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   Dear Editor,

This letter presents an intelligent small sample defect detection of
concrete surface using novel deep learning integrating the improved
YOLOv5  based  on  the  Wasserstein  GAN  (WGAN)  enhancement
algorithm.  The  proposed  method  is  capable  of  producing  top-notch
data  sets  to  address  the  issues  of  insufficient  samples  and  substan-
dard  quality.  Moreover,  the  proposed  method  can  efficiently  detect
numerous  minor  flaws  present  in  real  concrete  structures,  thereby
compensating  for  the  drawbacks  of  current  techniques  in  terms  of
real-time  performance,  practicality,  and  precision.  The  study  find-
ings  reveal  a  noteworthy  increase  in  the  precision  of  the  suggested
approach when compared to other methods, reaching 86.2%.

Defects in concrete structures significantly impact their durability,
service  life  and  safety.  The  primary  challenge  lies  in  the  fact  that
many  surface  defect  detection  methods  necessitate  predetermined
inspection targets and parameters, which are often difficult to meet in
practice. Numerous techniques are available; but they lack practical-
ity.  Due to the presence of  numerous small  defects  within concrete,
conventional  inspection  methods  require  high  levels  of  accuracy,
which can result in inaccurate results. Consequently, a more flexible
and  precise  approach  is  urgently  required  for  detecting  concrete
defects.  The  proposed  method  outlined  in  this  letter  offers  a  viable
solution to this challenge.

Related  work: To  tackle  the  drawbacks  of  manually  inspecting
concrete buildings for defects, researchers have put a lot of effort into
recent  years  and  have  developed four  main  types  of  methods:  man-
ual-based,  ultrasonic-based,  image  processing  technologies  (IPTs)
and deep learning-based ones.

Manual-based  defect  detection  methods  is  the  most  traditional
detection method. However, detecting concrete defects using human
perception is time-consuming, labour-intensive and subjective, mak-
ing it unsuitable for detecting concrete defects [1].

Ultrasonic-based  methods  for  defect  detection  are  primarily  uti-
lized to detect internal defects. Zhao et al. [2] proposed an ultrasonic
echo detection method capable of detecting defects in insulation pull
rods of high voltage circuit breakers. The defects were identified by
introducing a range of common defects in the simulation model and
detecting  them  through  the  analysis  of  echo  propagation  time  and
amplitude.  Ultrasound  is  capable  of  identifying  internal  defects  but
struggles with surface defects, particularly those with 90° cracks.

IPTs  can  be  overcome  by  using  image  processing-based  tech-

niques if  the parameters are set beforehand. Dhule et al. [3] applied
the  edge  detection  with  the  Soble  operator  to  identify  cracks  on
walls.  However,  IPTs  are  tailored  to  a  particular  setup  or  database.
Alterations  to  the  settings  or  databases  often  cause  the  methods  to
malfunction.

The  application  of  deep  learning  in  defect  detection  has  become
increasingly popular in recent years and has yielded noteworthy out-
comes due to technological  advancements.  Lin et  al. [4] proposed a
data-driven semantic segmentation network, known as WCU-Net, to
selectively  gather  more  information  about  fine  cracks  for  detecting
cracks  in  wood.  Li  and Xu [5]  combined with  a  lightweight  mobile
convolutional mobile network feature extraction network to solve the
problem of appearance defect detection in electronic products.

Previous  related  research  suggests  that  detection  speed  and  effi-
ciency are progressing from manual detection methods to deep learn-
ing  methods,  particularly  when combined with  convolutional  neural
networks,  leading  to  improved  detection  ability.  However,  the  pro-
posed  YOLOv5  algorithm  for  machine  modification  not  only
addresses the issue of limited samples but also enhances detection of
minor targets in concrete building surface defect features, producing
better detection outcomes.

Problem  statement: Defects  in  concrete  buildings  often  have
varying  shapes  and  sizes,  and  measuring  them  using  uniform  stan-
dards  can  be  challenging.  Hence,  to  identify  these  challenging-to-
standardize  defects,  deep  learning  is  currently  the  most  recom-
mended approach.

To  achieve  high-precision  defect  detection  with  deep  learning
methods,  it  is  necessary  to  prepare  the  dataset  and  train  the  defect
detection  model  in  advance.  The  quality  of  the  defect  detection
model depends on the quality of the dataset. When there is an insuffi-
cient  amount  or  quality  of  dataset  available,  the  WGAN generation
algorithm  can  produce  enough  high-quality  samples  to  ensure  the
accuracy of the defect detection model.

However,  identifying  concrete  surface  defects  accurately  through
ordinary deep learning models is problematic due to their small size.
Our  proposed  solution  is  an  integrated  and  improved  YOLOv5
model,  which  not  only  generates  high-quality  datasets  but  also
detects  small-sample  defects  on  concrete  surfaces  with  high  preci-
sion, thus enhancing the accuracy and efficiency of concrete surface
defect detection [6].

Basic concepts:
1) UnSharp mask (USM): It  is  a linear filtering algorithm used to

enhance image details [7].
2)  WGAN: It  is  an  enhanced  algorithm for  generative  adversarial

networks, which addresses the training instability issue in traditional
GANs by introducing the Wasserstein distance metric [8].

3)  General  image  augmentation  (GIA):  A  series  of  common  data
augmentation methods including random cropping, random rotation,
random scaling and random fusion splicing.

4) YOLOv5: YOLOv5 comprises a backbone network, a detection
neck  and  three  detection  heads.  After  mosaic  processing,  training
images are fed into the network. Image features are extracted at dif-
ferent  scales  using  the  backbone  network.  In  the  feature  fusion,  the
detection neck connected to  the  backbone plays  a  role.  For  the  pre-
diction of smaller and larger targets, respectively, three types of fea-
ture  maps  are  used.  Finally,  the  feature  maps  are  gridded  and
detected by the head [9].

Proposed integrated improved model: For the detection of con-
crete  surface  defects,  an  integrated  and  improved  YOLOV5  model,
which  can  effectively  detect  small  targets,  as  shown  in Fig. 1.  The
improved  YOLOV5  model  training  consists  of  four  stages:  Stages
1−3 generate high-quality samples, perform image enhancement, and
feed  the  dataset  into  the  improved  model  for  training.  In  the  fourth
stage,  we  verify  the  validity  of  the  experiment  by  cross-comparing
the  detection  results  with  several  models  and  datasets.  A  detailed
analysis of the four stages is shown as follows:
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Stage  1:  The  WGAN  generative  network  is  used  to  augment  the
limited  data  set.  The  generator  and  discriminator  networks  are  first
constructed  using  the  PyTorch  framework.  A  small  number  of  pre-
pared datasets are fed into the generator, and the generative power of
the  generator  is  improved  by  alternately  training  the  generator  and
discriminator  networks.  Moreover,  the  networks  are  trained,  and  in
each training iteration,  real  and generated images  are  fed separately
into the discriminator network, the loss function is computed, and the
parameters of the discriminator are updated by the backpropagation.
Random  noise  is  then  fed  into  the  generator  network  to  produce
dummy  images,  which  are  fed  into  the  discriminator  network,  and
again the loss function is calculated and the parameters of the genera-
tor are updated.  The Wasserstein distance measure of the difference
between  the  generator  and  the  discriminator  is  then  introduced  to
optimise the training process, and finally random noise is fed into the
generator  network,  using  the  generator  network  to  generate  images
similar to the training data. The image generated here is the output of
Stage 1.

the

Stage 2: The USM is applied to image created in Step 1. The USM
algorithm  is  a  linear  filtering  technique  used  to  enhance  image
details, commonly used in digital image processing. The principle of
the  USM  algorithm  is:  first,  Gaussian  blur  the  image,  then  subtract
the blurred image from the original image, and  result is the sharp-
ened image.
 

y =
x−w× xg

1−w
(1)

where y represents  the  enhanced  image, x represents  the  source
image, w represents  the  weight  (0.1  to  0.9),  and xg represents  the
source image after Gaussian blurring, and y is the output of Stage 2.
The Gaussian kernel in this letter has a size of 2 and a standard devi-
ation of 1.5.

Stage  3:  The  feature  extraction  module  of  the  original  YOLOv5
model  fails  to  effectively  leverage  the  shallow  feature  extraction
module  due  to  the  presence  of  numerous  small-sized  targets  in  the
concrete surface defects. The addition of a shallow feature extraction
module  is  proposed  to  the  original  YOLOv5  model  for  detecting
smaller  targets.  The  default  loss  function  for  the  rectangular  box  is
CIoU Loss.

Beyond the 17th layer, the feature map undergoes further process-
ing,  including  up-sampling,  resulting  in  its  expansion.  Simultane-
ously,  at  the  20th  layer,  the  obtained  160×160  feature  map  is  con-
catenated with the feature map of the 2nd layer in the backbone net-
work  to  obtain  larger  feature  maps  for  detecting  small  targets.  A
small target detection layer is added at layer 31, with a total of four
layers  being employed for  detection.  The addition of  a  shallow fea-
ture  extraction  layer  enables  full  fusion  of  front  layer  features  with
the original back layer features, improving the effectiveness in accu-
rately detecting small targets and ultimately enhancing the detection
performance of the model. The structure is shown in Fig. 2.

Stage  4:  In  order  to  facilitate  the  quantification  of  experimental
results, this letter uses evaluation indicators of commonly used mod-

els in object detection, including precision, recall, mean average pre-
cision  (mAP).  Multiple  datasets  were  inputted  into  the  proposed
improved  model  and  compared  against  the  single  shot  multibox
detector (SSD) [10], YOLOv3 [11], and YOLOv5 models.
 

Precision =
T P

T P+FP
, Recall =

T P
T P+FN

, mAP =
∑

AP
N

(2)

where TP refers to the positive class detected as positive; FP refers to
the negative  class  detected as  positive; FN refers  to  a  positive  class
that  is  detected  as  negative.  mean  average  precision  (mAP)  repre-
sents the average value of all categories of AP

Experiments: Our  experiments  use  an  Intel  Corei7-9700 CPU,
NVIDIA GeForce GTX1600 GPU, 16G RAM and Windows 10 64-
bit.  Programming  languages  with  Python  3.7,  OpenCV  4.5.1  and
Pytorch 1.7.1 are used.

To exhibit the efficacy of the proposed approach in this letter, we
develope  six  datasets.  The  specifics  of  six  datasets  are  detailed  in
Table 1.  DataOR  denotes  the  uncompromised  dataset  captured  ini-
tially. Meanwhile, DataCA is the dataset generated after the GIA, and
DataWG  is  the  dataset  expanded  using  DataOR,  both  of  which  are
variations  of  the  original  data.  DataOR*,  DataCA*,  and  DataWG*
are  the  altered  datasets  generated  from  DataOR,  DataCA,  and
DataWG, respectively, through the USM enhancement. The training
parameters in this experiment are shown in Table 2.
 

Table 1.  Summary of Six Datasets

Dataset
Number of images

Total Training set Test set
　　　DataOR 200 160 40
　　　DataCA 1000 800 200
　　　DataWG 1000 800 200
　　　DataOR* 200 160 40
　　　DataCA* 1000 800 200
　　　DataWG* 1000 800 200
 
 
 

Table 2.  Experimental Parameters
Parameter Meaning Value
Image_size Resolution of the training image 640×640

Epochs Number of iterations 500
Batch_size Size of each training batch 16

 
 

To illustrate the importance of each step in the proposed concrete
defect  detection  method,  comparative  experiments  are  carried  out.
Table 3 presents  the  experimental  results.  In  the  experiment,  each
component of the proposed defect detection in this letter is varied to
develop different defect detection methods named M1 to M6 as pre-
sented in Table 4.  The 6th method (M6) in this letter  introduces the
proposed  defect  detection  method.  Samples  of  the  six  datasets  are
shown in Fig. 3.

Tables 3 and 4 demonstrate  that  M6  exhibits  the  greatest  perfor-
mance across all three assessment metrics. The evaluation metrics for
M1, M2 and M4 are compared with those of M3, M5 and M6 and the
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Fig. 1. The process of the proposed defect detection method.
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Fig. 2. The structure of the improved YOLOv5.
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use of the USM is shown to considerably improve the model detec-
tion accuracy. A comprehensive analysis is conducted after compar-
ing the assessment metrics of M3, M5 and M6. The results  indicate
that M6 successfully tackles the challenge of defect detection in lim-
ited sample sizes,  thereby improving the overall  detection effective-
ness  of  the  defect  detection  model.  The  WGAN+USM  approach
offered in this research surpasses traditional data expansion methods.

Conclusions: In  this  letter,  we  propose  a  novel  intelligent  small
sample  defect  detection  method  combining  the  WGAN  and  the
improved  YOLOv5  algorithm  to  overcome  the  limitations  of  con-
crete  surface  defect  detection  methods  in  terms  of  real-time  perfor-
mance, practicality, and accuracy. The proposed method employs the
WGAN  and  UnSharp  mask  techniques  to  refine  the  dataset  and
enhance  the  YOLOv5  model  with  an  additional  target  detection
layer. Meanwhile, the proposed method can address imprecise detec-
tion  owing  to  inadequacies  in  the  dataset  or  defects  of  insufficient
size.  Eevidence  suggests  that  the  proposed  method  can  enhance  the
accuracy of detecting defects on concrete surfaces.

The proposed method’s drawback is that its model parameters rely
on  empirical  adjustment,  which  is  not  sufficiently  convenient.  In
forthcoming  research,  we  will  adopt  an  adaptive  neural  network
approach  to  ascertain  the  necessary  model  parameters  and  improve
the outcome.
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Table 3.  Experimental Results of Models on DataOR and DataWG*
Model Dataset Precision Recall mAP@0.5

SSD
　　　　DataOR 0.493 0.271 0.302
　　　　DataWG* 0.562 0.404 0.502

YOLOv3
　　　　DataOR 0.525 0.250 0.288
　　　　DataWG* 0.698 0.496 0.688

YOLOv5
　　　　DataOR 0.552 0.306 0.487
　　　　DataWG* 0.743 0.612 0.742

Improved
YOLOv5

　　　　DataOR 0.562 0.417 0.485
　　　　DataWG* 0.862 0.737 0.805

 

 

Table 4.  Six Different Methods and Experimental Results for Detecting Concrete Defects

Method
Processing steps

Dataset
Experimental results

Data
expansion (WGAN)

Data
expansion

(traditional)
Data

enhancement
Defect

detection Precision Recall mAP@0.5

M1 √ DataOR 0.562 0.417 0.485
M2 √ √ DataWG 0.733 0.614 0.690
M3 √ √ DataOR* 0.609 0.486 0.503
M4 √ √ DataCA 0.684 0.463 0.601
M5 √ √ √ DataCA* 0.778 0.656 0.712
M6 √ √ √ DataWG* 0.862 0.737 0.805

 

 

(a) (b) (c) (d) (e) (f)
 
Fig. 3. Image samples in datasets. (a) DataOR; (b) DataCA; (c) DataWG; (d)
DataOR*; (e) DataCA*; (f) DataWG*.
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