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 Dear Editor,

In this letter, a novel hierarchical fusion framework is proposed to
address the imperfect data property in complex medical image analy-
sis (MIA) scenes. In particular, by combining the strengths of convo-
lutional neural networks (CNNs) and transformers, the enhanced fea-
ture extraction, spatial modeling, and sequential context learning are
realized to provide comprehensive insights on the complex data pat-
terns.  Integration  of  information  in  different  level  is  enabled  via  a
multi-attention  fusion  mechanism,  and  the  tensor  decomposition
methods are adopted so that compact and distinctive representation of
the underlying and high-dimensional  medical  image features  can be
accomplished [1]. It is shown from the evaluation results that the pro-
posed framework is competitive and superior as compared with some
other  advanced  algorithms,  which  effectively  handles  the  imperfect
property  of  inter-class  similarity  and  intra-class  differences  in  dis-
eases,  and  meanwhile,  the  model  complexity  is  reduced  within  an
acceptable level, which benefits the deployment in clinic practice.

MIA has  assumed a  pivotal  role  in  numerous critical  clinical  sce-
narios,  where  sophisticated  image  analysis  techniques  have  proven
instrumental  in  augmenting  medical  decision-making,  facilitating
individualized therapeutic interventions, and enhancing patient prog-
nostication [2]−[4].  In  this  regard,  it  is  of  vital  significance  to
develop  the  sophisticated  and  robust  intelligent  computational
methodologies,  which  are  expected  to  facilitate  quantitative  assess-
ments of anatomical structures and pathological changes via extract-
ing  informative  features  and  recognizing  intricate  patterns  from  the
medical images.

The  prominent  challenges  in  the  analysis  of  clinical  data  stems
from  its  intricate  nature  and  diverse  characteristics.  To  be  specific,
during  the  image  acquisition,  the  inherent  variability  in  the  equip-
ment,  environment  and  patient  conditions  makes  it  hard  to  achieve
consistent  and  robust  results [5], [6],  where  the  presence  of  noise,
artifacts,  and anatomical  variations  even further  raises  the  difficulty
for  accurate  analysis.  Then,  the  data-driven  methods  are  always
restricted  by  the  scarcity  of  annotated  data,  especially  for  the  rare
conditions in a specialized domain, and it is also a challenging task to
develop a generalized model that can adapt to variations among dif-
ferent  data.  Moreover,  the  computational  cost  is  another  important
concern  for  practical  deployment,  where  too  much  attention  on  the
computation  efficiency  may  potentially  sacrifice  the  accuracy.  To
handle above challenging issues, there is an urgent need to realize a
seamless  integration  of  domain  knowledge,  feature  fusion  strategy,
and advanced model compression techniques [7].

In this letter, a novel global-local attention fusion framework with
tensor  decomposition  (GLA-TD)  is  developed,  which  consists  of  a
dual-attention  mechanism-based  fusion  branch,  a  CNN-based  local
and a transformer-based global feature extraction branch. By captur-
ing anatomical structures and subtle pathological changes at multiple
scales, the feature representation can be effectively enhanced, which
facilitates improving the generalization and robustness of the model.
Moreover, the tensor decomposition technique is incorporated in the
GLA-TD framework, which benefits realizing compact model struc-
ture and, by doing so, deployment in complex healthcare scenes with
limited computation resources is enabled.

This  study  makes  significant  contributions  in  the  following  three
key  aspects:  1)  An  MIA-oriented  framework  GLA-TD is  proposed,
which  leverages  attention  mechanisms  and  tensor  decomposition  to
simultaneously capture both local and global features. 2) Advantages
of  CNN  and  transformer  are  sufficiently  utilized  to  extract  the
semantic and detailed information. 3) Structural redundancy is effec-
tively  reduced via  the  adopted tensor  decomposition method,  which
enhances the clinical practicality of the proposed framework.

Preliminaries: In the field of MIA, the combination of CNN and
transformer architectures has emerged as a compelling paradigm [8],
which integrates  the advantages of  CNN in capturing spatial  hierar-
chies  in  images  and  the  merits  of  transformer  in  modeling  intricate
contextual  information  in  sequences.  Consequently,  it  has  paved  a
novel  feasible  path  to  simultaneously  exploit  the  complex  spatial
characteristics and intricate global contextual dependencies in medi-
cal imaging data.

XGiven  a  sequence ,  the  self-attention  mechanism  is  adopted  in
transformer to capture the global contextual relationships as
 

Attention(X) = S o f tmax
XWQ(XWK)T

√
dk

XWV (1)

XWQ XWK XWV
√

dkwhere , ,  and  are  linear  transformations,  and 
ensures  the  stability  of  gradient.  In  CNN,  convolution  and  pooling
operators are adopted to extract local features as
 

C(I) = I ∗K (2)
where I is the input image tensor and K refers to the convolution ker-
nel.  To  further  enhance  the  computational  efficiency  and  inter-
pretability,  the  tensor  decomposition  method  is  employed  to  factor-
ize above convolution kernel as
 

K =
r∑

i=1

Ui ⊗Vi ⊗Wi (3)

Ui Ui Wiwhere ,  and  are the factorized tensors, and r denotes the rank
of decomposition. In addition, the weight matrix W in the fully con-
nected layers decomposed as
 

W =C×1 A×2 B (4)
A Bwhere C represents the core tensor,  and  are projection matrices.

In essence, the tensor decomposition applies higher-order representa-
tions  to  capture  intricate  relationships  within  data [9],  which  is
adopted in the proposed GLA-TD to encapsulate the underlying data
structure  so  as  to  enable  efficient  learning and generalization of  the
network.

Method: For  a  clear  view,  the  overall  structure  of  GLA-TD  is
illustrated  in Fig.  1,  and  it  is  shown that  three  distinct  branches  are
contained, namely the local, global, and fusion branch, respectively.

Firstly, the CNN-based local branch consists of 4 stages, including
in total 16 large kernel attention (LKA) blocks with the patch embed
operation. In LKA block, a macroscopic kernel is dissected into three
components of depth-wise, dilation, and channel convolution, which
encompasses  local  structural  information  and  long-range  dependen-
cies,  and  moreover,  the  adaptability  in  channel  dimension  is  also
taken into consideration [10]. As a result, the merits of both convolu-
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tion and self-attention are effectively integrated in the local branch.
Secondly,  the  transformer-based  global  branch  is  composed  of

series of the CSwin blocks [11], which is constructed by stacking two
kinds of modules. One module involves the application of layer-norm
and  cross-shaped  window  self-attention,  which  are  followed  by  a
shortcut  connection;  the  other  one  employs  the  layer-normalization
(LN) and multi-layer perceptron (MLP) with residual connection. By
embedding  the  CSwin  blocks  into  global  branch,  feature  extraction
ability  can be greatly improved without  much sacrifice on the com-
putations.

Li Gi
Fi−1

Last  but  not  the  least,  as  is  shown  in Fig.  2,  the  attention-based
fusion  branch  applies  a  hierarchical  structure  to  dynamically  inte-
grate  features  originated  from  different  stages,  including  distinct
local  attributes ,  comprehensive  global  features ,  and  semantic
information derived from the previous layer fusion .
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Fig. 2. Structure of the designed attention-based fusion branch.
 

In  the  fusion  branch,  advantages  of  diverse  self-attention  mecha-
nism  in  capturing  spatial  and  temporal  information  are  fully
exploited. By utilizing the efficient channel attention (ECA) mecha-
nism [12],  feature  representation  can  be  enhanced  from  different
semantic aspects; subsequently, the local features are integrated into
an  expectation-maximization  attention  (EMA)  mechanism [13] for
further  refinement,  where  influences  of  irrelevant  regions  will  be
alleviated. In the final feature fusion stage, a residual inverted MLP
(RIMLP) is employed to capture subtle context-aware details related
to  the  inter-class  similarity  and  intra-class  differences,  which  bene-
fits extracting the highly discriminative features. Principles of above

mentioned mechanisms are presented as follows:
 

ECA(x) = x⊗{σ[C1Dk(GAP(x))]} , where k =
log3 C

2
(5)

 

EMA(x) = Relu {x⊕C2D1(Relu(z⊗ k))} (6)
 

RIMLP(x) =C2D1(C2D1(C2D3(LN(x))+LN(x))) (7)
CmDn n×n

GAP
LN

where  represents the  convolution with the dimension of
m,  refers to the global average pooling. σ is the sigmoid func-
tion, and  is the layer-normalization operation. z and k indicate the
outputs of expectation and maximization, respectively.

In  addition,  the  block  term (BT)  method [14] is  employed  within
the  GLA-TD  framework  to  optimize  both  the  efficiency  and  inter-
pretability  of  convolutional  operations.  This  method  entails  decom-
posing  convolution  filters  into  low-rank  block  term  components.
Consequently,  it  significantly  diminishes  computational  complexity
while  faithfully  preserving  crucial  spatial  relationships.  Particularly,
the BT convolutional layers carry out the Tucker decomposition [15]
to decompose the convolution kernel into various modes as
 

Y j1,..., jM =
∑I1,...,IN

i1,...,iN=1

∑C

c

∑R1,...,RN

r1,...,rN=1
gr1, . . . ,rNa(1)

i1,c,r1

. . .a(N)
iN ,c,rN

a(N+1)
j1,c,rN+1

. . .a(N+M)
jM ,c,rN+M

xi1,i2 , . . . ,iN (8)

Y
R1,R2, . . . ,

RN

where x and  are the input and output tensors, respectively, C rep-
resents  the  CP-rank  (short  for  Candecomp/Parafac),  and 

 are the Tucker-ranks, which can take different values.
Results and discussions: In this section, the proposed GLA-TD is

comprehensively evaluated on some challenging MIA tasks, and the
results are compared with other state-of-the-art deep learning models
to  further  validate  the  competitiveness  of  our  method,  which  are
named  ConvNext [16],  T2T-ViT [17],  VGG-19 [18],  Conformer
[19], HiFuse [20], and ShuffleNet V2 [21]. For fairness, experiments
are  carried  out  under  the  same  conditions,  where  the  MIA  datasets
Kvasir  (https://datasets.simula.no/kvasir/)  and  PALM  (https://palm.
grand-challenge.org/) are adopted for model evaluation.

Accuracy Precision

Recall
F1

In MIA tasks, multiple metrics are employed to assess the compre-
hensive  performance  of  the  proposed  GLA-TD model.  Specifically,

 gauges  the  overall  accuracy  of  predictions, 
quantifies the fraction of true positive predictions among all positive
instances,  evaluates  the  ratio  of  true  positive  samples  among
all actual positives, and the  offers a balanced measure by calculat-
ing the harmonic mean of precision and recall to appraise the classifi-
cation performance.

Accuracy Precision Recall F1

Benchmark  evaluation  results  on  Kvasir  dataset  are  reported  in
Table 1, and in this task, the models are required to analyze data of
4000  endoscopic  gastrointestinal  diseases  in  eight  classes.  As  is
shown,  the  proposed  GLA-TD  outperforms  other  advanced  models
on  all  metrics,  whose , ,  and  reach
90.63%,  89.58%,  91.24% and  90.76%,  respectively.  The  superior
performance  demonstrated  in  the  aforementioned  outcomes  can  be
attributed  primarily  to  the  innovative  global-local  feature  extraction
architecture  and  the  fusion  method  employed  within  GLA-TD,  ren-
dering it a formidable contender in the field of MIA.

Accuracy Precision
Recall F1

In Table 2, the benchmark evaluation results on PALM dataset are
displayed,  where  the  models  are  expected  to  distinguish  the  ocular
fundus images with  high myopia  character  from those normal  ones,
and  in  total  800  images  are  included.  According  to  the  results,  the
proposed  GLA-TD  model  presents  significant  advantages  in  recog-
nizing  the  myopia  samples,  which  yields  the , ,

,  and  of  98.75%,  97.26%,  99.38%,  and  98.31%,  respec-
tively.  It  is  noticeable  that  a  remarkable  precision  of  97.26% is
achieved by our GLA-TD, indicating a minimal incidence of misdi-
agnosis, thereby effectively mitigating the risk of unwarranted treat-
ments  for  individuals  with mild myopia and enhancing patient  care.
Moreover, the recall  of 99.38% shows that the proposed model also
yields  low false  negative  rate,  which  implies  that  our  GLA-TD can
almost  identify  all  cases  of  high  myopia  so  as  to  provide  valuable
diagnostic reference to the clinicians.

In addition, an ablation study is carried out to investigate the influ-
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Fig. 1. Illustration  of  the  proposed  GLA-TD  framework,  where  the  orange
rectangle represents the patch embed operation.
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ences  of  the  adopted  tensor  decomposition  method,  and  the  results
are  presented  in Table  3,  where K and P stand  for  the  Kvasir  and
PALM dataset, respectively. Based on Table 3, it is found that when
tensor  decomposition  method  is  introduced,  there  is  a  significant
reduction of the parameter number, which declines from 467.27 M to
135.04  M,  and  the  floating-point  operations  per  second  (FLOPs)
even  declines  by  nearly  70.58%.  Simultaneously,  a  marginal  sacri-
fice  in  accuracy,  averaging  just  0.22% across  both  datasets  is
observed,  which underscores  the  effectiveness  of  the  employed ten-
sor  decomposition  method  in  harmonizing  model  complexity  and
accuracy.  Consequently,  deploying  the  proposed  GLA-TD  in
resource-constrained environments becomes feasible.
  

Table 3. The Performance of Tensor Decomposition Methods
Accuracy K Accuracy P Params FLOPs

GLA 90.63 98.80 467.27 M 73.89 G
GLA-TD 90.25 98.75 135.04 M 21.74 G

 

Conclusion: In  this  letter,  a  local-global  attention  fusion  frame-
work with TD has been proposed for MIA tasks. Based on the CNN-
based local and transformer-based global branches, the model is able
to  learn  from  rich  detailed  and  semantic  information.  An  efficient
local-global  fusion  branch  with  attention  mechanism  has  been
designed  to  enhance  the  focus  on  key  regions  and  channels.  More-
over,  the  tensor  decomposition  technique  has  been  incorporated  in
the convolution and linear operations to balance the model accuracy
and computational cost.  Evaluation results have shown that the pro-
posed  GLA-TD  can  effectively  deal  with  the  complex  MIA  tasks
with considerable performance, which can provide valuable diagnos-
tic references in clinic. In future work, we aim to 1) Apply the GLA-
TD  to  industrial  defect  detection;  2)  Investigate  multi-modal  image
analysis;  3)  Further  optimize  the  model  performance  with  neural
architecture search.
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