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   Dear Editor,

The  distributed  generalized-Nash-equilibrium  (GNE)  seeking  in
noncooperative  games  with  nonconvexity  is  the  topic  of  this  letter.
Inspired  by  the  sequential  quadratic  programming  (SQP)  method,  a
multi-timescale multi-agent system (MAS) is developed, and its con-
vergence  to  a  critical  point  of  the  game  is  proven.  To  illustrate  the
qualities  and efficacy of  the theoretical  findings,  a  numerical  exam-
ple is elaborated.

With the rapid development of MAS theories and distributed opti-
mization,  distributed  Nash-equilibrium  (NE)  seeking  has  become  a
meaningful  research  topic  [1]–[7].  In  a  paradigm of  noncooperative
games, cost function and action set of an individual player depend on
its own action, and together with the other player’s actions. Besides,
NEs  are  important  solutions  among  the  strategies  of  a  noncoopera-
tive  game.  At  an  NE,  if  other  players  keep  their  current  strategies,
then no player can improve its benefits by changing its strategies. In
the game modeled in the practical networks (e.g., [8]), each player is
capable  to  receive  partial  decision  information  (the  player’s  own
information and its neighbors’ information) only. Hence, it is essen-
tial for each player to estimate the strategies, in a distributed manner,
adopted  by  all  the  other  players.  To  this  end,  many  distributed  NE
seeking  methods  have  been  proposed  and  captured  attention  from
many  areas  [1],  [9]–[15].  Specifically,  the  landmark  leader-follow-
ing  consensus-based  distributed  NE  seeking  strategy  was  first  pro-
posed  in  [1].  Then,  numerous  effective  methods  for  seeking  NEs
have  emerged  in  the  past  few  years.  For  example,  a  distributed
method  for  seeking  generalized  NE  based  on  gradient  projection  is
proposed in [9], a distributed continuous-time penalty method is pro-
posed for seeking GNE in [10], a distributed method is proposed for
seeking NEs with Markovian switching topologies [11], a distributed
method is proposed for seeking GNE with nonsmooth cost functions
in [12], a distributed NE seeking method with actuator constraints is
proposed in [13], a distributed NE seeking method subject to quanti-
tative communications is proposed in [14], a distributed NE seeking
method with bounded disturbances is proposed in [15]. In the studies
aforementioned,  the  cost  function  and  action  sets  in  the  games  are
assumed  to  be  convex.  However,  the  distributed  NE  seeking  meth-

ods for the games with nonconvex cost functions and constraints are
not studied.

The  SQP  method  is  one  of  the  effective  approaches  for  con-
strained  nonlinear  or  nonconvex  optimization  [16].  Driven  by  the
idea  of  SQP,  a  two-timescale  neural  network  is  developed  for  non-
convex  optimization  [17].  To  echo  the  nonconvex  optimization
solver based on multi-timescale neural networks, we develop a multi-
timescale MAS for seeking the critical point of the nonconvex game.
The main contributions are summarized as follows: 1) Based on the
idea of SQP, we develop a multi-timescale MAS for GNE-seeking of
nonconvex  games.  2)  Compared  with  the  existing  distributed  NE
seeking  approach  for  the  convex  games  in  [1],  [9]–[15],  the  pro-
posed  MAS with  proper  timescales  is  proven  to  be  convergent  to  a
critical point of a nonconvex game.
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n ⊗
× ∥ · ∥

t1, . . . , tN col[t1, . . . , tN ] = (tT1 , . . . ,t
T
N )T .

(·)+ =max{0, ·} u ∈ RN

α > 0 B(u,α) = {y ∈ RN |∥u− y∥ ≤ α} IN
δmin(M)

Notations:  denotes  the  set  of  all  real  numbers  and  denotes
the  set  of  all -dim  real  vectors.  denotes  the  Kronecker  product
operator.  denotes the Cartesian product operator.  denotes the 2-
norm;  For  a  group of  vectors , 

 is  the  popular  ReLU  function.  For  a  vector 
and , .  indicates an N-dim iden-
tity matrix. For a matrix M,  denotes the minimal eigenvalue
of M.

G = (V,E,A)
E ⊆V×V V = {1, . . . ,N}

A = (ai j) G (i, j) ∈ E ai j > 0

Ni = { j ∈ V | ai j > 0}
D = diag((D1, . . . ,DN )T ) Di =

∑N
j=1 ai j L = D−A

G G A = AT

G
C = diag(a11, . . . ,a1N , . . . ,aN1, . . . ,aNN ).

Graph theory fundamentals: Let  be  an  undirected
graph  with  edges  set  and  noeds  set ;

 denotes the adjacency matrix of . If , then ,
which  indicates  that i and j can  communicate  with  each  other.

 denotes  the  neighbor  index  set  of  node i.
 where .  denotes  the

Laplacian matrix of .  Graph  is  called undirected if ,  and
an undirected graph  is called connected if there is a path bewteen
any two distinct nodes. 

Problem statement: Consider the following game with N players:
 

min
xi∈Xi

fi (xi,x−i) = fi(x) (1)

fi (xi,x−i) x−i = col [x1, . . . ,
xi−1, xi+1, . . . , xN ]

x = col[x1, . . . , xN ] Xi ≜ {x ∈ RN |gi(x) ≤ 0,
hi(x) = 0} X = X1 × · · ·×XN

where  is  the  cost  function  of  player i, 
 represents  the  vector  of  all  player  actions  except

for  player i and .  Besides, 
 and .

x∗ = col[x∗1, . . . , x
∗
N ] x∗−i = col[x∗1, . . . , x

∗
i−1,x

∗
i+1, . . . , x

∗
N ]

x∗ fi(x∗i ,x
∗
−i) ≤ fi(xi,x∗−i)

x ∈ N(x∗) ⊂ X N(x∗) x∗

Let  and .
Point  is called a Local GNE of game (1) if 
holds for  where  is a neighborhood of .

Several necessary assumptions are provided.
i ∈ V,Xi fi (xi,x−i) gi(x)

hi(x)
Assumption  1:  For  is  a  nonempty; ,  and

 are smooth.
GAssumption 2: The graph  is connected.

Assumption 3: There exists at least one GNE in game (1).
∇ f (x) = col[∇x1 f1(x1), . . . ,∇xN fN (xN )] g(x) = col[g1(x), . . . ,

gN (x)] h(x) = col[h1(x), . . . ,hN (x)]
Let , 

 and .
(x,λ,µ)Definition 1: A point  is called a critical point of game (1) if

it satisfies the following equations:
 

∇ f (x)+∇g(x)Tλ+∇h(x)Tµ = 0
g(x)Tλ = 0, λ ≥ 0, g(x) ≤ 0
h(x) = 0. (2)

where λ and μ are Lagrange multipliers.
Equations (2) is  said be a Karush-Kuhn-Tucker (KKT) conditions

in optimization theory. Under several assumptions, e.g., second-order
sufficiency conditions [18], a point satisfying KKT conditions (2) is
a local  solution.  Therefore,  the seeking of critical  points  contributes
to the seeking of local GNEs.

The  SQP  method  is  an  effective  method  for  constrained  noncon-
vex  optimization,  and  it  has  two  stages  [16]:  At  the  first  stage,  a
quadratic programming subproblem of game (1) is formulated as fol-
lows: 
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min
zk

1
2

zT
k Mzk +∇ f (xk)T zk

s.t. ∇h (xk)T zk +h (xk) = 0

∇g (xk)T zk +g (xk) ≤ 0 (3)
xk zk

xk

where  and  is  the  decision  vector  and  the  directional  vector  at
the k-th  iteration,  and M is  a  given  positive  definite  matrix.  At  the
second stage,  is updated by the following iteration rule:
 

xk+1 = xk +αz∗k (4)
z∗kwhere α is the step size and  is the optimal solution of subproblem

(3).
Remark 1: In the idea of SQP, we do not need to solve nonconvex

constrained game (1) directly, instead, we use rule (4) to update the
decision variable  and we solve optimization subproblem (3)  at  each
iteration of  (4).  Note  that  subproblem (3)  at  each iteration is  a  con-
vex optimization  problem with  respect  to z,  which avoids  using the
nonconvexity of cost functions.

yi j i
x j yi = col

[
yi1, . . . ,yiN

]
y = col[y1, . . . ,yN ]

Main results: Inspired by [1] and [17], a continuous-time general-
ization of a SQP approach in the form of multi-timescale MAS-based
distributed optimization is proposed. Let  be player ’s estimate on

,  and .  Then,  a  multi-
timescale MAS for seeking the NE of the game (1) is described
 

ϵ1
dx
dt
= z

ϵ2
dz
dt
= −Mz−∇F(y)−∇G(y)Tλ−∇H(y)Tµ

ϵ2
dλ
dt
= −λ+ (λ+G(y)+∇G(y)T z)+

ϵ2
dµ
dt
= H(y)+∇H(y)T z

ϵ3
dy
dt
= − (L⊗ IN +C) (y−1N ⊗x) (5)

ϵ1, ϵ2 ϵ3
∇F(y) = col[∇x1 f1(y1), . . . ,∇xN fN (yN )] G(y) = col[g1(y), . . . ,gN (y)],
λ = col[λ1, ..,λN ], H(y) = col[h1(y), . . . ,hN (y)], µ = col[µ1, ..,µN ]

where  and  are  positive  time  constants.  In  addition,
, 

  and .
ϵ1dx/dt = z

ϵ1

ϵ2
ϵ3

M = blkdiag(M1, . . . ,MN ) Mi

Mi

In multi-timescale MAS (5), the x-layer (i.e., ) is a con-
tinuous counterpart of the second stage of SQP (i.e., update rule (4)),
and its timescale is . The z-layer, λ-layer, and μ-layer are designed
for  the  first  stage  of  SQP  (i.e.,  solving  subproblem  (3)),  and  their
timescale  is .  The y-layer  is  an  estimate  layer  with  its  timescale
being , and it is leveraged to estimate the other player’s states by an
individual player [1]. M is a given positive definite matrix and it is a
diagonal  block  matrix  shown  as  with 
being a positive definite matrix. Player i or agent i just need to deter-
mine its individual , which is in a distributed manner.

p̄ = col[x̄, z̄, λ̄, µ̄, ȳ]

p̄

Let  be  an  equilibrium  of  MAS  (5).  Now,  we
prove the equivalence between the critical point of game (1) and the
equilibrium .

p̄Theorem 1: Under Assumptions 1−3,  is a critical point of game
(1).

p̄Proof: According to the definition of equilibria,  satisfies the fol-
lowing equations:
 

0 = z̄
0 = −Mz̄−∇F(ȳ)−∇G(ȳ)T λ̄−∇H(ȳ)T µ̄

0 = −λ̄+ (λ̄+G(ȳ)+∇G(ȳ)T z̄)+

0 = H(ȳ)+∇H(ȳ)T µ̄

0 = − (L⊗ IN +C) (ȳ−1N ⊗ x̄) .
0 =

− (L⊗ IN +C) (ȳ−1N ⊗ x̄) ȳ = 1N ⊗ x̄ 0 = z̄
Since  the  graph  is  undirected  and  connected,  the  equation 

 yields .  According  to ,  we
obtain
 

0 = −∇ f (x̄)−∇g(x̄)Tλ−∇h(x̄)Tµ

0 = −λ̄+ (λ̄+g(x̄))+

0 = h(x̄).
(6)

0 = −λ̄+ (λ̄+g(x̄))+

λ̄ ≥ 0 g(x̄) ≤ 0 g(x̄)Tλ = 0
According  to  the  variational  theory,  leads  to

,  and . Bringing in (6), we obtain 

∇ f (x̄)+∇g(x̄)Tλ+∇h(x̄)Tµ = 0
g(x̄)Tλ = 0, λ̄ ≥ 0, g(x̄) ≤ 0
h(x̄) = 0.

p̄Therefore,  is a critical point of game (1). ■
u = col[x,z,λ,µ]

Now,  we  prove  the  convergence  of  MAS  (5)  with  proper
timescales to its equilibrium. Let . First, a function is
defined as follows:
 

V1 (u) = −K1 (u)T K2 (u)− 1
2
∥K2 (u)∥2 + 1

2

∥∥∥w−w
∥∥∥2

where
 

K1 (u) =

 Mz+∇ f (x)+∇g(x)Tλ+∇h(x)Tµ

−g(x)−∇g(x)T z
−h(x)−∇h(x)T z


and
 

K2 (u) =

 −Mz−∇ f (x)−∇g(x)Tλ−∇h(x)Tµ

−λ+ (λ+g(x)+∇g(x)T z)+

h(x)+∇h(x)T z


w = col[z,λ,µ]with .

K2 (u)

u ∈ B (u, ε) l1 l2
∥x−x∥ ≤ l1

∥∥∥z− z
∥∥∥ ∥∇xV1 (u)∥ ≤ l2

∥∥∥z− z
∥∥∥

According to Assumption 1,  is locally Lipschitz continuous
with respect to x. Then, according to the proof of Theorem 1 in [17],
for any  with any positive ε, there exists  and  such that

 and .
ϵ2/ϵ1 ≤ (4δmin (M))/

(4(l1 + l2)+N) ϵ3/ϵ1 ≤ 4/N
Theorem  2:  Under  Assumptions  1−3,  if 

 and ,  then  MAS  (5)  is  convergent  to  its
equilibrium.

D = {p− p̄ | ∥p− p̄∥ ≤ r}
Proof:  Accroding  to  proof  of  Theorem  1  in  [1],  there  exists  a

domain   for  some  positive  constant r.
According to Theorem 1 and inequality in [19], we obtain
 

K1 (u)T K2 (u) ≤ −∥K2 (u)∥
and
 

ϵ2∇wV1 (u)× dw
dt
≤ −1

2
(w−w)T (∇wK1(u)+∇wKT

1 (u))(w−w)

≤ −δmin (M)
∥∥∥z− z

∥∥∥2 .
∇wK1(u) is derived as follows:
 

∇wK1(u) =

 M ∇g(x) ∇hT (x)
−∇gT (x) O1 O2
−∇hT (x) O3 O4

 .
Based on Theorem 1 in [17] and Theorem 1 in [19], we derived

 

dV1 (u)
dt

=∇xV1 (u)× dx
dt
+∇wV1 (u)× dw

dt

≤ 1
ϵ1

(
l2
∥∥∥z− z

∥∥∥2)− 1
ϵ2

(
δmin (M)

∥∥∥z− z
∥∥∥2) . (7)

Consider the following Lyapunov function:
 

V(p) = V1(u)+
1
2

V2(x,y)+
1
2

∥∥∥x−x
∥∥∥2

V2(x,y) = (y−1N ⊗x)T (L⊗ IN +C) (y−1N ⊗x)where .
Combining (7), we derive the derivative of V

 

V̇ ≤ l2
ϵ1

∥∥∥z− z
∥∥∥2 − 1
ϵ2

(
δmin (M)

∥∥∥z− z
∥∥∥2)

+
1
ϵ1

(x− x̄)T (z− z̄)− 1
ϵ3
∥ (L⊗ IN +C) (y−1N ⊗x)∥2

+

√
N
√
ϵ1
∥ (L⊗ IN +C) (y−1N ⊗x)∥∥z− z̄∥

≤
 l2 + l1
ϵ1
− δmin (M)

ϵ2
+

√
N

2
√
ϵ1

∥z− z̄∥2

+

 √N
2
√
ϵ1
− 1
ϵ3

∥ (L⊗ IN +C) (y−1N ⊗x)∥2 ≤ 0.

z = z̄ y = 1N ⊗xBased  on  the  invariance  principle,  we  have  and .
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∥x−x∥ ≤ l1 ∥z− z̄∥ x = x̄Note  that ,  then .  Thus,  MAS  (5)  is  conver-
gent to its equilibrium. ■

Remark 2: From Theorems 1 and 2, note that MAS (5) is conver-
gent to the critical point,  even if one of the cost functions or one of
the constraints is nonconvex, which is different from the methods in
[1], [9]–[14].

A  numerical  example: This  section  provides  a  numerical  exam-
ple to illustrate the efficiency of MAS (5).

f1(x) = −x3
1 + 3x1x2 f2(x) =

−(−2x1 + 4x2 +
1
2 x4 + x5)2 + 48x2 f3(x) = −(x1 + 4x3 − x4 − x5)2

f4(x) = −(2x1 + 4x3 + 8x4 − x5)2 f5(x) = −(x1 + 4x3 + 8x4+
17x5)2 1−5

g1(x) = x3
1 −8 g2(x) = x1x2

2 −10
g3(x) = x3

3x5 −5 g4(x) = x3
4x5 g5(x) = x1x5

5 −2 h1(x) = x2
1−1.5x1x2

h4(x) = 12x3
4x5 +1/216 x∗ = [3/2,9/4,−19/48,

−1/6,1/12]T x(0) = [1,−2,1,1,1]T ϵ1 = 1, ϵ2 = 1/500,
ϵ3 = 1/800 M = 10IN

The  player’s  cost  functions  are , 
,  ,

,  and 
 for  players ,  respectively  [1].  Besides,  the  game  is  sub-

ject  to  the  following  constraints: , ,
, , , ,

and .  The  NE  is 
.  Let .  Let 

,  and .  Besides,  the  players  are  linked  via  the
topology shown in Fig. 1.

 
5

1 4

32

 
Fig. 1. The communication network topology among players.
 

x∗

x∗

Fig. 2(a)  implies  that  MAS  (5)  is  convergent  to ,  which  illus-
trates the validity of Theorems 1 and 2. In contrast, Fig. 2(b) shows
that the MAS in [9] is not convergent to NE .

Conclusion: In  this  letter,  we  suggest  a  distributed  GNE-seeking
strategy  for  nonconvex  games.  To  echo  the  SQP  optimization
method, we develop a multi-timescale MAS for constrained games in
the  presence  of  nonconvexity.  With  a  proper  timescale  setting,  we
prove  the  convergence  of  the  MAS  to  one  of  the  game’s  critical
points. To demonstrate the viability of the suggested multi-timescale
MAS, we also offer an example.
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Fig. 2. The transient states of MAS (5) and MAS (6) in [9].
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