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   Dear Editor,

In  this  letter,  we  introduce  a  novel  online  distributed  data-driven
robust  control  approach for learning controllers of  unknown nonlin-
ear  multi-agent  systems  (MASs)  using  state-dependent  representa-
tions.  The proposed method is  formulated as an online optimization
problem, based on finite-length disturbed data and expressed in terms
of linear matrix inequalities (LMIs), whose solution at each time step
yields  a  stabilizing  controller  for  each  agent.  The  feasibility  of  the
optimization problem ensures the stability of the closed-loop system.

In recent years, the control community has shown significant inter-
est in the distributed control of MASs, driven by their diverse range
of  applications  in  different  fields  such  as  physics,  social  sciences,
biology,  and  engineering,  as  highlighted  in  [1]–[5].  Direct  data-
driven control, inspired by the Willems et al. [6] fundamental lemma,
has gained recurring attention. This approach offers advantages over
model-based  control,  such  as  avoiding  challenges  related  to  model
inaccuracies  and  high  computational  costs  of  system  identification.
As  this  field  has  rapidly  and  continuously  developed,  data-driven
techniques for controlling different systems, albeit complex and non-
linear,  have  become  relatively  mature  ranging  from  explicit  state
feedback control in [7] to model-predictive control in [8].

However,  one  of  the  main  challenges  in  data-driven  control  is
building  a  data-based  system  representation  from  disturbed  data,  as
disturbances  can  undermine  the  condition  of  persistency  of  excita-
tion  required  by  the  fundamental  lemma.  The  S-lemma  was  intro-
duced  in  [9]  as  a  general  framework  for  handling  disturbances  and
has  been  widely  used  in  e.g.,  [10]–[12].  Nonetheless,  they  assumed
that  disturbances  are  only  present  in  the  offline  data  collection  pro-
cess but not during online operation. Recent work [13] has proposed
data-driven robust control strategies that consider disturbed data dur-
ing both learning and closed-loop operation, while ensuring stability
and performance. However, these strategies are mainly limited to lin-
ear  systems,  and  deriving  solutions  for  nonlinear  systems  remains
challenging.  On  the  other  hand,  data-driven  techniques  based  on
sum-of-squares (SoS) optimization have been developed for polyno-
mial  systems  [14],  but  they  are  computationally  expensive.  More-
over, while previous research has focused on centralized settings for
single  systems,  the  distributed  setting  for  MASs  subject  to  both
offline and online disturbances is particularly unexplored.

To address these challenges, we propose a novel online distributed
data-driven  robust  control  method  for  the  consensus  problem  of
unknown nonlinear MASs. Our method builds upon the combination
of the matrix S-lemma in [9] and the state-dependent representations

in [15], to synthesize a state-feedback consensus control protocol by
solving  an  online  data-based  optimization  problem,  in  the  form  of
LMIs, for each agent at each time step, while simultaneously provid-
ing  stability  guarantees.  The  main  contributions  of  this  work  lie  in
threefold.  1)  The proposed method is  not  limited to  rational  nonlin-
earities  and simplifies  the computational  complexity by establishing
low-dimensional  LMIs,  making  it  comparable  to  the  linear  case;
2) An online distributed method for designing the controller for each
agent  using  disturbed  data  is  advocated,  which  possesses  a  signifi-
cantly  improved  robustness;  and  3)  Under  standard  conditions  on
both  offline  and  online  disturbances,  uniformly  ultimately  bounded
(UUB)  of  the  closed-loop  system  is  established  for  the  proposed
data-driven robust controller.

1,2, . . . ,N
G t ∈ N

i = 1,2, . . . ,N

Problem  statement: Consider  a  discrete-time  nonlinear  affine
MAS with N identical agents indexed by , interacting via a
communication  network  described  by  a  topology .  For  and

, the dynamics of each agent is described by
 

xi(t+1) = f(xi(t))+g(xi(t))ui(t)+wi(t) (1)
xi(t) ∈ Rn ui(t) ∈ Rm

f : Rn 7→ Rn g : Rn 7→ Rn×m

f g wi(t) ∈ Rn

wi(t) ∈ L2[0,∞]

where  and  are  the  state  and  control  input  of
agent i,  respectively.  and  are  vector
fields. The functions of  and  are unknown.  is the exter-
nal  disturbance  obeying .  Before  proceeding,  two
assumptions are presented.

GAssumption 1: The graph  is undirected and connected.
F ∈ Rn f

G ∈ Rng×m f g
Assumption  2:  There  exist  known  basis  functions  and

 that span  and , respectively.
Assumption  2  means  the  use  of  a  function  library  to  describe  the

dynamics of the MAS, which is commonly valid in practical scenar-
ios  like  mechanical  and  electrical  systems,  where  the  dynamics  can
be derived from first principles, but the exact systems parameters are
unknown. Under Assumption 2, (1) can be represented as
 

xi(t+1) = ΛF(xi(t))+ΘG(xi(t))ui(t)+wi(t) (2)
Λ ∈ Rn×n f Θ ∈ Rn×ng f g

n f ng

where ,  are unknown coefficients of ,  with the
corresponding size ,  of basis functions.

We  commence  by  defining  the  combined  measurement  variable,
including the relative state information between neighbouring agents
and the absolute states of a portion of agents as follows:
 

zi(t) =
N∑

j=1

[
ai j(xi(t)− x j(t))+dixi(t)

]
(3)

t ∈ N ai j i j A
di di > 0 i = 1,2, . . . ,q

di = 0 i = q+1,2, . . . ,N q = {1,2, . . . ,q}

where ,  denotes  the th  entry  of  the  adjacency  matrix ,
and  are  constant  scalars  satisfying  for  and

 for  with .
Then,  the  following  distributed  state-feedback  consensus  control

law is adopted for the nonlinear MAS (1):
 

ui(t) = Ki(t)zi(t) (4)
Ki(t) ∈ Rm×nwhere  is  the  feedback  gain  matrix  of  agent i to  be

designed  at  each  time  step.  To  this  end,  the  closed-loop  network
dynamics resulting from (4) for (2) can be described as
 

xi(t+1) = ΛF(xi(t))+ΘG(xi(t))Ki(t)zi(t)+wi(t). (5)

wi(t)

ei(t) := xi(t)− (1/N̄i
∑

j∈Ni x j(t))
N̄i

Λ Θ

Our  goal  is  to  design  a  state-feedback  consensus  control  protocol
(4)  to  stabilize  the  unknown  nonlinear  closed-loop  system  (5)  sub-
ject to unknown external disturbance .  Actually,  the asymptotic
stability is hard to achieve under the influence of disturbances. In line
of this, define the consensus error as 
with  total  numbers  of  agent i’s  neighbors .  A  natural  idea  is  to
study the robustness of consensus protocols to external disturbances,
which is formulated as an issue of additional UUB performance spec-
ification.  However,  the  lack  of  knowledge  about  dynamics  coeffi-
cients ,  challenges the controller design and its associated stabil-
ity  analysis.  To  tackle  this,  we  introduce  an  advanced  data  acquisi-
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T ∈ N+ t ∈ N

Xi,t+ Xi,t− Ui,t−

tion  mechanism.  We  begin  by  supposing  that  the  controller  side  of
each  agent i possesses  a  buffer  of  size .  At  each ,  the
buffer  records  the  latest T input-state  samples  of  agent i,  which  are
collected in data matrices , , and , given as follows:
 

Xi,t+ := [xi(t−T +1) · · · xi(t)]
Xi,t− := [F(xi(t−T )) · · · F(xi(t−1))]
Ui,t− := [G(xi(t−T ))ui(t−T ) · · · G(xi(t−1))ui(t−1)] . (6)

t ∈ [0,T −1]Observe that when , the indices of the samples in (6) are
negative, indicating that the initial data is acquired through an offline
experiment, as shown below, i.e., replacing t in (6) with T
 

Xi,T+ := [xi(1) · · · xi(T )]

Xi,T− := [F(xi(0)) · · · F(xi(T −1))]

Ui,T− := [G(xi(0))ui(0) · · · G(xi(T −1))ui(T −1)] .

t ≥ TFurthermore,  as ,  the  data  matrices  are  updated  at  each  time
step.  To be  specific,  the  buffer  window is  shifted  one step forward,
removing the oldest  sample (i.e.,  the first  column of  the data  matri-
ces in (6) is removed) and adding the latest sample to the buffer.

Wi,t− := [wi(t−T ) · · · wi(t−1)]Let  denote  the  disturbance  matri-
ces  corresponding  to  the T input-state  samples.  Then,  a  quadratic
full-block disturbance bound is introduced as follows.

i ∈ {1,2 . . . ,N}
Wi,t−

Assumption  3:  For  agent ,  the  disturbance  matrix
 belongs to

 

Wi =

{
Wi,t− ∈ Rn×T

∣∣∣∣∣ [WT
i,t−
I

]T [
Qd S d
∗ Rd

] [
WT

i,t−
I

]
⪰ 0
}

Qd ≺ 0 Rd = RT
d S dwith some known matrices , , and .

Xi,t+ = ΛXi,t− +ΘUi,t− +Wi,t−

Λ Θ [Λ,Θ]

[Λ,Θ]

Assumption  3  is  standard  for  modeling  bounded  additive  distur-
bance during the data acquisition phase by quadratic constraints, see
e.g., [9]–[11]. Clearly, (2) satisfies . To
provide stability analysis guarantees for the nonlinear MAS (2) with
unknown , ,  we need to derive a stability criterion for  all 
that are consistent with the input-state data and the given disturbance
bound. For this purpose, a data-based representation of  is con-
structed in the following lemma.

i ∈ {1,2, . . . ,N} ΣiLemma  1:  For ,  the  set  of  all  possible  system
parameters compatible with the disturbed data is expressed by
 

Σi :=
{
(Λ, Θ)

∣∣∣∣ [[Λ, Θ]T

I

]T
Θi

[
[Λ, Θ]T

I

]
⪰ 0
}

(7)

Θi :=


−Xi,t− 0
−Ui,t− 0
Xi,t+ I


[
Qd S d
∗ Rd

] [
·
]T

where .

With the preliminaries  above,  the problem to be addressed in this
letter is formally stated as follows.

f g G
(Xi,t+,Xi,t−,Ui,t−)

ei(t)

Problem 1: Under Assumptions 1−3, consider the nonlinear affine
MAS (1) with unknown dynamics  and  over the graph .  Given
the disturbed experimental input-state data ,  design
a  distributed  state-feedback  consensus  control  law  (4)  such  that  the
consensus error  of each agent is UUB for any initial states.

Main  results: This  section  proposes  an  online  distributed  data-
driven robust control approach to address Problem 1 for the unknown
MAS (1). See Fig. 1 for an illustration of the considered data-driven
consensus control architecture.

F(xi(t)) = A(xi(t))xi(t) G(xi(t)) = B(xi(t))
A ∈ Rn f×n i ∈ {1,2, . . . ,N}

Motivated  by  [15],  we  proceed  by  denoting  the  state-dependent
representations  and  with

.  Then,  for ,  the  nonlinear  MAS  (2)  can  be
recast into the following form:
 

xi(t+1) = ΛA(xi(t))xi(t)+ΘB(xi(t))ui(t)+wi(t). (8)

Σi

In  this  way,  a  state-dependent  model  is  constructed  that  captures
each  agent’s  dynamics  at  each  time  step t,  which  we  subsequently
stabilize by treating it as a linear time-invariant (LTI) system. Build-
ing  on  this  result,  the  ultimate  aim  is  to  design  a  distributed  data-
driven  robust  consensus  controller  for  each  agent  at  each  time  step
directly from data that can effectively address Problem 1 for all lin-
ear-like systems in the set .

Λ Θ

Ai(t)+λiBi(t)Ki(t)
λi i = 1,2, . . . ,N

L̂ =L+D λ̄ λ
L̂ ρ = λ/λ̄

xi(t) Ai,t A(xi(t)) Bi,t B(xi(t))

For this effort,  when matrices ,  in (5) are known, inspired by
the  results  of  uncertain  MASs  in  [4],  the  stabilization  problem  is
addressed if and only if the matrices  are Schur sta-
ble, where , , are the eigenvalues of Laplacian matrix

.  Let  and  denote  the  maximize  and  minimize  eigen-
value  of .  Define .  The  optimal  state-feedback  consensus
controllers can be computed by solving the following linear quadratic
regulation  (LQR)  problem at  each  time  step.  For  simplify,  we  omit

 in the sequel, i.e., using  for  and  for 
 

mintrace(QPi(t))+ trace(RLi(t)) (9a)
 

s.t. Pi(t)−
(
ΛAi,t +λiΘBi,tKi(t)

)
Pi(t)

× (ΛAi,t +λiΘBi,tKi(t)
)T ⪰ 0 (9b)

 

Li(t)−Ki(t)Pi(t)Ki(t)T ⪰ 0 (9c)
Q ∈ Rn×n R ∈ Rn×n

Vi(t) = eT
i (t)Pi(t)ei(t)

where ,  are  positive  definite  symmetric  matrices.
Consider  the  Lyapunov  function  candidate  for  the  closed-loop  sys-
tem (5) as . We solve (9) with an additional con-
straint to provide the stability guarantee
 

min trace(QPi(t))+ trace(RLi(t)) (10a)
 

s.t. Pi(t)−
(
ΛAi,t +λiΘBi,tKi(t)

)
Pi(t)

×(ΛAi,t +λiΘBi,tKi(t)
)T ≻ 0 (10b)

 

Li(t)−Ki(t)Pi(t)Ki(t)T ⪰ 0 (10c)
 

Vi(t−1)−Vi(t) > 0. (10d)
Now, we are ready to discuss the properties associated to an equiv-

alent  data-based  version  of  (10).  An  online  distributed  data-driven
robust  control  algorithm for  the  unknown nonlinear  MAS (1)  under
the  control  protocol  (4),  is  presented  in  Algorithm  1,  with  stability
guarantees provided below.

G
[Λ, Θ] ∈ Σi i ∈ {1,2, . . . ,

N} Pi(t) = Pi(t)T ≻ 0 Hi(t) Li(t)
τ ≥ 0 η > 0

Theorem  1:  Consider  the  nonlinear  MAS  (1)  under  the  graph .
Suppose Assumptions 1−3 hold.  For all  and 

,  if  there  exist  matrices , ,  and ,  and
scalars ,  such that the following LMIs:
 

min Tr(QPi(t))+Tr(RLi(t)) (11a)
 

s.t.


−Ai,tPi(t)AT

i,t −ρAi,tHT
i (t)BT

i,t 0 0
−ρBi,tHi(t)AT

i,t 0 ρBi,tHi(t) 0
0 ρHT

i (t)BT
i,t Pi(t) 0

0 0 0 Pi(t)−ηI


−τ


−Xi,t− 0
−Ui,t− 0

0 0
Xi,t+ I


[
Qd S d
∗ Rd

]
[·]T ≻ 0 (11b)

 [
Li(t) Hi(t)
HT

i (t) Pi(t)

]
⪰ 0 (11c)

 [
Vi(t−1) xT

i (t)
xi(t) Pi(t)

]
≻ 0 (11d)

 

Unknown
agent i

Sensor iActuator i

Data-based representation i

Network
(Neighboring agent j)ui (t) xi (t)

xi (t)

ωi (t)

i

xj (t)
Data-driven controller i

 
Fig. 1. Distributed data-driven state-feedback consensus control.
 

 552 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 2, FEBRUARY 2024



Ki(t) := Li(t)Pi(t)−1/λ̄

hold, then the UUB is achieved for any initial states under the state-
feedback  consensus  control  protocol  (4).  Moreover,  the  feedback
gain matrix is computed as .

Algorithm 1 Online distributed data-driven robust control

T
ui(0) ∈ Rm xi(0) ∈ Rn

Qd S d Rd τ η

F G
Vi(0)

1: Input: desired lifespan of the MAS ; data size T; data-generat-
ing input ; initial states ; matrices of the distur-
bance model , , and ; parameters , ; decide basis func-
tions , ;  performance  matrices Q, R;  and  initial  value  of  the
Lyapunov function .

Di
Xi,T+ Xi,T− Ui,T−

2: Collect initial T-long stream of state-input data  and construct
data matrices , , and .

t < T3: while  do
i = 1,2, . . . ,N4: 　for  do

Xi,t+ Xi,t− Ui,t−5: 　　Update data matrices , , 
6: 　　Solve the data-based optimization problem (11).

Ki7: 　　Design controller gain matrix  via Theorem 1.
xi(t) j ∈ Ni8: 　　Broadcast  to agent .

zi(t) x j(t)9: 　　Compute  from (5) based on the updated state .
10: 　  Update the control protocol (4) and the dynamics (5).
11:   end for
12: end while

i = 1,2,3,4
Tc = 0.1

Numerical  example: This  part  provides  a  numerical  example  to
verify the efficiency of the proposed approach. Consider a nonlinear
MAS  consisting  of  four  inverted  pendulums,  treating  as  agent

. The dynamics of each agent is described as follows with
:

 

xi(t+1) =
[

xi1(t)+Tcxi2(t)
xi2(t)+Tc sin xi1(t)−Tcxi2(t)

]
+

[
0
Tc

]
ui(t)+wi(t).

F(xi(t)) = [xi1(t); xi2(t); sin(xi1(t))]T G(xi(t)) = 1 Q = I
R = I Vi(0) = 1000 wi(t)

t ∈ N Qd = −I S d = 0 Rd = w̄I

w̄ = 0.01

T = 20 t ∈ [20,120]

Agents 1−4 are connected in a line. It is evident that the communi-
cation  topology  among  them  satisfies  Assumption  1.  Choose  the
basis , .  Set ,

,  and .  The  disturbance  is  bounded  by
Assumption  3  for  all  with , ,  and .  The
initial states and inputs obey the normal distribution, and the distur-
bance  obey  Gaussian  distribution  with  standard  deviation .
To  implement  the  proposed  method,  Algorithm  1  was  applied  to
excite the open-loop MAS offline for the first 20 time steps, denoted
as . Subsequently, for , an online process was car-
ried out by implementing the distributed controllers obtained at each
time step on the MAS. The state  trajectories  of  all  agents  under  the
proposed data-driven controller (solid line) and the model-based one
(dashed line)  are  shown in Fig. 2.  The  proposed controller  achieves
similar performance to the model-based one, implying superiority of
the  data-driven  approach  since  no  system  model  information  is
required during implementation.

Conclusions: The consensus control problem of unknown nonlin-
ear  MASs  has  been  addressed  in  this  letter.  An  online  distributed
data-driven  robust  control  approach  was  proposed  to  design  con-
trollers  directly  from  disturbed  data,  along  with  rigorous  stability
guarantees.  The  resulting  computational  complexity  at  each  step  is
comparable to that of designing a controller for a linear MAS of the
same  dimensions.  Numerical  examples  have  been  provided  under
data-driven and model-based approaches, which showcases the effec-
tiveness of the proposed method in terms of control performance and
robustness dealing with disturbed data. Generalizing the results to the
general directed topology constitutes interesting directions for future
study.
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Fig. 2. State trajectories of all agents under different approaches.
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