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   Dear Editor,

This  letter  presents  a  prescribed-instant  stabilization  approach  to
high-order  integrator  systems  by  the  Lyapunov  method.  Under  the
presented  controller,  the  settling  time of  controlled  systems is  inde-
pendent  of  the  initial  conditions  and  equals  the  prescribed  time
instant. With this method, the prescribed-instant stabilization method
can be easily proved and extended. To be more specific, two differ-
ential inequalities of Lyapunov functions are presented to clamp/con-
strain  the  settling  time  to  the  prescribed  time  instant  from  both  the
left  and  right  sides.  This  thought  serves  as  an  example  to  present  a
general  framework  to  verify  the  designed  stabilization  property.
Actually,  the  prescribed-time  stability  (PSTS)  [1]  can  not  prescribe
the exact  settling time.  It  can only prescribe the upper bound of the
settling time and is different with this work. The detailed argumenta-
tion  will  be  presented  after  a  brief  review of  the  existing  important
research.

Traditional  asymptotic  stability  ensures  system states  converge  to
equilibrium  as  time  goes  to  infinity.  It  implies  that  system  states
never  reach  an  equilibrium  within  any  specific  time  period.  Finite-
time stability (FNTS) guarantees that  the system states convergence
happens in a finite time but mostly depending on system parameters
and  initial  conditions  [2].  Moreover,  when  some  states  are  unavail-
able,  a  finite  time  differentiator  or  observer  can  be  used.  Then,  the
correct  information  can  be  estimated  after  a  finite  time  [3].  This
makes it easier to get the closed-loop system stability. However, this
finite time increases as the initial values of system states increase and
there are no uniform bounds of the settling time. To solve this prob-
lem, some new algorithms should be considered.

Tp Tp

Tp

The  fixed-time  stability  (FXTS)  guarantees  the  settling  time  be
bounded by a constant, which is determined by the controller param-
eters  [4].  However,  its  settling  time  is  usually  far  smaller  than  the
fixed  time.  The  predefined-time  stability  (PDTS)  gives  an  accurate
supremum of the settling time. This supremum is usually an explicit
parameter of the controller [5]. The FXTS and PDTS restrict the set-
tling time by using the power of system states. The PSTS introduces
the time t into the controller and ensures the system states converge
to zero in a prescribed time , where  is also an explicit parame-
ter of the controller [6]. Some simulation results of PSTS even show
the settling time equal to the prescribed time  [7]. This means that
prescribed-time control may have the ability to achieve the so-called
prescribed-instant stability (PSIS). However, their corresponding the-
oretical  analysis  cannot  explain  this  ability,  except  for  some  first-
order systems. A detailed analysis can be seen in Remarks 1 and 2.

Up to  now,  only  a  few research  with  strict  proof  showed that  the

settling time can be arbitrarily manipulated. For example, the work in
[8]  showed  this  property  by  presenting  a  detailed  analysis  of  the
infinitesimal order of the system states. Although its PSIS analysis is
presented only for the first-order state,  the full-state PSIS is  easy to
come out  with.  In [9],  reduction to absurdity was utilized to get  the
exact settling time. The PSIS was established with strict proof for the
first  time.  However,  these  methods  of  proof  are  circumscribed  and
can  hardly  be  generalized.  For  more  complex  systems  with  mis-
matched  disturbance,  state  constraint,  or  input  saturation,  it  is  diffi-
cult  to analyze and obtain the PSIS by the method given in [8],  [9].
However, most of these problems have been well studied in existing
control theory with the Lyapunov method. We believe that the PSIS
will be developed quickly as long as it is analyzed under the frame-
work of the Lyapunov method. Further applications such as consen-
sus  control  of  multi-agent  systems  may  provide  amazing  perfor-
mance [10], [11].

This  letter  considers n-order  integrator  systems,  of  which  the  set-
tling  time  under  the  presented  controller  is  exactly  the  prescribed
time instant.  A corresponding proof based on the Lyapunov method
is  utilized  to  provide  a  general  framework  to  ensure  the  exact  set-
tling time. Moreover, this framework can also help to decrease poten-
tial  conservativeness  in  the  settling  time  existed  in  the  traditional
PSTS.

Problem statement: Consider the following system:
 

ẋ = g(x,u)
g : Rn ×R→ Rn

x ∈ Rn u ∈ R
where  is  a  smooth  continuous  function  of x and u,

 denotes the states, and  is the control variable.
u(x,η) η ∈ Rm

x(t0) = x0
t0 = 0

x = g(x,u)

Consider  the  control  variable  as ,  where  denote  a
vector  of  explicit  controller  parameters.  We  can  obtain  the  closed-
loop system in (1) with the initial value . We default the ini-
tial  time .  Consider  the  closed-loop  form  of  the  system

 as follows:
 

ẋ = f (x,η) := g1(x,u(x,η)). (1)
Definition 1 [4], [5]: The origin of the system (1) is said to be

T (x0) T (x0) ≤ T f (η), ∀x0 ∈
Rn T f (η)
η = [η1, . . . ,ηm] ∈ Rm

1)  FXTS  if  the  settling  time  satisfies 
, where  is positive and depends on the controller parameters

, or
T (x0) sup∀x0∈Rn T (x0) = Tp

Tp > 0 η = [η1 =
Tp,η2, . . . ,ηm] ∈ Rm

2)  PDTS  if  the  settling  time  satisfies ,
where  is  one  of  the  controller  parameters,  i.e., 

.
u(x, t,η)Consider the control variable as .

 

ẋ = f (x, t,η) := g2(x,u(x, t,η)). (2)
TpDefinition  2  [9]:  Consider  the  positive  constant  is  one  of  the

controller parameters η. The origin of the system (2) is said to be
η ∈ Rm T (x0) ≤ Tp,

∀x0 ∈ Rn
1)  PSTS  if  there  exist  parameters  such  that 

, or
η ∈ Rm T (x0) = Tp,

∀x0 ∈ Rn
2)  PSIS  if  there  exist  parameters  such  that 

.
Consider the following linear system:

 {ẋi = xi+1, i = 1, . . . ,n−1
ẋn = u.

(3)

Since  the  PSIS  has  already  been  defined  and  proved  in  [9],  the
main  contribution  of  this  letter  is  presenting  a  Lyapunov method to
verify that the controller can ensure the system in (3) is PSIS.

T (x0) = Tp

The  expressions  of  Theorem  2  in  [1]  and  Theorem  1  in  [6]  may
mislead the  readers  to  think that  the  PSTS also  ensures .
To be strictly clear, it is urgent to emphasize the following fact.

Remark 1: The proof in [1] is one of the main thought of proof to
obtain PSTS. The key step is to obtain the following inequality:
 

dV(t)
dt
≤ −2kµ(t)V(t), k > 0, t ∈ [0,Tp) (4)

where V is a Lyapunov function of the controlled system and 
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µ(t) =
T m+n

p

(Tp − t)m+n , t ∈ [0,Tp). (5)

Tp

V(t) Tp
V(t0) ∈ R≥0

T (x0) ≤ Tp

If  the formula in  (4)  is  an equality,  there is  no doubt  that  the set-
tling time equals  the prescribed time .  However,  for  a  high-order
system,  it  is  difficult  to  obtain the equality  form in (4).  As a  result,

 is reset to zero in the prescribed time no longer than  irrespec-
tively  of  the  initial  value  (Section  2  in  [12]).  We  have

.

t ∈ [0,Tp) τ ∈ [0,+∞)

Remark  2:  Another  thought  of  proof  of  PSTS  in  some  research
such  as  [6]  is  based  on  some  time  scale  transformation  from

 to . The mostly-used transformation is
 τ = −ln(

Tp − t
Tp

)

t = Tp(1− e−τ).
(6)

dτ
dt =

1
Tp−tSince , we have two functions equivalent to each other

 
dV(t)

dt
= − 1

Tp − t
V(t), t ∈ [0,Tp)

dV(t(τ))
dτ

=
dV(t)

dt
dt
dτ
= −V(t(τ)), τ ∈ [0,+∞).

(7)

V(t(τ))
V(t(τ))→ 0 τ→ +∞

V(t)→ 0 t→ Tp
dV(t(τ))

dτ ≤ −V(t(τ))
dV(t(τ))

dτ ≤ −V1.5(t(τ))−V0.5(t(τ)) V(t(τ)) = 0,∀τ ≥ π
V(t(τ)) +∞ V(t)

t = Tp T (x0) ≤ Tp

If  one  can  prove  that  the  Lyapunov  function  converges
exponentially,  or  as ,  the  conclusion  is  defi-
nitely  obtained  that  just  as .  However,  Lemma 2  in
[6]  only  shows .  There  stands  a  chance  that

.  As  a  result, .
Since  converges  to  zero  before τ is ,  converges  to
zero before , i.e., .

T (x0) = Tp
T (x0) = Tp

We have clearly presented that the proofs of the PSTS are not suf-
ficient  to  obtain ,  although  some  simulations  of  PSTS
have shown the property of .

Remark 3: The work in [13] defined the properties of PSTS (PSIS)
as the so called free-will weak (strong) arbitrary time stability. It rec-
ognized  that  only  one  differential  inequality  (as  (4)  in  Remark  1)
from  the  Lyapunov  function  could  not  obtain  PSIS  directly.  How-
ever, the free-will strong arbitrary time stability, which is consistent
with the presented PSIS, can be established as long as
 

dV
dt
= − k(1− e−V )

(Tp − t)
, k > 1, t ∈ [0,Tp). (8)

Although  the  proof  of  free-will  strong  arbitrary  time  stability  for
high-order  systems  remains  open,  yet  this  proof  can  be  completed
once the following inequalities are considered:
 

V̇1 ≤
−k1(1− e−V1 )

(Tp − t)
, k1 > 1, t ∈ [0,Tp)

V̇2 ≥
−k2(1− e−V2 )

(Tp − t)
, k2 > k1, t ∈ [0,Tp).

Specifically,  one can obtain the PSIS by limiting the settling time
from  both  the  left  and  right  sides  of  Lyapunov  function  derivative
formula. This is also the main thought of this letter.

Tp

To  realize  the  above-mentioned  thought,  one  can  find  a  differen-
tial  function whose solution converges to zero just  at  the prescribed
instant .  Definition  5  of  [9]  presented  a  series  of  such  functions
named reference convergence differential functions (RCDFs).

Example 1: Let us see some typical RCDFs (ψ) given in [9]
 

v̇1 = −ψv1
= −
η(v2

1 +1)arctan(v1)

Tp − t
, v1(t) = tan(Tp − t)η

v̇2 = −ψv2
= − ηv2

Tp − t
, v2(t) = (Tp − t)η

v̇3 = −ψv3
= −η(1− e−|v3 |)

Tp − t
sign(v3), v3(t) = ln(1+ (Tp − t)η).

ψv Tp

ψ(v, t,Tp,η)
ηζ(v)
Tp−t ζ(v)
ζ(v) = O(v)

It is noted that  is also a function of t, , and η. We denote it as
,  which  can  be  written  as .  is  a  continuous

increasing odd function of v. Moreover,  (infinitesimal of

the same order), and
 

lim
t→Tp

ψ(v, t,Tp,η) = lim
t→Tp

v(t)−0
t−Tp

∼ (Tp − t)η−1, ∀η > 1.

In addition, the work in [9] also provide other RCDFs may help to
promote the proof of PSTS in existing research to obtain PSIS.

Main results:

x1
x1,d = c zi zi−1

i ≥ 2

Controller  design: The  controller  is  designed  with  backstepping
method and is presented as a recursive form. The desired value of 
is , where c is a constant. Replacing  by , the recurrence
relation  ( )  presented  as  follows  is  a  little  different  from that  in
[9]:
 

xi+1,d = ẋi,d − zi−1 −ψi (9)
zi = xi − xi,d x2,d = −ψ1 ψi(zi, t,Tp,ηi)

t = Tp ηi ψi ηi > n+1− i,
i = 1,2, . . . ,n

where  and .  It  is  noted  that 
belongs to the same RCDF. To prevent the singularity problem of the
control  signal  at ,  in  is  designed  to  satisfy 

. The control of system (3) is
 

u =
{
xn+1,d , 0 ≤ t < Tp
0, Tp ≤ t. (10)

t ∈ [0,Tp)According to (9) and (10), when , we have
 

ż1 = ẋ1 = x2 = z2 + x2,d = z2 −ψ1
żi = ẋi − ẋi,d = xi+1 − xi+1,d − zi−1 −ψi
= zi+1 − zi−1 −ψi

żn = ẋn − ẋn,d = u− ẋn,d = xn+1,d − ẋn,d

= ẋn,d − zn−1 −ψn − ẋn,d = −zn−1 −ψn.

(11)

In the following, we will present the PSIS of the transformed sys-
tem (11), and then obtain the PSIS of the system (3).
Prescribed-instant stability:

h(x) : R→ R ∀x ∈ I ∈ R
λ1,λ2, . . . ,λn

∑n
i=1 λi = 1

Lemma 1: Suppose the function  is concave 
and positive constants  satisfy . Then,
 

n∑
i=1

λih(xi) ≤ h(
n∑

i=1

λixi), ∀xi ∈ I. (12)

λ1 = λ2 = · · · = λn =
1
nEspecially, if , we have

 ∑n
i=1 h(xi)

n
≤ h(

∑n
i=1 xi

n
), ∀xi ∈ I. (13)

This lemma is the so-called Jenson inequality.

Tp u(t)
t = Tp x(t) = u(t) = 0, ∀t ≥ Tp

Theorem 1: The origin of the system (3) under the controller (10) is
PSIS  with  prescribed  time  instant .  The  control  signal  con-
verges to zero at , and .

zi Vn =
∑n

i=1 z2
i

Proof: As long as the controller is designed as (10),  the dynamics
of  is given by (11). Choose the Lyapunov function as .
According to (11),
 

V̇n =

n∑
i=1

2ziżi =

n∑
i=1

−2ηi|zi|ζ(|zi|)
Tp − t

, t ∈ [0,Tp). (14)

z = [z1,z2, . . . ,zn] ∈ Rn

ζ(|z|)
−|z|ζ(|z|) Vn

Denote the vector . According to the proper-
ties  given  in  Example  1,  is  an  increasing  positive  function,  so

 is concave. The time derivative of  satisfies
 

V̇n ≤
2min(η1,η2, . . . ,ηn)

Tp − t

n∑
i=1

[− |zi|ζ(|zi|)
]

≤ −2nmin(η1,η2, . . . ,ηn)
Tp − t

||z||1
n
ζ(
||z||1

n
)

≤ −2nmin(η1,η2, . . . ,ηn)
Tp − t

√
Vn

n
ζ(
√

Vn

n
) (15)

||z||1 ≥ ||z||2 =
√

Vn a1 =
√

Vn
n

where the second inequality used Lemma 1, and the third inequality
is because . Let , we have
 

ȧ1 = −
V̇n

2n
√

Vn
≤ −min(η1,η2, . . . ,ηn)ζ(a1)

n(Tp − t)
, (Vn , 0,∀zi , 0). (16)

a1 t = Tp
Vn zi

t = Tp

This means  converges to and reaches zero before or at , as
well  as .  One  can  obtain  that  converges  to  and  reaches  zero
before or at .
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VnAnother inequality of  is given by
 

V̇n ≥ −
2(η1 +η2 + · · ·+ηn)||z||∞ζ(||z||∞)

Tp − t

≥ −2(η1 +η2 + · · ·+ηn)
√

Vnζ(
√

Vn)
Tp − t

. (17)

a2 =
√

VnLet  of which the derivative is
 

ȧ2 = −
V̇n

2
√

Vn
≥ − (η1 +η2 + · · ·+ηn)ζ(a2)

Tp − t
, (Vn , 0,∀zi , 0). (18)

a2 t = Tp Vn
Vn t = Tp z1

zn

This  means  does  not  reach  zero  before ,  as  well  as .
Hence,  converges to and reaches zero at . Meanwhile,  to

 converge to and reaches zero.
zi→ 0 t→ Tp

t→ Tp

Since  as ,  by  combining  systems  (3),  (9)  and  (10),
one can obtain the following relationship as :
 

x2 = x2,d = −ψ1 = u1

x3 = x3,d = −ψ̇1 − z1 −ψ2 = u2

x4 = x4,d = −ψ̈1 − ż1 − ψ̇2 − z2 −ψ3 = u3

...
xn+1 = xn+1,d = ẋn,d − zn−1 −ψn = un.

(19)

ψi zi ψ1
un ψ(n−1)

1
ψ(n−i)

i ψ ∼ (T − t)η−1 ψ(n−1) ∼ (Tp−
t)η−n t→ Tp ηi > n+
1− i ψi t→ Tp

t→ Tp
u(t) = 0, ∀t ≥ Tp x(t) = 0, ∀t ≥ Tp

t = Tp

Each equation in (19) contains , , and their derivatives, and 
is  derivatives  the  most  times.  For  example,  contains  and

.  As  mentioned  in  Example  1, , 
 as .  As  long  as  the  parameters  are  selected  as 
, the derivative of each  will tend to zero as . Hence, the

controller  (10)  will  tends  to  zero  as ,  and  so  do  the  states  of
the system (3). Because , we have .
Therefore,  the  system  (3)  is  PSIS  with  the  prescribed  time  instant

. ■
Numerical example: Consider a simple pendulum system

 
ẋ1 = x2

ẋ2 = −
g
l
sinx1 −

k
m

x2 +
1

ml2
T

x1 l = 0.5 m
m = 0.1 kg g = 9.81 m/s2 k = 0.01
x1(0) = 0.09 rad x2(0) = 0.1 rad/s

x1 = x1,d = 0.15 rad Tp = 0.5 s z1 = x1 −0.15 T =
ml2( g

l sinx1 +
k
m x2 +u) ẋ1 = x2, ẋ2 = u.

where  denotes the angle, and T is the torque. Moreover, ,
, ,  and .  We set  the  initial  values  as

 and .  The control  objective is  mak-
ing  at ,  i.e., .  Let 

. Then, 
Choose the RCDFs as

 
ψ1 =

η1(1− e−|z1 |)
Tp − t

sign(z1), η1 = 3

ψ2 =
η2(1− e−|z2 |)

Tp − t
sign(z2), η2 = 2.

According to (9) and (10), the specific controller is
 

u =


−z1 −

η1(1− e−|z1 |)
(Tp − t)2 sign(z1)

−η1e−|z1 |

Tp − t
sign(z1)− η2(1− e−|z2 |)

Tp − t
sign(z2), 0 ≤ t < Tp

0, Tp ≤ t.

t = Tp = 0.5s
t = Tp = 0.5s

As presented in Fig. 1, each state is stabilized to the desired value
at .  One  characteristic  of  the  PSIS  is  presented  in
Fig. 1(b), i.e., u strikes zero at .

Conclusion: This  letter  provides  a  proof  framework based on the
Lyapunov method to ensure that the real convergence time of a high-
order integrator system equals the prescribed time instant. Therefore,
the settling time is irrelevant to the initial conditions and can be any

physically feasible assigned time instant. A simulation with a simple
pendulum system has verified this approach. Extending the proposed
method  to  get  PSIS  for  the  systems  with  matched  and  mismatched
disturbance is a consequential topic in the future.
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