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On Frequency Sensitivity and Mode Orthogonality
of Flexible Robotic Manipulators

Fei-Yue Wang, Fellow, IEEE, and Yanqing Gao

Abstract—This paper presents sensitivity analysis of vibration
frequencies of flexible manipulators with respect to variations of
systems parameters such as rotational inertia of hub, and mass,
moment, and side of tip load. Both Euler-Bernoulli and Timo-
shenko dynamical models of flexible manipulators are discussed.
By using variational method, sensitivity indices are obtained with
explicit expressions for measuring the sensitivity of frequencies.
Based on variational formulations, a novel method for deriving
the orthogonal relations among vibration modal shape functions
of flexible manipulators is introduced. With this method, the
orthogonal relations can be derived easily without invoking the
tedious process of differentiation and integration by part, as
commonly used in their derivation.

Index Terms—Flexible manipulators, Euler-Bernoulli dynam-
ical model, Timoshenko dynamical model, variational formula-
tion, vibration frequency, frequency sensitivity, sensitivity analy-
sis, mode orthogonality.

I. INTRODUCTION

FLEXIBLE manipulators are considered as effective robot-
ic devices for high performance and low cost, especially

for less energy consumptions[1−5]. However, due to their
structural deformation, extra difficulty and complexity must
be dealt with in modeling, analysis, and control of flexible
robotic manipulators[6−9]. One of basic problems in flexible
manipulators is the determination and analysis of fundamental
frequencies, a key factor that affects the system stability and
motion speed. Mode orthogonality is another minor issue in
analysis and control of flexible manipulators, since mode shape
functions are often used in shape modulation and control
synthesis[2−5, 9, 10]. Here, we summarize some basic results
in frequency sensitivity and mode orthogonality of flexible
manipulator systems.
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II. BASIC EQUATIONS

Two types of dynamical models for one-link flexible ma-
nipulators are considered in this paper: Euler-Bernoulli model
and Timoshenko model. The first model considers only the
effect of rotatory inertia on vibration, while the second one
takes the effect of both rotatory inertia and shear deformation
into account. The detail derivation of the two models can be
found in [11], here we just list their dimensionless forms as
follows.

Euler-Bernoulli Model:

z′′′′ + δm2z′′ −m2z = 0, (1)

with boundary conditions,

z(0) = 0,

z′′(0) + ηm2z′(0) = 0, (2)

z′′(1)−m2[κz′(1) + ζµz(1)] = 0,

z′′′(1) +m2[(δ + µζ)z′(1) + µz(1)] = 0. (3)

Timoshenko Model:
α′′ − σ(α− z′) + δm2α = 0,

σ(α− z′)′ −m2z = 0,
(4)

with boundary conditions,

z(0) = 0,

α′(0) + ηm2α(0) = 0, (5)

α′(1)−m2[κα(1) + ζµz(1)] = 0,

σ[α(1)− z′(1)] + µm2[z(1) + ζα(1)] = 0. (6)

Where a prime indicates differentiation with respect to the
dimensionless coordinate ξ, m = cω, and ω is the frequency
of vibration. Other dimensionless variables and parameters are
defined as,

ξ =
x

L
, z =

v

L
, δ =

S

L2
, σ =

CL2

D
, c2 =

ρL4

D
, (7)

µ =
Mp

ρL
, η =

IH
ρL3

, κ =
Jp
ρL3

, ζ =
ac
L
, (8)

in which x is the coordinate along the longitudinal axis of
the link, L the link length, v and α the total deflection and
rotation of the link. S and C are link parameters characterizing
the effect of rotatory inertia and shear deformation, and D the
bending rigidity. ρ is the mass density per unit length of the
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link, and IH the rotational inertia of the hub. Finally, Mp, ac,
and Jp are the mass, the distance of mass center from the free
end of link, and the moment of tip load.

Note that in the dynamical model presented in [12], the size
of tip load was not considered (i.e., ζ = 0).

III. VIBRATIONAL FORMULATIONS

In order to discuss the sensitivity of frequency with respect
to the variation of system parameters, an explicit expression
for frequency is desired. For this purpose, we transfer equation
(1)-(6) into their equivalent variational forms.

One can show easily that equation (1)-(3) are equivalent to
the following variational equation,

m2 = stz

∫ 1

0
z′′2dξ∫ 1

0
(z2+δz′2)dξ+ηz′(0)2+µz(1)2

+2ζµz(1)z′(1)+κz′(1)2

(9)

where z is only subject to the geometric boundary condition
z(0) = 0, and stz stands for the stationary value with respect
to z. In other words, the solution of equations (1)-(3) must
take m2 achieve its stationary value, or minimum value in the
case of fundamental frequency, and vice versa.

Similarly, the corresponding vibrational equation for equa-
tions (4)-(6) can be found as,

m2 = stα,z

∫ 1

0
[α′2 + σ(α− z′)2]dξ∫ 1

0
(z2+δα2)dξ+ηα(0)2+µz(1)2

+2ζµz(1)α(1)+κα(1)2

(10)

again, only z is subject to z(0) = 0.

IV. SENSITIVITY ANALYSIS

A variation in hub inertia, or more likely, in tip load will
induce a corresponding change in the frequencies of flexible
arms. It is extremely important to know how the frequencies
changes as systems parameters vary.

From equations (9) and (10), variation of m2 due to small
changes of η, µ, ξ, and κ can expressed as,

δm2

m2
= −Sη

δη

η
− Sµ

δµ

µ
− Sµξ

δ(µξ)

µξ
− Sκ

δκ

κ
, (11)

where, for the Euler-Bernoulli model,

Sη =
ηz′(0)2

∆S
, Sµ =

µz(1)2

∆S
,

Sµξ =
2ζµz(1)z′(1)

∆S
, Sκ =

κz′(1)2

∆S
, (12)

∆S =

∫ 1

0

(z2 + δz′2)dξ + ηz′(0)2 + µz(1)2

+ 2ζµz(1)z′(1) + κz′(1)2, (13)

while for Timoshenko model,

Sη =
ηα(0)2

∆S
, Sµ =

µz(1)2

∆S
,

Sµξ =
2ζµz(1)α(1)

∆S
, Sκ =

κα(1)2

∆S
, (14)

∆S =

∫ 1

0

(z2 + δα2)dξ + ηα(0)2 + µz(1)2

+ 2ζµz(1)α(1) + κα(1)2. (15)

Note that although δη, δµ, δξ, and δη cause the corre-
sponding variations δz and δα in z and α, respectively, these
variations will not affect the values of m2, since m2 obtains
its stationary value at z and α. This is why we do not need
to consider the variations of z and α in the above sensitivity
analysis.

It should be pointed out that sensitivity indices can also be
formally defined as follows,

Sχ =− % change in m2

% change in χ
= −δm2/m2

δχ/χ
= − χ

m2

δm2

δχ
,

χ = η, µ, µζ, κ. (16)

Clearly, 0 ≤ Sχ ≤ 1, therefore, vibration frequencies always
decreases as system parameters increases their values.

V. ORTHOGONALITY DERIVATION

Consider two different vibration frequencies m1 and m2,
an their corresponding modal shape functions (z1, α1) and
(z2, α2) (or z1 and z2 only, for Euler-Bernoulli model). It
is well known that some orthogonal relations exist between
(z1, α1) and (z2, α2). Usually, those orthogonal relations
are derived directly from dynamic equations (1)-(6) by in-
tegrations and manipulation, and in general the process of
derivations is quite tedious[13, 14]. Here we will show that
these orthogonal relations can be obtained from the variational
formulations (9) and (10) in a much simpler way.

For Euler-Bernoulli model, let,

z(ξ) = c1z1(ξ) + c2z1(ξ) (17)

where c1 and c2 are two arbitrary constants. Obviously, z(0) =
0, so it satisfies the geometric boundary condition. Substitute
(17) into (9), one finds that m2 can be expressed as a function
of c1 and c2,

m2 =
N11c

2
1 + 2N12c1c2 +N22c

2
2

M11c21 + 2M12c1c2 +M22c22
(18)

where

Nij =

∫ 1

0

z′′i z
′′
j dξ,

Mij =

∫ 1

0

(zizj + δz′iz
′
j)dξ + ηz′i(0)z

′
j(0) + µzi(1)zj(1)

+ ζµ[zi(1)z
′
j(1) + zj(1)z

′
i(1)] + κz′i(1)z

′
j(1),

i, j = 1, 2.

Since m2 achieves its stationary values at both (c1, c2) =

(1, 0) and (c1, c2) = (0, 1) (recall that z1 and z2 are vibration
modal shape functions), ∂m2/∂c must be zero at these two
points. Hence,

N11 −m2
1M11 = 0, N12 −m2

1M12 = 0,
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N12 −m2
2M12 = 0, N22 −m2

2M22 = 0,

which leads to

N12 = 0, M12 = 0, m2
1 =

N11

M11
, m2

2 =
N22

M22
.

While the last two equations are expected, the first two gives
the following orthogonal relations,∫ 1

0

z′′i z
′′
j dξ = 0, i ̸= j (19)∫ 1

0

(zizj + δz′iz
′
j)dξ + ηz′i(0)z

′
j(0) + µzi(1)zj(1)

+ ζµ[zi(1)z
′
j(1) + z′i(1)zj(1)] + κz′i(1)z

′
j(1) = 0, i ̸= j

(20)

whose special forms have been found in [3, 4].
For Timoshenko model, similarly, let,

z(ξ) =c1z1(ξ) + c2x2(ξ), (21)

α(ξ) =c3α1(ξ) + c4α2(ξ), (22)

where c = (c1, c2, c3, c4)
T is an arbitrary constant vector,

From (10), m2 now can be expressed in terms of c as,

m2 =
cTNc

cTMc
(23)

where

N =


N11 N12 −N13 −N14

N12 N22 −N23 −N24

−N13 −N23 N33 N34

−N14 −N24 N34 N44

 ,

M =


M11 M12 M13 M14

M12 M22 M23 M24

M13 M23 M33 M34

M14 M24 M34 M44

 , (24)

Ni(j+2) =

∫ 1

0

σz′iαjdξ,

Nij =

∫ 1

0

σz′iz
′
jdξ,

N(i+2)(j+2) =

∫ 1

0

(α′
iα

′
j + σαiαj)dξ, (25)

Mij =

∫ 1

0

zizjdξ + µzi(1)zj(1),

Mi(j+2) = ζµzi(1)αj(1), (26)

M(i+2)(j+2) =

∫ 1

0

δαiαjdξ + ηαi(0)αj(0) + καi(1)αj(1),

(27)

1 ≤ i, j ≤ 2

By the same argument, ∂m2/∂c must be zero at the two
points c = (1, 0, 1, 0)T and c = (0, 1, 0, 1)T. Since,

∂m2

∂c
= 0 =⇒ (N −m2M)c = 0,

which leads to,

N11 −m2
1M11 − (N13 +m2

1M13) = 0,

N12 −m2
1M12 − (N23 +m2

1M23) = 0,

N33 −m2
1M33 − (N13 +m2

1M13) = 0,

N34 −m2
1M34 − (N14 +m2

1M14) = 0,

N12 −m2
2M12 − (N14 +m2

2M14) = 0,

N22 −m2
2M22 − (N24 +m2

2M24) = 0,

N34 −m2
2M34 − (N23 +m2

2M23) = 0,

N44 −m2
2M44 − (N24 +m2

2M24) = 0.

Combine these equations appropriately, one can show that,

N12 +N34 −N23 −N14

−m2
i (M12 +M34 +M23 +M14) = 0, i = 1, 2. (28)

Since m1 ̸= m2, it must have,

N12 +N34 = N23 +N14,

M12 +M34 +M23 +M14 = 0. (29)

It follows that,∫ 1

0

[α′
iα

′
j + σ(αi − z′i)(αj − z′j)]dξ = 0, (30)∫ 1

0

(zizj + δαiαj)dξ + ηαi(0)αj(0) + µzi(1)zj(1)

+ ζµ[zi(1)αj(1) + zj(1)αi(1)] + καi(1)αj(1) = 0, (31)

for i ̸= j, 1 ≤ i, j ≤ 2.
Additional relations can also be derived. For example, we

have
Nii −Ni(i+2)

Mii +Mi(i+2)
=
N(i+2)(i+2) −Ni(i+2)

N(i+2)(i+2) +Mi(i+2)

=
Nij −Nj(i+2)

Mij −Mj(i+2)

=
N(i+2)(i+2) −Ni(j+2)

M(i+2)(i+2) −Ni(j+2)
(32)

for i ̸= j, 1 ≤ i, j ≤ 2.
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