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 Dear Editor,
This letter proposes a fuzzy indirect iterative learning (FIIL) active

disturbance rejection control  (ADRC) scheme to  address  the  impact
of  uncertain  factors  of  plant-protection  unmanned  ground  vehicle
(UGV),  in  which  ADRC  is  a  data-driven  model-free  control  algo-
rithm  that  only  relies  on  the  input  and  output  data  of  the  system.
Based  on  the  established  nonlinear  time-varying  dynamic  model
including  dynamic  load  (medicine  box),  the  FIIL  technology  is
adopted  to  turn  the  bandwidth  and  control  channel  gain  online,  in
which the fuzzy logic system is used to update the gain parameters of
iterative  learning  in  real  time.  Simulation  and  experiment  show  the
FIIL-ADRC scheme has better control performance.

With  the  advancement  of  agricultural  intelligence,  the  artificial
spraying method that  threatens health is  being replaced by the plant
protection UGV. The speed and steering angle  control  of  plant  pro-
tection  UGV is  particularly  important  in  the  process  of  field  opera-
tion.  The  accuracy  of  steering  angle  determines  whether  the  UGV
needs  to  be  manipulated  artificially  at  the  boundary  corner  of  the
field [1]. In addition, with the spraying of the liquid, the total mass of
the  vehicle  will  be  reduced,  and  the  sloshing  of  the  liquid  in  the
medicine  box,  air  resistance,  nonlinear  friction  and  the  unmodeled
part of the system will cause multi-source and unknown interference
to UGV. Based on the conditions above, the model of the plant pro-
tection UGV is hard to establish. When the model cannot be precise
enough,  the  control  effect  cannot  be  further  improved,  data-driven
control  schemes  can  solve  this  problem [2], [3].  However,  the  gen-
eral data-driven control approaches are mostly based on error elimi-
nation  control  methods.  When  there  are  unknown  external  distur-
bances  and  internal  uncertainties,  they  cannot  predict  disturbances
well  to  provide  control  compensation,  and  the  control  effect  cannot
meet the ideal control requirements. Compared with the general data-
driven  control  approaches,  the  advantage  of  ADRC  is  great  when
dealing with unknown disturbance, which is more suitable than other
model-free data-driven control methods. Therefore, ADRC scheme, a
model-free data-driven control method, is used in this letter as basis
to control plant protection UGVs. The core idea of ADRC scheme is
to  treat  uncertain  factors  as  total  disturbance,  and  estimate  the  total
disturbance  online  by  the  extended  state  observer  (ESO),  and  com-
pensate  the  control  input [4].  At  present,  the  research  on  ADRC of
UGVs has made some achievements [5].
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The values of adjustable parameters can affect the performance of
ADRC, it is necessary to select the appropriate parameters based on
disturbances [6], [7]. The bandwidth  affects the observation abil-
ity of  the ESO, and the control  channel  gain  is  related to system
stability and response speed [8].  Taking the variable gain of control
channel  into  account,  the  adjustment  of  parameters  was  fulfilled  in

ω0 b0

[9] by fuzzy logic system. The fuzzy logic system is good at dealing
with  imprecise  system.  For  example,  Chang et  al. [10] achieved
approximation of unknown nonlinear functions based on fuzzy logic
systems, and the fuzzy logic fault tolerant control was studied in [11],
[12]. In addition, neural network technology is also suitable for solv-
ing  uncertain  system  control  involving  unknown  nonlinearity,  for
example, Sun et al. [13] and Liu et al. [14] solved the tracking con-
trol problem of robot systems based on neural networks. For ADRC
scheme,  this  letter  employs two indirect  iterative learning controller
to independently adjust  and , which can improve the adaptabil-
ity of ADRC scheme. Because iterative learning does not rely on the
accurate  mathematical  model  of  the  system,  and  it  could  make  the
system quickly track the expected input, it is widely used in the con-
ditions  with  repetitive  motion  characteristics.  For  example,  Preitl
et  al. [15], [16] used an iterative feedback tuning algorithm to opti-
mally tune parameters of controller.

Based on the above exploration, this letter proposes an active dis-
turbance rejection controller based on FIIL control. The novel contri-
butions could be summarized: Firstly, the dynamic model of the plant
protection UGV with medicine decrease is established. Secondly, the
fuzzy indirect iterative learning is used to optimize the ADRC online,
which  improve  the  performance  of  controller.  In  addition,  the  pro-
posed method can be applied to UAVs, unmanned ships, and collabo-
rative control of multiple unmanned systems.

Problem statement: In order to understand the dynamic character-
istics of unmanned vehicles and verify the effectiveness of the meth-
ods  proposed  in  this  letter,  it  is  necessary  to  establish  a  dynamic
model of unmanned vehicles. Furthermore, it is also necessary to first
conduct  numerical  simulations  based  on  the  dynamic  model  of
unmanned  vehicles  before  conducting  physical  simulations.  The
plant  protection  UGV  considered  in  this  letter  adopts  the  electric
drive  mode,  which  the  forward  speed  is  controlled  by  the  driving
force generated by the motor on the rear wheel. The medicine box is
in the carriage on the rear side of the UGV. The dynamics model of
the UGV is (1).
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where , F is the sum of the longitudi-
nal forces on the rear wheels, θ is the inclination of the ground, M is
the center of gravity of the vehicle, dimensionless, m is the quality of
plant protection UGV, g is the acceleration of gravity,  is the for-
ward  speed,  is  the  wind  speed,  is  the  lateral  speed, ϕ is  the
steering  angle, δ is  the  deflection  angle  of  the  front  wheel, a is  the
distance from the  center  of  mass  of  UGV to  the  front  axle, b is  the
distance from the center of mass of UGV to the rear axle, R is ideal
gas  constant, T is  ambient  air  temperature,  is  coefficient  of  air
resistance,  is face area,  is absolute air pressure.

u1 = F u2 = δDefining the control input , , we can obtain
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u2 = δDefining the UGV control input , one has
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where ω is  steering  angular  velocity, ,  are  comprehensive
lateral stiffness of front and rear wheels,  is inertia of UGV.

The  medicine  box  model  needs  to  be  considered  in  the  dynamic
model. Assuming that the medicine box is a rectangle, one has
 

m (t) = m0 −ρlwνt (4)
m0where l, w are the length and width of rectangular medicine box, 

is the quality of plant protection UGV when loaded with liquid, v is
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rate of uniform drop of liquid level in medicine tank, ρ is density of
liquid  medicine.  By  adding  the  medicine  box  model,  the  dynamics
model of the plant protection UGV is as follows:
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w1(t) w2(t)where  and  are  the  constructed  total  non-linearity  and
interference  of  the  UGV  system.  It  can  be  seen  from  (5)  that  the
dynamics  model  of  plant  protection  UGV  studied  in  this  letter  is  a
nonlinear time-varying model.

ω0 b0

Controller  design: The  diagram  of  the  proposed  FIIL-ADRC  is
shown in Fig. 1. The control input is generated by ADRC, in which
the  bandwidth  and  gain  of  ADRC  and  the  learning  rate  of  indirect
iterative  learning  control  (ILC)  are  turning  online.  Based  on  the
online  turning  pipeline,  ADRC is  the  basis  of  the  whole  controller.
The disturbance observation performance is  improved by the online
turning of  the  bandwidth  of  ESO and the  controller  gain  of  ADRC.
This  letter  takes  the  speed  control  of  plant  protection  unmanned
ground vehicle as an example to design the control system. The desig-
ned  ADRC  structure  is  composed  of  a  tracking  differentiator  (TD),
ESO, and a  nonlinear  state  error  feedback control  law.  The detailed
content can be found in [6]. In addition, [6] also includes the process
of  stability  analysis  for  ADRC.  For  data-driven  model-free  control,
multiple  methods  of  stability  analysis  are  discussed  in [3].  The
detailed  proof  process  for  the  stability  analysis  of  ADRC  is  pre-
sented  in [17],  and  the  stability  analysis  of  the  iterative  learning
ADRC can  be  found  in [18].  In  order  to  improve  the  robustness  of
the  system,  this  letter  employs  the  ILC to  update  and  in  real
time. And the mathematical expression of iterative learning is as fol-
lows:
 

ẋ(t) = f (t, x(t),u(t)), y(t) = g(t, x(t),u(t)) (6)
x(t) y(t) u(t)where  is  the  system  state,  is  the  system  output,  is  the

control variable of the system.
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Fig. 1. Control block diagram of ADRC based on fuzzy iterative learning.
 

ek(t) = ye(t)− yk(t)
uk(t)

ek(t)

Defining the output error as , the iterative learn-
ing  algorithm  uses  the  control  variable  of  this  round  and  the
system error  to generate the control variable of the next round.
The following form of PD type learning law is adopted:
 

uk+1(t) = uk(t)+Kpek(t)+Kd ėk(t) (7)
Kp,Kdwhere  are learning rate.

ue

For indirect iterative learning controller, both the controlled object
and the extended state observer can be written in the general form of
the state space equation, and there is an expected control 
 

ẋe(t) = f (t, xe(t))+Bue(t), ye(t) =Cxe(t) (8)
xe(t) ue(t)

yet

where  is the excepted system state,  is the expected control
variable and  is the expected output.

Theorem: If the system (8) meets the conditions
 

∥I−KdCB∥ ≤
_
ρ < 1, t ∈ [0,T ] (9)

k→∞ yk(t)→ ye(t)when , then .
Proof:

 

δuk+1(t) = δuk(t)−Kpek(t)−Kd ėk(t) (10)
δuk+1where  is  the  difference  between  the  expected  control  and  the

actual control.
 

ek(t) = ye(t)− yk(t) =C[xe(t)− xk(t)] =Cδxk(t) (11)
δxk+1where  is  the  difference  between  the  expected  state  and  the

actual state.
 

ėk(t) =C[ f (t, xe(t))− f (t, xk(t))+Bδuk(t)] (12)
ek(t)where  is system error. Substituting (11), (12) into (10), one has

 

δuk+1(t) = [I−KdCB]δuk(t)−KpCδxk(t)
−KdC f (t, xe(t))− f (t, xk(t)). (13)

P = I−KdCB Qk(δuk)(t) = −KpCδxk(t)−KdC f (t, xe(t))−
f (t, xk(t))

Then, , 
, (13) could be rewritten as
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The norm on both sides of the above equation are took as follows:
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where .  If ,  then 
, therefore,
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For  norms on
both sides: . and 

, .  By  norm  compatibility:
 and . Then, from

(12), . ■
Therefore,  the  designed  PD-type  learning  law  iterative  learning

control algorithm can ensure the system convergence.

e1,e2
∆Kp,∆Kd

e1,e2 [−6,6]
[−3,3] ∆Kp,∆Kd [−0.3,0.3]

[C∆Kp C∆Kd ]T

In this letter, fuzzy logic system can adjust the learning parameters
intelligently and improve the adaptability of the controller. Combin-
ing the FIIL controller with the ADRC scheme, it can online tune the
bandwidth and control channel gain parameters of the ADRC system.
As shown in Fig. 1, the inputs of the fuzzy control system are ,
which  were  come  from  TD,  and  the  outputs  are .  Seven
fuzzy linguistic subsets are defined in each domain:{NB NM NS ZO
PS PM PB}. The fuzzy domains of  are defined as  and

, the fuzzy domains of  are .  The triangu-
lar membership function is adopted as membership function, and the
gravity  center  method  is  used  for  defuzzification.  The  fuzzy  output

 is defined as follow:
 

[C∆Kp C∆Kd ]T =
(
Ae1 ×Be2

)T ◦R (18)
Ae1 Be2 e1 e2

×
◦

where  and  are  the  fuzzy  sets  of  and , R represents  the
fuzzy rule, T represents the row vector transformation,  represents a
fuzzy implication operator, and  is a compositional operator of fuzzy
relation.  According  to  the  control  rules,  the  final  PD-type  indirect
iterative learning scheme is obtained.
 {Kp = Kp0 +∆Kp = Kp0 +de f uzzy(C∆Kp )

Kd = Kd0 +∆Kd = Kd0 +de f uzzy(C∆Kd )
(19)

Kp0,Kd0
de f uzzy( )
where  are  the  initial  values  of  the  learning  parameters,

 represents the process of defuzzification.
Based on the adaptive parameters generated by FIILS, the adapta-

tion of the controller was defined as follow:
 

u = fADRC (ω0,b0) (20)
ω0 b0

fADRC

where  the  and  are  determined  by  FIILC,  the  control  input  is
adjusted adaptively based on the FIIL-ADRC .

w1(t), w2(t)

Numerical  simulation: To  verify  the  effectiveness  of  the  pro-
posed control method, a numerical simulation experiment is designed
based  on  the  model  (1).  In  order  to  simulate  nonlinear  friction  and
other  external  and internal  disturbances,  white  noise  is  added to  the
input control of UGV, namely  in (5). According to phys-
ical experiments, the white noise intensity is designed to be 0.5. The
simulation results are shown in Figs. 2 and 3. The step signal serves
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as  a  reference  signal  for  the  speed  and  angle  of  UGV,  and  the  two
controllers use the method proposed in this letter, with the rise time is
less than 0.6 s and the peak time is less than 1 s, which is stable near
the  expected  speed  within  1.5  s.  The  process  of  online  parameter
adjustment through fuzzy indirect iterative learning is shown Fig. 3.
Compared  to  the  PID  method  and  the  traditional  ADRC  method  in
[7], the method proposed in this letter has better control performance.

Experiment: In order to better demonstrate the practicality of the
proposed method, real physics experiment is conducted in this letter.
The  selected  UGV  prototype  is  Bingda  Nano  UGV.  The  chassis  of
this UGV is a front wheel steering and rear wheel drive structure and
the outdoor conditions of UGV is shown in Fig. 4. Similar to numeri-
cal simulation, physical experiments also enable the speed and angle
of UGV to track step signals, and the experimental results are shown
in Fig.  5,  the speed curve of  UGV reaches the expected speed after
about  1.2  s,  and  is  stable  at  around  0.9  m/s.  The  steering  response
curve of UGV reaches the expected angle in about 0.6 s. After reach-
ing the expected angle,  the  error  between the moments  of  deviation
was  controlled  within  5°.  This  letter  also  compares  with  traditional
ADRC in [7] and verifies that the FIILC-ADRC controller has better
control effect under outdoor composite disturbance.
  

(a) Body tilt between
front and rear

(b) Body tilt between
left and right

 
Fig. 4. UGV outdoor conditions.
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Fig. 5. Experiment results of UGV prototype in field.
 

Conclusions: Aiming  at  the  interference  of  longitudinal  velocity
and lateral  steering angle of  plant  protection UGV, this  letter  estab-
lishes the nonlinear time-varying dynamic model of plant protection
UGV  including  the  medicine  decrease  mode  and  proposes  a  fuzzy
indirect iterative learning scheme to adjust two important parameters
of  ADRC  online,  which  further  reduced  the  parameters  that  need
manual tuning in ADRC, and enhanced the practicability and usabil-
ity  of  ADRC.  Future  research  will  focus  on  verifying  the  proposed
scheme  on  a  real  plant  protection  UGV.  And  the  proposed  method
will also be extended to unmanned aerial vehicle systems, ultimately
achieving collaborative formation for multiple unmanned systems.
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Fig. 2. Simulation results of the proposed method, PID and method in [7].
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Fig. 3. Parameters online tuning of FIIL-ADRC.
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