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   Dear Editor,

This  letter  investigates  a  novel  stealthy  false  data  injection  (FDI)
attack scheme based on side information to deteriorate the multi-sen-
sor estimation performance of cyber-physical systems (CPSs). Com-
pared with most existing works depending on the full system knowl-
edge, this attack scheme is only related to attackers’ sensor and phys-
ical  process  model.  The  design  principle  of  the  attack  signal  is
derived  to  diverge  the  system  estimation  performance.  Next,  it  is
proven that  the proposed attack scheme can successfully  bypass  the
residual-based detector. Finally, all theoretical results are verified by
numerical simulation.

CPSs integrate computation, communication and control, breaking
through  the  geographical  restrictions  in  traditional  control  modes,
which have been widely applied to many fields such as power grid,
smart factory, and multi-agent systems [1], [2]. However, communi-
cation networks incidentally increase the operation risk of CPSs, e.g.,
external  cyber  intrusions [3], [4].  Thus,  the  security  of  CPSs  is  of
great importance and has attracted more attention in recent years.

χ2

As  one  of  typical  cyber  attacks,  stealthy  FDI  attacks  hold  the
greater  damage  on  the  system  performance  meanwhile  evading  the
anomaly  detector [5].  In [6],  a  residual-based  linear  attack  scheme
was proposed to maximally degrade the performance of remote esti-
mation  without  causing  the  alarm  of  detector.  Then,  a  historical
and  current  residuals-based  attack  scheme  was  developed  in [7] to
further  improve  the  attack  impact.  And,  in [8],  an  extra  sensor  was
adopted by the attacker to obtain side information that was utilized to
design  the  attack  signal.  Both  side  information  and  historical  resid-
ual were employed in [9] to construct the attack scheme. In [10], the
security  protection  of  multi-sensor  remote  estimation  was  investi-
gated, and it was analyzed and proven that such a system can effec-
tively expose the above single-sensor attack schemes. However, few
works  investigate  the  stealthy  FDI  attacks  against  the  multi-sensor
remote estimation except [11], [12]. The stealthy FDI attack schemes
proposed in [11], [12] required the full system knowledge as well as
depending on the measurement information of all sensors. Compared
with  such  a  case,  it  is  relatively  easy  and  freedom  for  malicious
attackers to measure the output of the target system by their own sen-
sor [8], [9].  Furthermore,  the remote center  is  carefully protected in
general,  and  it  is  very  difficult  to  illegally  disclose  its  knowledge
[13].

This letter considers a more reasonable and practical scenario that
malicious  attackers  only  know  the  physical  system  model  and  the
side information measured by the extra sensor. The specific contribu-
tions  of  this  letter  are  detailed  as  follows.  1)  For  the  multi-sensor
remote estimation, a novel stealthy FDI attack scheme, which is only

related to the side information, is proposed to maximally damage the
system  estimation  performance  meanwhile  evading  the  residual-
based detector. 2) The design principle of attack signal is derived to
cause the estimation error to diverge. And, it is proved that the statis-
tical distribution of the compromised residual is the same as the nor-
mal  case,  which  illustrates  the  stealthiness  of  the  proposed  attack
scheme.

Rn Φ > 0
Φ ≥ 0
N(q,Q)

E[·] Ip

Notations:  denotes n-dimensional  Euclidean  space. 
( )  denotes  Φ  is  a  positive  definite  (semi-definite)  matrix.

 denotes  the  Gaussian  distribution  with  mean q and  covari-
ance Q.  denotes  the  mathematical  expectation.  denotes p-
dimensional  identity  matrix,  and  0  denotes  the  zero  matrix  with
appropriate dimensions.

Multi-sensor remote estimation: Consider a linear time-invariant
discrete-time system with N sensors
 

xk+1 = Axk +wk (1)
 

yi,k =Cixk + vi,k (2)
xk ∈ Rn yi,k ∈ Rmi

i = 1,2, . . . ,N wk ∈ Rn vi,k ∈ Rmi

wk ∼ N(0,Φ) Φ ≥ 0
vi,k ∼ N(0,Ψi) Ψi > 0

(A, Φ
1
2 ) (A, Ci)

where  is  the system state,  and  is  the measurement
of  sensor i ( ).  The  noises  and  are
independent  of  each  other,  which  satisfy  with 
and  with .  It  is  assumed  that  system  matrices

 is stabilizable and  is detectable.
Yk ≜

[
yT

1,k, . . . ,y
T
N,k
]TThe entire measurement  is described as

 

Yk =Cxk +Vk (3)

C ≜
[
CT

1 ,C
T
2 , . . . ,C

T
N
]T Vk ≜

[
vT

1,k,v
T
2,k, . . . ,v

T
N,k
]T

Ψ ≜ blkdiag{Ψ1,Ψ2, . . . ,ΨN }
where ,  and  with  the
covariance .

The measurement residual of sensor i is defined as
 

zi,k = yi,k −Ci x̂k|k−1 (4)
x̂k|k−1 xk

Zk =
[
zT

1,k, · · · ,z
T
N,k
]T

where  is  the  priori  estimate  of  the  state ,  which  is  broad-
casted from the remote center to each sensor [10]−[12]. With (3), the
measurement  residuals  of  all  sensors  can  be
expressed as
 

Zk = Yk −Cx̂k|k−1 (5)
based on which, the following centralized Kalman filter is employed
in the remote center:
 

x̂k+1|k = Ax̂k (6a)
 

x̂k = x̂k|k−1 +KZk (6b)
x̂k xkwhere  is the posteriori estimate of . The filter gain K is

 

K ≜ PCT (CPCT +Ψ)−1 (7)

P = APAT +Φ−APCT (CPCT +Ψ)−1CPAT
where P is  the  priori  estimation  error  covariance  in  the  steady state
satisfying .

It is well known that in the steady state, the measurement residual
(5) obeys
 

Zk ∼ N(0,S ) (8)
S =CPCT +Ψ χ2where .  Based  on  this  property,  a  detector  is

adopted to find the system anomaly, which is defined as
 

gk =

k∑
i=k−τ+1

ZT
i S −1Zi

H0
≶
H1

ϑ (9)

H0 H1
gk

where τ is the detection window size, and  and  denote the sys-
tem  without  and  with  the  attack,  respectively.  Once  exceeds  the
detection threshold ϑ, the detector would trigger an alarm.

FDI  attack  scheme: As  shown in Fig. 1,  malicious  attackers  uti-
lize an extra sensor different from the system sensors as follows:
 

ye,k =Cexk + ve,k (10)
ye,k ∈ Rme ve,k ∈ Rme

ve,k ∼ N(0,Ψe) Ψe > 0
wk Vk (A, Ce)

where  denotes  the  measurement  output,  and  is
the measurement noise satisfying  with , which
is independent of the noises  and . It is assumed that  is
detectable.  Then,  the  following  auxiliary  filter  is  adopted  by  mali-
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cious attackers:
 

x̂e
k+1|k = Ax̂e

k (11a)
 

x̂e
k = x̂e

k|k−1 +Ka(ye,k −Ce x̂e
k|k−1) (11b)

x̂e
k|k−1 x̂e

k
xk δek ≜ xk − x̂e

k

where  and  are the priori and posteriori estimates of the state
, respectively. Define , and with (1), (10) and (11), we

can obtain
 

δek+1 = (A−KaCeA)δek + (In −KaCe)wk −Kave,k+1 (12)
Ka

A−KaCeA
which converges if and only if the filter gain  is designed to ensure
the matrix  stable.

x̂k|k−1

It is assumed that malicious attackers can directly insert false data
into  the  physical  system  (1)  meanwhile  modifying  the  information

 broadcasted by the remote center. Under the attack, the system
(1) is rewritten as
 

x̃k+1 = Ax̃k +αk +wk (13)
x̃k αkwhere  denotes the compromised system state, and  is the attack

signal to be designed. The compromised priori  estimate received by
each sensor is
 

ˆ̃xk|k−1 = x̂a
k|k−1 +γk (14)

x̂a
k|k−1 γkwhere  is  the  system  estimate  under  the  attack,  and  is  the

injection signal to be designed.
For  the  compromised  system  (13),  the  measurement  (10)  of  the

extra sensor is represented as
 

ỹe,k =Ce x̃k + ve,k. (15)
The filter (11) is rewritten as

 

ˆ̃xe
k+1|k = A ˆ̃xe

k|k−1 +αk +AKa(ỹe,k −Ce ˆ̃xe
k|k−1) (16)

ˆ̃xe
k|k−1 x̃kwhere  is the priori estimate of the state  under the attack.

γkThe injection signal  is designed as
 

γk = ˆ̃xe
k|k−1 − ˆ̃xea

k|k−1 (17)
ˆ̃xea
k|k−1where  satisfies

 

ˆ̃xea
k+1|k = A ˆ̃xea

k|k−1 +AKa(ỹa
e,k −Ce ˆ̃xea

k|k−1) (18)

ỹa
e,k = ỹe,k −Ceγkwith .

γk
Ka

A−KaCeA

Remark 1: As shown in (3) and (10), both the system sensors and
the  extra  sensor  are  employed  to  measure  the  information  of  the
physical system. Compared with utilizing the information of all sys-
tem sensors and the full  system knowledge to design the attack sig-
nal in [11], [12], it is more freedom for the proposed attack scheme to
merely require the partial physical system knowledge A and the side
information measured by the extra sensor. And, it can be found from
(16)–(18)  that  the  injection  signal  is  unrelated  to  the  real-time
measurement  information.  Furthermore,  the  filter  gain  in  (11)
needs  to  guarantee  stable,  which  is  unrelated  with  the
Kalman  filter  (6).  These  break  through  the  strict  assumptions  of
attack design and reduce the attack complexity.

Attack destructiveness: Under the attack, the entire measurement
(3) is rewritten as
 

Ỹk =Cx̃k +Vk. (19)

Correspondingly, the residual received by the remote center becomes
 

Z̃k = Ỹk −C ˆ̃xk|k−1 (20)
based on which, the Kalman filter (6) is redescribed as
 

x̂a
k+1|k = Ax̂a

k|k−1 +AKZ̃k (21)

x̂a
k|k−1where  denotes the priori estimate under the attack. Define the

priori estimation error under the attack as
 

ea
k+1|k ≜ x̃k+1 − x̂a

k+1|k
which is utilized to quantify the estimation performance of the com-
promised system.

ea
k+1|k

αk

Theorem 1: Under the attack, the estimation error  diverges, if
and only if the system matrix A is unstable or the attack signal  is
unbounded.

Proof: Combining with (13), (14), (20) and (21) yields
 

ea
k+1|k = (A−AKC)ea

k|k−1 +AKCγk +αk +wk −AKVk. (22)
Then, with (16) and (18), the injection signal (17) satisfies

 

γk+1 = Aγk +αk. (23)

ξk ≜
[
eaT

k|k−1 γ
T
k
]TLet , and with (22) and (23), we can get

 

ξk+1 =
[
A AKC
0 A

]
ξk +
[
In
In

]
αk +

[
In −AK
0 0

] [wk
Vk

]
(24)

A = A−AKCwhere .

αk

It  can  be  found  that  the  system  estimation  error  with  unstable
matrix A under  the  attack  always  diverges  no  matter  how to  design
the  attack  signal .  On  the  other  hand,  when A is  stable,  an
unbounded attack signal is designed as
 

αk+1 = F αk (25)
Fwhere  is an unstable matrix. ■

Attack  stealthiness: With  (14)  and  (19),  the  residual  (20)  is  fur-
ther derived as
 

Z̃k =C(ea
k|k−1 −γk)+Vk. (26)

δak|k−1 ≜ ea
k|k−1 −γkLet , and then subtracting (23) from (22) yields

 

δak+1|k =Aδ
a
k|k−1 +wk −AKVk (27)

Pa
k+1|k ≜ E[δak+1|kδ

aT
k+1|k]whose covariance  is derived as

 

Pa
k+1|k =APa

k|k−1A
T +Φ+AKΨKT AT . (28)

k = ka
ˆ̃xe
ka |ka−1 =

ˆ̃xea
ka |ka−1 γka = 0

δaka |ka−1 = ea
ka |ka−1 Pa

ka |ka−1 = P

It  is  assumed  that  the  attack  starts  at  time .  Before  the  attack
occurs,  with  (16)  and  (18),  holds,  that  is, .
And further,  holds, which leads to .

ek+1|k ≜ xk+1 − x̂k+1|k
In  the  normal  situation,  with  (1)–(6),  the  priori  estimation  error

 is derived as
 

ek+1|k =Aek|k−1 +wk −AKVk (29)

P ≜ lim
k→+∞

E[ek+1|keT
k+1|k]whose steady-state covariance  is

 

P =APAT +Φ+AKΨKT AT . (30)
Pa

ka |ka−1 = P Pa
k+1|kWith (28) and (30), it can be observed that since , 

is time invariant and satisfies
 

Pa
k+1|k = P (31)

which leads to the following theorem.
Z̃kTheorem 2: The compromised residual  obeys

 

Z̃k ∼ N(0,S ) (32)
which has the same distribution as normal residual (8), i.e.,  the pro-
posed attack scheme successfully evades the residual-based detector.

Proof: Compromised residual (26) can be rewritten as
 

Z̃k =Cδak|k−1 +Vk.

From (29), it is obtained that
 

E[ek+1|k] =Ak+1E[e0|−1]

A
ka E[eka |ka−1] = 0 γka = 0

E[δaka |ka−1] = E[eka |ka−1] = 0

which converges to zero in few steps due to stable .  At the attack
start  time ,  we  can  get .  And  leads  to

.  Then,  the  mathematical  expectation  of
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Fig. 1. A multi-sensor remote estimation system under attack.
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(27) is derived as
 

E[δak+1|k] =Ak+1−kaE[δaka |ka−1] = 0

E[Z̃k] = 0 S̃ k ≜ E[Z̃kZ̃T
k ]which leads to . And, the covariance  is calcu-

lated as
 

S̃ k =CPa
k|k−1CT +Ψ.

S̃ k = SWith (31),  holds. Hence, the distribution of the compromised
residual is
 

Z̃k ∼ N(0,S )
which  keeps  the  same  distribution  as  (8).  This  means  that  the  pro-
posed attack scheme can bypass the residual-based detector. ■

Numerical simulation: A stable system is considered to verify the
effectiveness of the proposed attack scheme, whose parameters are
 

A =

0.3201 0.4712 0.2605
0.1420 0.1027 0.0141
0.0231 0.2526 0.4357

 , Φ = 0.01I3

C1 =
[
0.1501 0.6423 0.5712
0.0231 0.3201 0.2013

]
, Ψ1 = 0.03I2

C2 =
[
0.1012 0.2701 0.6235
0.0724 0.5413 0.2514

]
, Ψ2 = 0.02I2.

With (7), the Kalman filter gain is designed as
 

K =

0.0684 0.0113 0.0737 0.0482
0.1338 0.0720 0.0483 0.1908
0.1272 0.0386 0.2476 0.0599

 .
For the attacker, the following parameters are chosen:

 

Ce =

[
0.4205 0.1314 0.6425
0.3425 0.8301 0.2624

]
, Ψe = 0.04I2.

F KaThe unstable attack matrix  and the filter gain  are respectively
designed as
 

F =
0.7021 0.0642 0.7021
0.2301 0.8501 0.6142
0.0032 0.1824 0.7024

 , Ka =

0.1362 0.1035
0.0172 0.1754
0.1747 0.0625


Ka A−KaCeA

[101,200] α101 =
[
1 1 1
]Twhere  ensures  is  stable.  The  attack  occurs  at

 with  the  initial  condition .  The  simulation
results  are  shown in Fig. 2.  It  is  clear  from Fig. 2(a)  that  the  detec-
tion index under the attack keeps the same distribution as that under
no attack. And, the estimation error of the system diverges when the
attack occurs as shown in Fig. 2(b). These results directly verify The-
orems 1 and 2.
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Fig. 2. The system performance under attack.
 

Conclusion: This  letter  has  explored  the  security  issue  of  multi-
sensor remote estimation of cyber-physical systems from the adverse
standpoint. A stealthy FDI attack scheme, which is based on the side
information  measured  by  an  extra  sensor,  has  been  proposed.  The
design principle of the attack signal has been derived for stable and

unstable  systems  aiming  at  extremely  degrading  the  estimation  per-
formance.  Then,  the  distribution  of  the  polluted  residual  has  been
derived  to  illustrate  the  attack  stealthiness.  Finally,  the  numerical
simulation has been carried out to verify the effectiveness of the pro-
posed  attack  scheme.  In  our  future  work,  the  proposed  scheme will
be  further  investigated  for  the  cooperative  control  of  networked
multi-agent systems [14].
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