
e−a0t +

b0

a0
(70)

and

V (t) ≤ V (0) +
b0

a0
,∀t > 0 (71)

where V (0) =
∑n

i=1 1/2z2
i (0) +

∑n
i=2 1/2χ2

i (0) +∑n
i=1 1/2riθ̃

2
i (0). Thus, based on the inequality (71) and the

definition of V , all the signals in the closed-loop system are
bounded under arbitrary switchings.

Furthermore, from (70), one has

V (t) ≤ b0

a0
, t →∞ (72)

with (71) and (72), we have
n∑

i=1

z2
i ≤ 2V (t) ≤ 2b0

a0
. (73)

Therefore, zi can eventually converge to the compact set Ω.
Ω is defined as

Ω := {zi

∣∣∣‖zi‖ ≤
√

2b0

a0
}. (74)

¥

IV. SIMULATION STUDY

Consider the following second-order nonlinear switched
system:





ẋ1 = x2 + f1,σ(t)(x1),
ẋ2 = u(v) + f2,σ(t)(x1, x2)
y = x1

(75)

where σ(t) : [0,∞] → {1, 2}. f1,1 = x2
1, f2,1 = x2

1 cos2(x2).
f1,2 = 0.8x1 sin(x1), f2,2 = cos(x1)x2

2.
The control objective is to design a common adaptive neural

control scheme such that all signals in closed-loop system
remain bounded under arbitrary switchings, and for guaranteed
prescribed performance, the system output y follows the ideal
reference trajectory yd = 0.5(sin(t)+ sin(0.5t)) with no need
of the initial error under arbitrary switchings.

The initial conditions of the closed-loop system are shown
as: The saturation parameters u− = 32, u+ = 28.
[x1(0), x2(0)]T = [0.3, 0.1]T , [θ̂1(0), θ̂2(0)]T = [0, 0]T , z1 =
x1(0) −yd(0) = 0.3−0 > 0. To verify the effectiveness of the
designed controller with no need of the initial error, we make a
comparative study, in which initial conditions [x1(0), x2(0)]T

= [−0.25, 0.2]T and z1 = x1(0)− yd(0) = −0.25− 0 < 0.
The performance function is given as

ρ(t) = coth(0.6t + 0.4)− 1 + ρ∞ (76)

where δ̄ = δ = 0.2, ρ∞ = 0.1.
In the simulation study, the design parameters are taken

as: k1 = 17, k2 = 18, r1 = 1, r2 = 1.2, a1,min = 2,
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a2,min = 2, σ1 = 0.1, σ2 = 0.3. ς2 = 0.01. Based on
the control design, we construct the Gaussian RBF network
ŴT

1 S1(Z1) using 53nodes with the centers evenly spaced on
[−2, 2]×[−2, 2]×[−2, 2] and the width being 0.95; The neural
network ŴT

2 S2(Z2) contains 33 nodes with the centers evenly
spaced on [−1.5, 1.5]× [−1.5, 1.5]× [−1.5, 1.5] and the width
being 1.49.

Figs. 2−9 show the simulation results. Fig. 2 provides the
tracking performance of the closed-loop system under arbi-
trary switchings and Fig. 3 shows the curves of the tracking
errors with prescribed performance control (PPC) and without
prescribed performance control. When the initial error ν1 < 0,

Fig. 2. System output y and reference signal yd with the positive initial error
ν1(0) > 0.

Fig. 3. Tracking error z1 and prescribed performance bounds with the
positive initial error ν1(0) > 0.

Fig. 4. System state x2.

Fig. 5. Adaptive parameters θ̂1 and θ̂2.

Fig. 6. Switch signal σ(t).

Fig. 7. The control signal u.

Fig. 8. System output y and reference signal yd with the negative initial
error ν1(0) < 0.
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Fig. 9. Tracking error z1 and prescribed performance bounds with the
negative initial error ν1(0) < 0.

Figs. 8 and 9 show the tracking performance and tracking
errors with the same design parameters, respectively. It is
obvious that the initial error ν1 does not need to be known
in advance. Figs. 4 and 5 illustrate the time trajectory of the
state variable x2, the adaptive laws θ̂1 and θ̂2, which are shown
that these signals are bounded. Fig. 6 shows the evolution of
switching signal. The output u and input v of the saturation
are shown in Fig. 7.

V. CONCLUSION

This paper investigates the problem of adaptive neural PPC
for a class of nonlinear systems with the smooth differentiable
saturation nonlinearity under arbitrary switchings. By using the
DSC method, the problem of “explosion of complexity”can
be eliminated. RBF neural networks are used to model the
unknown nonlinear functions, and a performance function is
designed with no requirement for the exact initial error. In
this paper, the norm of the NN weight vector is estimated
to reduce the number of the learning parameters. It has been
shown that the proposed common controller can guarantee that
all signals in the closed-loop systems are semi-globally uni-
formly bounded under arbitrary switchings and tracking error
converges to a predefined small neighborhood of zero. The
future researches include its extension to the interconnected
MIMO case of such stochastic nonlinear switched systems
with unmeasured states and unknown time delays.
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