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 Dear Editor,
This  letter  is  concerned  with  prescribed-time  Nash  equilibrium

(PTNE) seeking problem in a pursuit-evasion game (PEG) involving
agents  with  second-order  dynamics.  In  order  to  achieve  the  prior-
given and user-defined convergence time for the PEG, a PTNE seek-
ing  algorithm  has  been  developed  to  facilitate  collaboration  among
multiple  pursuers  for  capturing  the  evader  without  the  need  for  any
global  information.  Then,  it  is  theoretically  proved  that  the  pre-
scribed-time  convergence  of  the  designed  algorithm  for  achieving
Nash equilibrium of PEG. Eventually, the effectiveness of the PTNE
method was validated by numerical simulation results.

A PEG consists of two groups of agents: evaders and pursuers. The
pursuers  aim  to  capture  the  evaders  through  cooperative  efforts,
while the evaders strive to evade capture. PEG is a classic noncoop-
erative game. It has attracted plenty of attention due to its wide appli-
cation  scenarios,  such  as  smart  grids [1],  formation  control [2], [3],
and  spacecraft  rendezvous [4].  It  is  noteworthy  that  most  previous
research  on  seeking  the  Nash  equilibrium  of  the  game,  where  no
agent has an incentive to change its  actions,  has focused on asymp-
totic  and  exponential  convergence [5]–[7].  For  instance,  the  dis-
tributed Nash equilibrium seeking strategies were investigated for the
noncooperative  games  under  leader-following  consensus  protocol
[6].  Building  on  the  consensus  based  distributed  Nash  equilibrium
seeking strategies, node-based and edge-based control laws were pro-
posed [8].

In real-world scenarios, achieving Nash equilibrium in a finite time
is  valuable,  practical,  and desirable.  Therefore,  there  are  some solid
works  done  research  on  games  with  finite-time  Nash  equilibrium
seeking [9]–[12].  A  distributed  algorithm  has  been  designed  to
enable  players  to  achieve  Nash  equilibriums  in  non-cooperative
games within a finite time frame [13]. For a two-pursuer one-evader
game,  capture  can  occur  in  finite  time  only  by  defining  a  nonzero
capture radius and for a subset of initial game states [14]. Compared
to  asymptotic  convergence,  finite-time  convergence  can  accelerate
the Nash equilibrium seeking algorithm and has been shown to per-
form better against disturbances [15]. However, the finite-time Nash
equilibrium seeking influenced by initial status of systems. This criti-
cal  limitation  also  affects  the  performance  of  finite-time  distributed
optimization, as the initial status of evaders may be difficult to esti-
mate.

In response to the issue of convergence rate heavily relying on the
players’ initial conditions, the fixed-time [16]–[18] Nash equilibrium
seeking  algorithms  were  employed  for  noncooperative  games [19].
The  first-order  fixed-time  algorithm  was  designed  to  achieve  exact

convergence to the Nash equilibrium of the game in [19]. However,
the  fixed-time  bounds  can  be  defined  by  the  system designer  under
an  appropriate  tuning  of  the  parameters  of  the  algorithms.  Building
on these excellent cornerstone results, the control algorithm designed
in this letter is motivated by two main objectives. Firstly, notice that
the existing Nash equilibrium seeking algorithms are established over
asymptotic  convergence [6] or  fixed-time  convergence [19].  For
PEG, the evaders should be captured within a prescribed-time which
means  the  convergence  time  can  be  pre-designed.  Secondly,  it  is
interesting  yet  challenging  to  develop  a  Nash  equilibrium  seeking
algorithm for PEG with second-order dynamics.

Motivated by the above outstanding achievements, this letter aims
to  develop a  PTNE seeking algorithm for  PEG.  The main  contribu-
tions of this letter are formulated as follows.

1)  Second-order  differential  equations  are  used  to  model  a  wide
range of physical phenomena, such as mechanical, electrical systems,
and biological processes. Therefore, analyzing systems with second-
order dynamics is crucial for designing and optimizing processes and
devices.  Different  from [20],  this  letter  discusses  the  Nash  equilib-
rium  seeking  problem  of  PEG.  Notably,  our  analysis  emphasizes
incorporating  velocity  within  the  payoff  function,  setting  our  work
apart.

2)  Compared  to [21],  we  have  addressed  the  Nash  equilibrium
problem of PEG with second-order dynamics. Inspired by the asymp-
totic  convergence [5], [6], [8] and  fixed-time  convergence  methods
[17], [18],  we  design  a  PTNE  seeking  algorithm  that  enables  pur-
suers to capture the evader within a user-defined convergence time.

Gpe N =
{Np,Ne} Np Ne

Problem formulation: For a pursuit-evasion game  with 
 agents, where  is the pursuer set and  is the evader set

with  the  evader  following  a  specific  strategy.  The  motion  of  agents
can be described by second-order dynamic equations as follows:
 {

ẋ(t) = v(t)
v̇(t) = u(t) (1)

u(t) = {ui, i ∈ N} x(t) = {xi, i ∈ N} v(t) = {vi, i ∈ N}

i = {1,2, . . . ,n} ui xi vi

un+1 xn+1 vn+1

where , , and  are the
control input, position, and velocity. In this letter, we consider n pur-
suers  and  1  evader.  When considering  the  scenario  with m evaders,
we can decompose it into the problem of m sets of multiple pursuers
and 1 evader. For , we define , , and  as the con-
trol input, position, and velocity of the i-th pursuer. Additionally, we
denote , , and  as the control input, position, and veloc-
ity of the evader, respectively.

G = {O,E} O = {1,2, . . . ,n+1}
E (i, j)(i , j)

(i, j) ∈ E ( j, i) ∈ E i, j ∈ O

A = (ai j)(n+1)×(n+1) ai j = 1 (i, j) ∈ E
ai j = 0 LPE = (li j)(n+1)×(n+1)

lii =
∑n+1

j=1 ai j li j = −ai j i , j

In this letter, the communication graph of the agents can be defined
as ,  where  represents the nodes set and

 represents the edges set. An edge  means that vehicles i
and j can  obtain  information  from  each  other.  A  graph  is  called  an
undirected  graph  if  implies  for  any .  The
graph  is  connected  when  there  is  a  path  between  any  two  nodes.

 is the adjacency matrix, where  if ,
and  otherwise.  is  the Laplacian matrix,
where  and  if .

⊗ sign(·)
x = (x1, x2, . . . , xn)T sign(x) = (sign(x1),sign(x2),

. . . ,sign(xn))T 1n = (1,1, . . . ,1)T ∈ Rn λmax(Γ) λmin(Γ)
Cn

Ω ∈ Rn diag(x1, x2, . . . , xn)
x1, x2, . . . , xn

Notations: Denote  as Kronecker product.  is the sign fun-
ction.  For  a  vector , 

.  Denote  .  Let ( )
represent  the largest(smallest)  eigenvalue of  the matrix Γ.  repre-
sents  a  class  of  functions  that  are n-th  continuously  differentiable.
Here,  is the closed set.  represents a diago-
nal matrix with diagonal elements .

This  letter  focuses  on constructing an algorithm for  achieving the
PTNE of  PEG with  agents  exhibiting  second-order  dynamical  char-
acteristics.  When reaching the PTNE of PEG, multiple pursuers can
cooperatively capture the evader within a prescribed-time. Moreover,
the convergence time can be preassigned offline for any initial state.

i ∈ {1,2, . . . ,n}

Ji(xi,x−i,vi,v−i)
ei = (xi,vi)T e−i = {x−i,v−i}

x−i = (x1, . . . ,
xi−1, xi+1, . . . , xn+1) v−i = (v1, . . . ,vi−1,vi+1, . . . ,vn+1) (ei,e−i) =
(xi,x−i,vi,v−i)

i ∈ Np Ji(ei,e−i) Ji :Ωi→ Rni

For the PEG, where , the pursuers select their strate-
gies  based  on  interactions  with  other  agents  to  optimize  the  payoff
function  in  consideration  of  the  evader’s  strategy.
The  strategy  of i-th  pursuer  is .  are  the
strategies  of  all  the  agents  except i-th  agent,  where 

 and . 
 is the action profile of all the agents. The payoff func-

tion of pursuer  ,  is shown as follows: 
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Ji(ei,e−i) =
1
2

n+1∑
j=1

ai j
∥∥∥ei − e j

∥∥∥2 = 1
2

n+1∑
j=1

ai j

∥∥∥∥(xivi

)
−
(x j
v j

)∥∥∥∥2. (2)

Remark  1:  For  the  PEG,  the  second-order  system is  closer  to  the
real physical world, which is relevant in applications such as missile
interception.  Hence,  the  payoff  function  (2)  considers  the  agents’
positions  and  velocities,  making  the  PTNE  seeking  problem  more
challenging.

Gpe(Np, Ji,Ωi)
(e∗i ,e

∗
−i) = (x∗i ,x

∗
−i,v

∗
i ,v
∗
−i)

Gpe

Definition  1  (Nash  equilibrium):  For  a  game ,  an
action profile  is a Nash equilibrium of the
game  if
 

Ji(e∗i ,e
∗
−i) ≤ Ji(ei,e∗−i), ∀ei ∈Ωi, ∀i ∈ Np. (3)

i ∈ Np,ei ∈Ωi
Ji(ei,e−i) = Ji(xi,x−i,vi,v−i) C2

ei e−i

Lemma  1 [22]:  For  each ,  the  payoff  function
 is  in  its  definition  domain,  strictly

convex and radially unbounded in  for every .

(e∗i ,e
∗
−i)

For the Nash equilibrium, no agent has any motivation to unilater-
ally deviate from their actions. After inspection, the payoff functions
meet the conditions in Lemma 1, which indicates that Nash equilib-
rium  exists uniquely.

Furthermore, the Nash equilibrium satisfies
 

∇iJi(e∗i ,e
∗
−i) = 0ni (4)

∇iJi(ei,e−i) =
∂Ji(ei,e−i)
∂ei

∈ Rniwhere .  They  represent  the  gradient  of
agent i’s different payoff in terms of its own action.

GAssumption 1: The undirected communication graph  including n
pursuers and one evader is connected.

LPE =[Lpe L1

L2 ∑n+1
j=1 a(n+1) j

]
Lpe ∈ Rn×n L1 ∈ Rn×1 L2 ∈ R1×n

Lp Lp ∈ Rn×n

The  Laplacian  matrix  of n pursuers  and  one  evader  is 

,  where ,  and .

The Laplacian matrix of n pursuers is , where .
 

Lpe =Lp +diag(a1(n+1),a2(n+1), . . . ,an(n+1))
∆
=Lp +M. (5)

|u̇n+1| ≤ϖ
Assumption 2: The derivative of evader’s control input is bounded.

That is, there is a positive constant ϖ satisfying .
A high-gain function is presented as follows:

 

θι(t) =


η̇ι(t)
ηι(t)

=
c
ιT − t

, 0 ≤ t < ιT

c
ιT
, t ≥ ιT

(6)

η(t) = ( ιTιT−t )c ι = 1,2 c > 1where , , and .
Remark 2: Inspired by [20] and [21], the high-gain function (6) is

applied in this  work to achieve PTNE of PEG. It  is  worth mention-
ing  that  achieving  PTNE  can  hold  in  any  initial  value  situation,
which is the effect of a high gain function. In the numerical example,
we will also demonstrate the results with different initial values.

Lemma 2 [21]: Consider a system described by
 

ẋ(t) = f (t, x(t)). (7)
There exists a Lyapunov function V such that

 

V̇ ≤ −(b+dθι(t))V (8)
b ≥ 0 d > 0 θι(t)

ιT

where  and ,  is declared in (6), then the origin of sys-
tem  (7)  is  globally  prescribed-time  stable  with  the  prescribed-time

. It obtains
 {

V ≤ ηι(t)−dexp(−bt)V(0), t < ιT
V = 0, t ≥ ιT. (9)

Lpe

δ = (δ1, δ2, . . . , δn)T (δi ∈ R,
i = 1,2, . . . ,n) Lpeδ = 1n δmin =min(δ1, δ2, . . . , δn)
∆ = diag(1/δ1,1/δ2, . . . ,1/δn) Γ = ∆L

pe+(Lpe)T∆
2

Lemma 3 [23]: Under Assumption 1,  in (5) is positive definite
and symmetric. And we can find a vector 

 satisfies .  Let .  Let
, ,  then  Γ  and  ∆  are

positive definite.
For  achieving  a  PTNE  of  PEG  with  second-order  dynamics,  the

pursuers have to capture the evader within prescribed-time with dis-
tributed cooperative characteristics. To do this, a control algorithm is
designed  to  optimize  pursuers’ strategies,  enabling  them  to  operate
with distributed and cooperative characteristics.

Main results: In  this  section,  for  the evader  with a  specific  strat-
egy  that  meets  Assumption  2,  a  control  algorithm  ensuring  pre-

scribed-time convergence of PEG is given as follows:
 

ui = −θ2k
∂Ji(ei,e−i)
∂ei

+ yi, i ∈ {1, . . . ,n}

ẏi = −(b1 +d1θ1)ζi −µsign(ζi)
(10)

k =
(
k1θ2,k2

)
k1 > 0 k2 > 0 b1 ≥ 0 d1 > 0 µ > 0

ζi =
∑

s∈Np ais(yi − ys)+ai(n+1)(yi − yn+1) yi
un+1 yn+1 = un+1

where , , , ,  and  that are
designed  later, ,  is  agent
i’s estimate of evader’s input control  and .

Next, we state the following main result.

Tp = 2T x(0) v(0)

Tp β > 0 γ > 0 ρ > 0 b2 ≥ 0
d2 > 0

Theorem 1: Suppose Assumptions 1 and 2 hold.  For a given time
 and  any  initial  and ,  the  proposed  PTNE  seeking

algorithm in (10) guarantees that all pursuers converge to the PTNE
in ,  provided that  there are parameters , , , 
and , which meet with the following inequalities:
 

µ ≥ϖ (11a)
 

β2 −γ(k1γ+ k2β)λmin(Γ)δmin < 0 (11b)
 

κ1 < 0 (11c)
 

κ2 < 0 (11d)
 

κ3 =
cκ1
2T
+

b2(k1γ+ k2β)
2

λmin(Γ)δmin +
b2βρ

2
< 0 (11e)

 

κ4 =
cκ2
2T
+

b2γ

2
+

b2β

2ρ
< 0 (11f)

κ1 = (−k1β+
k1γ+k2β

c +
d2(k1γ+k2β)

2 )λmin(Γ)δmin +
βρ
2c +

βρd2
2

κ2 = −k2γλmin(Γ)δmin +β+
d2γ
2 +

β
2cρ +

d2β
2ρ

where  and
.

Proof: See Section II in the Supplementary Material. ■

G
λmin(Γ) δmin

b2 d2
k1 k2

Remark 3: To select suitable control parameters for (10) based on
Theorem 1, the process of parameter tuning can be broken down into
three steps. First,  provide the communication topology graph  and
Laplacian  matrix.  Next,  compute  the  parameters  and .
Finally, by initializing μ, c, α, β, γ,  and , we can obtain control
parameters  and  through (11b) to (11f).

Numerical example: The PEG constituted by a platoon of agents
with  1  evader  and  3  pursuers  is  considered.  The  communications
architecture is shown in Fig. 1.

 
1

4

2 3
 
Fig. 1. The communication architecture PEG.
 

x(0) = (1,2,3,4)T v(0) = (1,2,3,4)T

y(0) = (−1,2,3,0)T

x1 = x2 = x3 = x4 v1 = v2 = v3 = v4
t = 0 s t = 4 s

Tp = 2T = 2 s
u4(t) = 2sin(t) β = 1 γ = 1 ρ = 2 b2 = 0 d2 = 0.1

b1 = 0 d1 = 1 µ = 2 c = 3 k1 = 5.3
k2 = 2.5

The initial states, velocities, and estimates for the agents in the first
group  are  set  as  follows: , ,  and

.  Given  the  preceding  discussion,  the  Nash  equi-
librium  is  achieved  when  and .
The simulation runs from  to , with a prescribed-time set
to .  Moreover,  the  control  input  for  the  evader  is
defined as . Let , , , , and .
The parameters in (10) are set as , , , , ,
and .

u4
x′(0) = (5,10,15,20)T

v′(0) = (5,10,15,20)T y′(0) = (1,2,3,0)T

With the provided parameters, all the agents’ position trajectories,
velocity  trajectories  and estimate  trajectories  are  depicted in Figs.  2
and 3, respectively. Fig. 2 shows that pursuers are able to pursue the
evader  within  the  prescribed-time. Fig.  3 indicates  that  all  pursuers
maintain  consistency  with  the  evader’s  velocity. Fig.  4 shows  that
within 1 s,  each agent’s estimate of  reaches the true value. As to
the  second  group  of  initial  states ,  velocities

,  and  estimates ,  the  results
are  presented  in Figs.  5−7.  It  can  be  seen  that  the  PTNE  seeking
algorithm  converges  within  the  prescribed-time  for  this  group  as
well. Hence, the proposed method has been numerically verified.

Conclusion: In this letter, the PTNE of PEG which contains agents
with  second-order  dynamics  has  been  investigated.  A  distributed
algorithm  has  been  presented  for  pursuers  to  capture  the  evader
within the prescribed-time. By adaptively adjusting the parameters of
the control scheme, the PTNE was obtained. Then, the effectiveness

XUE et al.: PRESCRIBED-TIME NASH EQUILIBRIUM SEEKING FOR PURSUIT-EVASION GAME 1519 



of  the  designed method was  verified  by the  numerical  examples.  In
the  future,  the  PTNE  of  PEG  under  joint  switching  communication
architecture will be considered.
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