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Abstract—Unlike conventional power systems, the upcoming
energy internet (EI) emphasizes comprehensive utilization of en-
ergy in the whole power system by coordinating multi-microgrids,
which also brings new challenge for the energy management. To
address this issue, this paper proposes a novel consensus-based
distributed approach based on multi-agent framework to solve
the energy management problem of the energy internet, which
only requires local information exchange among neighboring
agents. Correspondingly, two consensus algorithms are presented,
one of which drives the incremental cost of each distributed
generator (DG) converge to the state of the leader agent-energy
router, and the other one is used to estimate the global power
mismatch, which is a first-order average consensus algorithm
modified by a correction term. In addition, in order to meet
the supply-demand balance, an effective control strategy for the
energy router is proposed to accurately calculate the power
exchange between the microgrid and the main grid. Finally,
simulation results within a 7-bus test system are provided to
illustrate the effectiveness of the proposed approach.

Index Terms—Consensus, multi-agent, energy management,
optimization, energy internet.

I. INTRODUCTION

W ITH the deterioration of natural environment and the
aggravation of global energy crisis, considerable atten-

tion has been paid to the study of improving energy efficiency,
increasing economical efficiency, integrating high penetration
of renewable energy and decreasing carbon emission in the
past decades. As a promising way to solve these problems,
the concept of energy internet (EI) was developed in recent
years[1−2]. However, the future power-grid based on EI frame-
work also brings new challenges to the study of some basic
problems in power systems, one of which is the problem of
energy management.

In recent years, numerous algorithms have been reported for
the energy management of traditional power systems, which
include analytical methods such as Lagrange multipliers[3],
gradient search methods, the linear programming, the New-
ton’s approach[4] and heuristic methods such as the genetic
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algorithm[5] and the particle swarm algorithm, etc. Note that,
most of these methods are performed in a centralized way and
deployed at large timescale. However, with the transformation
from traditional power systems to EI, traditional centralized
methods may encounter the following problems in application
of energy management:

1) The centralized approaches require high-bandwidth com-
munication infrastructure to gather global information from
every single system component and a central controller with
high computational ability to process a huge mass of data,
which will result in not only great implementation cost but also
high sensitivity to single-point failures and modeling errors.

2) Both the physical and communication topologies of EI
tend to subject to topology variability due to the plug-and-
play feature of system components in EI, which may seriously
undermine the efficacy of the centralized approaches.

Alternatively, the distributed approach which does not rely
on a central controller could be more applicable to deal
with the topology variability and the plug-and-play feature.
Moreover, it possesses more robustness, scalability and can
be better operated under limited-bandwidth communication[6].
Therefore, it is a promising way to solve the energy man-
agement problem of EI by proper distributed approaches.
Consensus-based distributed approaches have been widely
studied to solve practical engineering problems in recent years,
in which each agent only requires the information exchanging
among its neighbor agents through a local communication
network to find the optimal solutions[7−8]. As for the energy
management problem, there are also fruitful results reported
in existing literatures. For instance, the quadratic convex cost
function was used to analyze the energy management problem
with or without a leader in [9 – 11], where the estimated
power mismatch was used as a feedback mechanism to meet
the supply-demand balance constraint. The transmission line
losses along with generator constraints were taken into ac-
count in [12], which was based on two consensus protocols
running in parallel to find the optimal solution. Considering
the ramping rate limits, a distributed approach based on
the dynamic programming algorithm was proposed in [13],
with simpler implementation and faster convergence speed.
Taking the demand response into consideration, the authors in
[14 – 16] focused on maximizing the total social welfare by
combining the suppliers’ generations and customers’ demand.
In addition, the problems of online optimal generation control,
self-organizing and non-convex dispatch model were discussed
in [17 – 19].

It is worth noting that all aforementioned distributed energy
management approaches are restricted in the islanded mode,
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aiming at achieving the optimal synthetical cost in a single
but not at the whole power system. However, the future EI
emphasizes the comprehensive utilization of energy in the
whole power system by coordinating multi-microgrids and
minimizing the cost of the whole power system, but not only
the energy of any single microgrid, which inevitably results
in a certain amount of power exchange among the microgrids.
In other words, each microgrid can either inject spare power
(if working in low loads) into or absorb lacking power (if
working in high loads) from other microgrids or the main
grid. Therefore, how to accurately calculate the exchange
power among microgrids and the power outputs of DGs in
a distributed fashion is urgent for the energy management of
the forthcoming EI. To address this issue, this paper proposes
a novel distributed approach to solve the energy management
problem of EI by considering the power exchange among
multi-microgrids and the main grid. The proposed approach
is based on two consensus algorithms, one of which requires
a leader agent to drive the incremental cost of each DG to the
set electricity price, and the other one modified by a correction
term is used to estimate the power mismatch between the load
demand and the total power generation. In addition, a novel
control strategy for the energy router is proposed to calculate
the value of power exchange. The major contributions of the
proposed distributed approach are summarized as follows:

1) The proposed approach is implemented in a distributed
fashion, which only requires local communication among
neighbors. Thus, it is more cost-effective, reliable and robust
compared to the centralized approaches.

2) The proposed approach can achieve the co-optimization
among microgrids, which can effectively improve the energy
efficiency and the economic benefit.

3) Various kinds of distributed generators are considered
in the system modeling to further achieve their integrated
optimization and the local consumption of DGs.

Finally, simulation results under different cases in a test
system are provided to illustrate the satisfactory performance
of the proposed approach.

The rest of this paper is summarized as follows. Section II
introduces the structure of EI and the mathematical model
of the concerned energy management problem. Section III
introduces the graph theory and the proposed distributed
approach. Section IV provides some case studies to verify
the effectiveness of the proposed approach. Finally, Section
V concludes this paper.

A typical structure of EI contains multi-microgrids and the
main grid (MG), shown in Fig. 1. In such EI structure, each
microgrid is connected to the MG by an energy router which
can obtain the electricity price from the MG and ensures con-
stant power exchange between the MG and the microgrid[2].
In each microgrid, the energy resources consist of the MG and
various kinds of DGs which include distributed conventional
fuel generators and distributed renewable generators (e.g.
photovoltaics (PVs) and wind turbines (WTs). Letting m and
N represent the numbers of microgrids and DGs for each
microgrid, respectively, then the power supply-demand balance

considering the electricity price can be formulated as follows:

N∑

i=1

pi + pMG = DL, (1)

where pi is the power generated by the ith DG, DL is the
total load demand and pMG is the power exchange between
the microgrid and the MG. Therein, if the microgrid injects
power into the MG, then pMG < 0; if the microgrid absorbs
power from the MG, then pMG > 0; otherwise, pMG = 0.

The cost function of DGs is usually approximated by the
following quadratic convex function:

Ci (pi) = aip
2
i + bipi + ci, (2)

pmin
i < pi < pmax

i , (3)

where ai, bi, ci are the cost coefficients, pmin
i and pmax

i are
the lower and upper bounds of the power generated by the
generator i, respectively. It is worth noting that pmax

i is the
value of maximum power point tracking (MPPT) point for the
distributed renewable generator i. In addition, the incremental
cost[12−13] of each DG is defined as:

∂Ci (pi)
∂pi

= 2aipi + bi. (4)

The energy management of each microgrid aims at finding
a suitable power generation combination of all DGs and
the power exchange between the microgrid and the MG,
which gives the minimum economical cost while satisfies
the system supply-demand balance and various inequality
constraints. Therefore, the energy management problem can
be mathematically represented as follows:

Min
N∑

i

Ci (pi) + κpMG, (5)

which subjects to constraints (1), (3) and κ is the electricity
price. And it is easy to see that the total goal of the whole
system is the aggregate goal of all microgrids.

Fig. 1. The structure of energy internet.
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A. Optimal Conditions Analysis

In this part, we will analyze the optimal conditions of
this kind of optimization problem and further provide its
distributed solution strategy in Section III.

It is easy to have the Lagrangian function of (5), that is:

L =
N∑
i

Ci (pi) + κpMG − λ

(
N∑

i=1

pi + pMG −DL

)

−
N∑

i=1

µmin
i

(
pi − pmin

i

)−
N∑

i=1

µmax
i (pmax

i − pi),

(6)
where λ, µmin

i , µmax
i are the Lagrangian multipliers of the

equality constraint (1) and the inequality constraints (3) for
each DG, respectively.

Without considering the inequality constraints, the optimal
conditions of (6) are given by:





∂L

∂pi
= 2aipi + bi − λ = 0,

∂L

∂pMG
= κ− λ = 0.

(7)

From (7), the necessary conditions for the existence of the
optimal operating point is that the incremental cost of each DG
is equal to λ, meanwhile λ = κ. When each DG is running
in the optimal configuration, the power generation pi

∗ and the
electricity price κ should satisfy the following conditions:





p∗i =
(λ− bi)

2ai
,

λ = κ.
(8)

Then, from (1), the optimal exchanged power can be ob-
tained by

p∗MG = DL −
N∑

i=1

p∗i . (9)

Above analysis shows that to achieve the optimal solutions
of problem (5) with its corresponding equality constraint (1),
all DGs in microgrids should hold the same incremental cost
which is equal to electricity price κ. Meanwhile, suitable ex-
changed power for each energy router needs to be calculated to
maintain their corresponding supply-demand balance. It should
be noted that the sign of the calculated p∗MG , which could
be plus or minus, implies the microgrid would inject power
into or absorb power from the MG, and the value of | p∗MG |
means the quantity of the power need to be exchanged. To
be more specific, in the scenario of co-multi-microgrids, there
are always some microgrids running in the low-load condition
or in the high-load condition and it is expected that they
can cooperatively achieve the optimal energy management
of the whole system. The same incremental cost makes the
cooperation possible by making the microgrids in the low-
load condition generate more power into MG to feed the ones
in the high-load condition. Meanwhile the microgrids in the
high-load condition can absorb power with lower cost from
the MG to compensate the part of power with higher cost.
Therefore, if the incremental cost of each DG can converge to
κ and the energy router can calculate the optimal exchanged

power p∗MG, then the optimal energy management of the whole
system can be achieved.

When taking the inequality constraints into consideration,
we only need to extend the optimal conditions for pi to the
following form:




2aipi + bi = λ, pmin
i < pi < pmax

i ;
2aipi + bi ≤ λ, pi = pmax

i ;
2aipi + bi ≥ λ, pi = pmin

i .
(10)

II. DISTRIBUTED OPTIMAL ENERGY
MANAGEMENT

A. Graph Theory
Considering a microgrid with one energy router and N

DGs, a graph G= {0} ∪ G is used to model the network
topology of the system and the way that system elements
exchange information based on the communication infras-
tructure. Therein, {0} represents the energy router and G is
a weighted graph which is defined as G (V, E, W ), where
V = (v1, v2, . . . , vn) is a set of elements called nodes,
E = {eij = (vi, vj)} ⊂ V × V is a set of pairs of distinct
nodes called edges and W = (wij) ∈ RN×N is the associated
adjacency matrix. Graph nodes represent the DGs, the edges
represent the transmission lines among DGs, and the adjacency
matrix reflects the edge weights which describe the degree of
the interaction effect between nodes. If there exists an edge
eij from DG j to DG i with wij > 0 , then DG j is called a
neighbor of DG i, which means DG i can receive information
from DG j. The set of neighbors of DG i is denoted by
Ni with cardinality wi. Define D = diag {d1, d2, . . . , dN}
as the leader adjacency matrix associated with G, in which
we have di > 0 if DG i can receive information from the
energy router; otherwise, di = 0. And the set of DGs with
di > 0 is denoted by N0 with cardinality w0. In real power
systems, it is always expected to achieve the systems function
with communication lines as few as possible. Therefore, we let
only a small percentage of DGs have di > 0 , i.e., only a small
percentage of DGs can receive information from the energy
router. In addition, let G be a strongly connected graph, then
G contains a directed spanning tree and {0} is the root[22].

B. Distributed Approach
According to the analysis in the previous section, the

incremental cost of each DG must converge to κ when it
runs at the optimal operating point. This operation can be
performed by using the leader-following consensus algorithm,
meanwhile let the energy router be the leader, which can
obtain the electricity price from the MG and locally exchange
information with its neighbors. Then, each DG updates its
incremental cost by running the following protocol:

λi (k + 1) =
∑

j∈Ni

wijλj (k) + diλ0 (k) , (11)

where λi (k) represents the estimated incremental cost of
DG i, λ0 (k) which is equal to κ, denotes the state of the
leader agent. According to the leader-following consensus
algorithm[20], if

∑
j∈Ni

wij + di = 1, then all the estimated
incremental costs of DGs will synchronize to the state of
the leader, i.e., limk→∞ ‖λi (k)− κ‖ = 0. Furthermore, each
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DG locally updates its power generation while meeting the
following inequality constraints:

pi (k + 1) =





pmin
i , if λi(k+1)−bi

2ai
< pmin

i ;
λi(k+1)−bi

2ai
, if pmin

i ≤ λi(k+1)−bi

2ai
≤ pmax

i ;
pmax

i , if λi(k+1)−bi

2ai
> pmax

i .
(12)

Based on (11), (12), the optimal power generations of the
DGs can be obtained. That is, each DG increases (or decreases)
its incremental cost and generates more (or less) power when
its corresponding incremental cost is higher (or lower) than
κ. Then, the incremental cost of each DG will synchronize to
the electricity price after a sufficient long time K. In order to
calculate the power exchange between the microgrid and MG
while satisfying the power supply-demand balance constraint
(1), the updating rules of the power mismatch among all
DGs and the control strategy for energy router are defined
as follows:

yi (k + 1) =
∑

j∈Ni

w̄ijyj (k) + pi (k)− pi (k + 1) , (13)

pMG (k + 1) =
N

w0

∑

j∈N0

yj (k + 1) , (14)

where yi (k) is the estimated power mismatch and W̄ =
(w̄ij) ∈ RN×N is doubly stochastic. In this paper, we assume
that each node has its own unique identity (ID). Then, the
nodes number N can be obtained in a distributed fashion by
employing the message marking method[12].

Based on (13), (14) along with (11), (12), pMG(k) can
converge to

∑N
i=1 pi (k + 1)−DL, as k →∞, ∀i ∈ V .

Proof. Firstly, define the following initializations:

pi (0) =





pmin
i (0) , Di ≤ pmin

i (0) ,
pi (0) , pmin

i (0) ≤ Di ≤ pmax
i (0) ,

pmax
i (0) , pmax

i (0) ≤ Di,

λi (0) = 0,
yi (0) = Di − pi (0) ,

(15)
where Di is the load demand associated with DG i at
bus i. If there are only loads at bus i, let pmin

i =
pmax

i = 0. In this initializations, it can be obtained that∑N
i=1 yi (0) =

∑N
i=1 Di−

∑N
i=1 pi (0)= DL −

∑N
i=1 pi (0).

Secondly, due to W̄ is a doubly stochastic matrix, it is not
hard to verify that

N∑
i=1

yi (k + 1) +
N∑

i=1

pi (k + 1) =
N∑

i=1

yi (k) +
N∑

i=1

pi (k)

=
N∑

i=1

yi (0) +
N∑

i=1

pi (0) = DL

→
N∑

i=1

yi (k + 1) = DL −
N∑

i=1

pi (k + 1) .

(16)
Furthermore, based on the analysis of (11) and (12),

pi (k + 1) = pi (k) is always satisfied for k > K. Thus, (13)
forms the first-order average consensus protocol[21] for k > K.
Then for k → ∞, all of the estimated power mismatches of

DGs converge to a constant C, i.e., limk→∞yi (k + 1) = C.
Therefore, we get:

N∑
i=1

yi (k + 1) = NC = DL −
N∑

i=1

pi (k + 1)

⇒ yi (k + 1) =
(

DL −
N∑

i=1

pi (k + 1)
)

/N.

(17)

Lastly, along with (14) and (17), for k →∞, we get:

pMG (k + 1) = N
w0

∑
j∈N0

yj (k + 1)

= N
w0

(
w0

(
DL −

N∑
i=1

pi (k + 1)
)

/N

)

⇒ pMG (k + 1) +
N∑

i=1

pi (k + 1)−DL = 0.

(18)

Note that equations (11) to (14) constitute the distributed
approach, in which each component only requires local com-
munication with its neighbors. And theoretical analysis shows
that the proposed approach can effectively solve the energy
management problem of EI and all variables can converge to
the optimal solution, i.e.,

λi(k) → κ, pi(k) → p∗i , pMG(k) → p∗MG, as k →∞,∀i ∈ V.

Remark 1. It should be noted that if we use a centralized
method to solve the energy management problem, we can
directly set λi = κ via a central controller and a two-way
communication network between the central controller and all
DGs, and then the optimal generated and exchanged power
can be obtained by (10) and (9). However, this paper focuses
on solving the energy management problem in a distributed
fashion within the multi-agent framework, which does not
rely on a central controller and high-cost full-communication
network. Each DG only knows its neighbors’ information
through a local network and only the energy router can get
the electricity price information κ from the MG. Therefore,
the λi = κ of each DG is expected to synchronize to the
electricity price state of the energy router by iteration based
on the consensus protocol to make all λi → κ.

III. SIMULATION RESULTS

In this section, several case studies are provided to verify
the effectiveness of the proposed approach. The first case study
shows the performance of the proposed approach in an EI
test system. The second case demonstrates the capability of
the proposed approach under time-varying electricity price
condition. The third and fourth case studies show the plug-
and-play adaptability and the performance to accommodate the
time-varying demand of the proposed approach, respectively.
The EI test systems, as shown in Fig. 2, contains five DGs, one
energy router, and the communication topology dependent on
the physical structure. The characteristics of each DG are given
in Table I, and the system initialization is based on (15).
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Fig. 2. Configuration of the energy internet test system.

TABLE I
PARAMETERS OF THE TEST SYSTEM

DG Type a b c pmin
i pmax

i

G1 0.00533 11.669 213.1 50 200
G2 0.00889 10.333 200 37.5 150

WT3 0.00001 0.5000 10 0 80
PV4 0.00005 0.2000 15 0 100
G5 0.00741 10.833 240 45 180

A. Case Study 1: Performance of the Proposed Approach

In this case study, the total demand is 450 (p. u.) with three
loads of 150 (p. u.), and the electricity price is 12 (p. u.). The
update of the incremental costs, the power generated by DGs
and the exchange power by energy router, the total generation
and the exchange power are shown in Figs. 3-5, respectively.
It can be observed that all the incremental costs of DGs are
increased and finally converged to the common value 12 (p. u.).
Moreover, the sum of the total generation and exchange power
is equal to the total load demand, which means the supply-
demand balance constraint in EI is satisfied. Moreover, the
generation and exchange power are p1 = 50.0000 (p. u.),
p2 = 93.7271 (p. u.), p3 = 80.0000 (p. u.), p4 = 100.0000
(p. u.), p5 = 78.7173 (p. u.), and pMG = 47.5548 (p. u.),
which means that the final estimated generated power by
each DG is within its corresponding lower and upper bound.
Therefore, the optimality objective is achieved. It should be
noted that pMG > 0 implies the network should absorb
47.5548 (p. u.) power from the MG with lower cost. That is,
the total generation power of the DGs is less than the total load
demand when all the incremental costs achieve the leader state

Fig. 3. Incremental cost update in Case 1.

Fig. 4. Power balance in Case 1.

Fig. 5. Generation and exchange power update in Case 1.

(12 (p. u.)). Moreover, if the remaining loads are still supplied
by the DGs, then the incremental cost will increase, resulting
in higher cost. On the contrary, if the remaining loads are
supplied by the MG, then they can obtain the lacking power in
invariant unit electricity price with lower cost than the former.

B. Case Study 2: Time-varying Electricity Price Condition

This case focuses on studying the performance of proposed
approach under the time-varying electricity price condition. In
this case study, the electricity price has been changed twice:
1) at time step k = 201, the electricity price increases to
13 (p. u.); 2) at time step k = 401, the electricity price
reduces to 11.5 (p. u.). From the results shown in Fig. 6-
8, it can be seen that all the incremental costs, generation,
and exchange power automatically converge to new solutions,
meanwhile the sum of the total generation and exchange power
can meet the supply-demand balance constraint under every
electricity price change. Based on the results at k = 400, i.e.,
λ = 13 (p. u.), p1 = 124.8555 (p. u.), p1 = 124.8555 (p. u.),
p2 = 149.9974 (p. u.), p3 = 80.0000 (p. u.), p4 = 100.0000
(p. u.), p5 = 146.2189 (p. u.) and pMG = −151.0717 (p. u.),
it can be seen that the incremental cost of each DG is
increased and synchronized to the leader state, which results
in more power generation. Notice that pMG < 0, which
means the network will inject 151.0717 (p. u.) power into the
MG. Moveover, the unit cost of that part of power, i.e., the
incremental cost, is lower than the electricity price (13 (p. u.)),
which makes additional profit by selling that power to the
MG. In addition, based on the results at k = 600, i.e.,
λ = 11.5 (p. u.), p1 = 50.0000 (p. u.), p2 = 65.6393 (p. u.),
p3 = 80.0000 (p. u.), p4 = 100.0000 (p. u.), p5 = 45.0102
(p. u.) and pMG = 109.3506 (p. u.), it implies that DGs
have to reduce their power outputs to accommodate the new
lower electricity price. Therefore, the case study shows that
the proposed approach can effectively accommodate the time-
varying electricity price condition.
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Fig. 6. Incremental cost update in Case 2.

Fig. 7. Power balance in Case 2.

Fig. 8. Generation and exchange power update in Case 2.

C. Case Study 3: Plug-and-play Capability

The case study focuses on testing the plug and play adapt-
ability of the proposed approach. At time step k = 201,
DG1 is disconnected from the test system, and all of the
variables of DG1 are set to zero. From the results shown
in Fig. 9, the incremental costs of the remaining DGs which
remain unchanged due to the invariant electricity price, make
the corresponding power outputs constant. As a result, the
network has to further absorb 50 units power from the MG
to compensate the power perviously supplied by DG1 as is
shown in Fig. 11. Meanwhile, the sum of total generation and
exchange power can also converge to the total load demand.
At time step k = 201, DG1 is plugged in again. Then, let
the outputs of DG1 be set to p1(201) = 50.0000 (p. u.),
y1(201) = 0 (p. u.) and λ1(201) = 0 (p. u.), it can be seen

Fig. 9. Incremental cost update in Case 3.

Fig. 10. Power balance in Case 3.

Fig. 11. Generation and exchange power update in Case 3.

that the system converges to new optimal solutions to adapt
to the new topological change, in which the solutions are the
same as the ones before DG1’s disconnection. Therefore, this
case study shows that the proposed approach can effectively
adapt to the plug-and-play feature of EI.

D. Case Study 4: Time-varying Load Condition

This case study focuses on studying the performance of the
proposed approach to accommodate the time-varying demand.
At time step k = 201, the system load demand increased by
20 % makes the total load demand increase to 540 (p. u.). From
the results shown in Figs. 12-14., the system automatically
responds to the loading change and converges to a new
solution. Due to invariant electricity price, the incremental cost
of each DG which remains unchanged during the load change,
makes the corresponding power outputs constant. Then the
network has to absorb 90 units power from the MG, which

Fig. 12. Incremental cost update in Case 4.

Fig. 13. Power balance in Case 4.
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Fig. 14. Generation and exchange power update in Case 4.

makes the pMG(400) increase to 97.5548 (p. u.) to meet the
increased load demand. Therefore, simulation results show that
the proposed approach can effectively accommodate the time-
varying load condition.

IV. CONCLUSION

This paper proposes a novel distributed approach to solve
the energy management problem of EI, whose solution is
obtained by the agents network via exchanging and processing
local information according to consensus-based protocols. All
of the incremental cost of DGs can converge to the leader’s
state by using the leader-following consensus strategy, and
each DG can locally estimate the global power mismatch by
using the modified average consensus strategy. In addition, the
paper also proposes an effective control strategy for the energy
router to calculate the values of power exchange. Simulation
results obtained on a 7-bus EI test system demonstrate the
effectiveness of the proposed approach.
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