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   Dear Editor,

This  letter  deals  with  the  tracking  problem  for  non-cooperative
maneuvering targets based on the underwater sensor networks. Con-
sidering  the  acoustic  intensity  feature  of  underwater  targets,  a  fea-
ture-aided  multi-model  tracking  method  for  maneuvering  targets  is
proposed. Specifically, at each node, direction of arrival (DOA) esti-
mation and model selection is performed, and information is fused in
the  central  node  where  multi-model-based  tracking  is  realized  to
closely monitor the target. Simulation results show that our proposed
method is capable of rapidly responding to model switching and sig-
nificantly improve the accuracy of maneuvering target tracking.

The underwater  non-cooperative  maneuvering target  is  one  of  the
principal factors that impact marine security. In underwater acoustic
sensor networks (UASNs), passive detection nodes are typically used
for long-term detection and tracking of targets due to the challenge of
recharging  and  replacing  them.  At  a  passive  node,  vector  hydro-
phones, hydrophone arrays and other devices collect the acoustic sig-
nals exposed by targets in the ocean. The direction and some feature
information  of  the  target  are  picked  out  by  signal  processing  meth-
ods, such as compressed sensing (CS) [1], [2], multiple signal classi-
fication  (MUSIC)  [3]  and  estimation  with  the  sparse  representation
[4].  Based  on  the  DOA  estimation  on  existing  nodes,  the  measure-
ment of the target position can be obtained by multi-node fusion [5].
However, the localization is inaccurate, and it is necessary to employ
appropriate filters to mitigate errors when tracking a moving target.

Estimating the correct motion model of the target is a crucial issue
in the commonly used Kalman filter. However, because of the uncer-
tainties  and  variations  in  the  behavior  of  the  maneuvering  targets,
divergence often occurs. To follow the changes in target state, multi-
ple  model  (MM)  based  methods  are  frequently  utilized  [6],  [7].  In
particular,  the  interacting  multiple  model  (IMM)  algorithm  is
regarded  as  one  of  the  most  effective  methods.  It  involves  a  set  of
multiple models that describe the dynamic system and it is assumed
that the jumps between different models are subject to a Markov pro-
cess  [8].  The  weighted  probabilities  of  different  motion  models  are
regulated  by  system  evolution  and  interaction  between  models  [9].
The  designation  of  the  Markov  transition  probability  matrix  in  the
IMM are fixed, which relies on sufficient prior knowledge and may
be  irrational  sometimes.  To  deal  with  this  problem,  many  adaptive

IMM  algorithms  were  proposed  to  achieve  better  treatment  [10],
[11].  Since  the  adjustment  of  the  matrix  is  driven  by  error,  it  takes
some time to respond to the model transition which will cause obvi-
ous delay, and the adjustment is not effective and stable enough.

In addition, the sound exposed by targets in water was studied and
summarized  [12].  Based  on  underwater  acoustics  research,  models
about  sound  propagation  and  interfering  phenomena  were  also  pro-
posed [13]. Some institutions have successfully collected underwater
acoustic sounds at the harbor or in the ocean, which are usually gen-
erated  by  moving underwater  target.  These  studies  have  inspired  us
to improve target tracking performance with signal features.

Considering  the  relationship  between  acoustic  signals  and  target
movement, we propose a feature-aided multi-node (FAMM) maneu-
vering target tracking method. Specifically, we investigate the inten-
sity  of  acoustic  signals  exposed  by  underwater  targets.  In  the
UWSNs, a switching strategy is proposed to select a possible track-
ing  model  at  each  passive  node.  Multiple  nodes  are  integrated  to
track  an  underwater  maneuvering  target  and  multiple  models  are
fused  driven  by  both  tracking  error  and  the  target  feature.  The
method is designed to track specific types of underwater targets with
some  degree  of  maneuverability.  Information  from  multiple  nodes
are  fused  efficiently.  The  model  selection  is  more  correct  and  the
tracking accuracy is improved as a result.

k

Problem  statement  and  basic  models: In  the  critical  oceanic
region,  invading  non-cooperative  targets,  such  as  submarines,  auto-
matic underwater vehicles and ships,  cause huge threats and require
close  attention.  These  targets  exhibit  some  maneuverability  in  a  3-
dimensional (3D) Cartesian coordinate, where their motion state may
vary, but changes are usually infrequent and not rapid [14]. Further-
more,  the  speed  and  acceleration  of  these  targets  are  relatively  low
and the movement patterns are not  very complicated.  Therefore,  we
employ the most commonly used models of constant velocity (CV),
constant  acceleration  (CA)  and  constant  turn  (CT)  to  describe  their
motion. The motion state of a target at time  is denoted as
 

Xk =
[

xk ẋk ẍk yk ẏk ÿk zk żk z̈k
]T

(1)

p= (xk,yk,zk) v = (ẋk, ẏk, żk)
a = (ẍk, ÿk, z̈k)
where  is the position,  is the velocity, and

 is the acceleration of the target.
Xk = F×Xk−1+

Qk
Qk

For a moving target, the state equation is given as 
, where F is the transition matrix, which of CV, CA and CT mod-

els are shown in [15].  is the variance of movement error, subject
to Gaussian distribution.

k−1
Pm(k) Pm(k)

Emin

fk,m
Θk,m = [αk,m,ϕk,m] αm ϕm

A  typical  USWN  with M passive  nodes  is  shown  in  Fig. S1.  In
each tracking period t from time  to k, the received average sig-
nal energy is denoted as . When  is greater than the back-
ground noise intensity threshold , it is considered that a target is
observed  by  node m.  Additionally,  observations  at  node m include
the features of the frequency and direction of targets, denoted as 
and ,  respectively.  Here,  and  represent  the
azimuth and elevation of the target, respectively.

Zk = HXk

Based on the direction observations obtained from multiple nodes,
the  position  of  a  target  is  determined  with  the  directly  least  square
positioning  method  in  the  operation  center.  Detailed  computation
refers  to  Section  2  in  [5].  Thus,  the  linear  position  measurement
equation of a target in the central node is expressed as .

Feature-aided  motion  model  selection: The  intensity  feature
reflects the movement of the target, especially when the motion state
changes  significantly.  Therefore,  the  signal  intensity  feature  of
underwater  targets  is  studied  and  we  propose  a  FAMM  method  to
improve the tracking performances.

In each passive node, the motion model of the target is judged by
the received signals.  The intensity  of  the  received acoustic  signal  is
mainly  influenced  by  two  major  factors:  the  noise  generated  by  the
target and the loss in the propagation path.

Mechanical  noise  and  hydrodynamic  noise  are  dominant  types  of
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PE

PE = a+
b|v|

PA(R, f ) = 10log(α( f ))×R
PS (R) = c×10log(R×10−3)

α( f )
c = 1

sound exposed by underwater targets. Generated intensity  is pri-
marily  determined  by  the  steady  part  of  mechanical  noise  which
comes from the engine operation, which can be expressed as 

. The lost signal intensity from the target to the sensor is the path
loss,  which  includes  the  absorption  loss 
and the spreading loss , where R [km] is
the  distance,  is  the  absorption  coefficient,  and  the  diffusion
coefficient . Detailed explainations about these models are given
in Appendix.

In  this  way,  we  obtain  the  following  formula  for  the  intensity  of
sound received by a passive node from the underwater target as
 

Ptotal=PE−PS −PA+Qc=a+b|v|−logR−10log(α( f ))×R+Qc (2)
Qcwhere  is the random noise of background in the target-free case.

Pm(k)

Pm(k)

The average intensity  during a tracking period t is regarded
as the intensity feature of a target. Fig. S2 in Appendix displays the
sound collected by an actual hydrophone when a ship passes by. The
variation in  can reflect the movement of the target during the
tracking period of 1 s.

Based  on  the  movement  and  signal  feature  of  underwater  targets,
the  motion of  an  underwater  maneuvering target  jump between two
states: the constant motion state and the constant acceleration motion
state,  where  the  constant  motion  state  includes  CV and CT models.
The details of the model switch and selection strategy are as follows:

k−1
State  1:  The  target  is  assumed  to  be  in  the  CV  model  initially.

From  to k, the change of received sound intensity is
 

∆Pk = P(k)−P(k−1)

= b(vk − vk−1)+ log
(

Rk−1

Rk

)
+10log(α( f ))(Rk−1 −Rk)+qc (3)

qc = 2Qc
∆Pk

∆Pk

Pmax =
∣∣∣∣log

(
Rk−vk t

Rk

)∣∣∣∣+qc

where  the  noise .  For  the  frequency  usually  below  1  kHz,
the second to last term is negligible. Thus,  is primarily related to
the acceleration of the target. When the target continues to move at a
constant speed, the acceleration is approximately 0 and the variation
is small.  is mainly affected by the change in distance. The maxi-
mum  level  of  the  change  is  defined  as ,
which can be estimated from the predicted state at time k.

|∆Pk | < η1 ×PmaxDefine Condition 1: .  When Condition 1 is satis-
fied, the target is considered to maintain in CV state.

|∆Pk |
P̈ = |∆Pk −∆Pk | ∝ |ak −ak−1|

If  the  state  of  the  target  switch  from  CV  to  CA,  the  acceleration
will change abruptly, and  will increase significantly. At time k,
the rate of change is denoted as .

∆Pk
P̈ (|∆Pk | > η2 ×Pmax)&(P̈ > η3 ×Pmax)

Thus,  changes  in  acceleration  also  lead  to  abrupt  changes  in 
and . We define Condition 2: .
When Condition 2 is satisfied, the tracking model switches from CV
to CA, and the state jumps to State 2.

|∆Pk |
If  the  motion  state  of  the  target  goes  from CV to  CT,  there  is  no

abrupt  change  in  acceleration,  but  some  variation  in .  Thus,
when  neither  Condition  1  nor  Condition  2  is  satisfied,  the  model  is
transformed to CT.

State 2: The target is considered to be in the CA model.
|∆Pk |>η2PmaxDefine Condition 3: .  If  Condition 3 is not satisfied,

the motion state returns to State 1, and the model is returned to CV.
Otherwise, State 2 will be retained and the CA model will be used.

η1=1.2 η2=1.8
η3=2

To sum up, the state transformation and model selection diagram is
shown in Fig. S3 in Appendix. In this letter, we set , 
and  for typical scenarios. Details about the selection of param-
eters are explained in Appendix.

Ω =
{
wm

j

}m=1,2,...,M

j=1,2,3
wm

j
wm

j = 1

Multiple  nodes  fusion  and  target  tracking: In  an  UWSN,  the
state  estimation  of  the  target  based  on  a  single  node  is  not  always
reliable, and the confidence levels of different nodes may vary. In the
central node, the probabilities of multiple models are estimated using
a  combination  of  features  and  errors  to  improve  tracking  accuracy.
The feature-based estimation is obtained by fusing information from
multiple  nodes.  Specifically,  the  information  matrix  is  denoted  as

,  where  each  row  represents  a  CV,  CA,  or  CT
model, and a column represents the node m,  is a binary variable
and  indicates  that  node m believes  that  the  target  is  in jth

motion model.  At time k,  the node closer  to the target  will  be more
trusted and the confidence level of node m is defined as
 

σm = 1/
√

(xm − x̂)2 + (ym − ŷ)2 + (zm − ẑ)2. (4)

u(C)
f , j =

∑M
m=1ω

m
j ×σm

u f , j(k) = u(C)
f , j /

∑3
j=1 u(C)

f , j

Therefore,  the  intensity  feature-based  probability  of  a  motion
model  is  calculated  by .  After  normalization,

.

u j u j(k |k−1)= Λ j(k−1)u j(k−1)
C(k−1) C(k−1)=

∑3
j=1Λ j(k−1)

u j(k−1) Λ j(k−1) u j=
1
3

In addition, the model probability estimated from the tracking error
is ,  and ,  where 

 and  is the likelihood function. Initially, .

û0, j(k) = β1u f , j(k)+β2u j
(k |k−1)

β1=β2=0.5

Combining  the  estimation  results  from feature  and  error  informa-
tion, the model probability is calculated by 

.  When  the  feature  and  the  error  play  an  equally  important
role in the estimation, ,  which can be adjusted based on
the detection error in practice.

X̂(k−1 |k−1)=
∑3

j=1 X̂ j(k−1 |k−1)û0, j(k) X̂ j
P(k−1

| k−1)=
∑3

j=1[P j(k−1 | k−1)+X̃ j(k−1 | k−1)X̃′j(k−1 | k−1)]û0, j(k)
X̃ j(k−1 |k−1)= X̂i(k−1 |k−1)− X̂(k−1 |k−1)

Based  on  the  model  probability,  the  input  of  the  tracking  filter  at
time k is , where  is the state
estimation  from  filter j.  Correspondingly,  the  covariance  is 

,
where .

Λ j(k)=

exp
{
− 1

2

[
εTj (k)S−1

i (k)ε j(k)]}/
√∣∣∣2πS j(k)

∣∣∣
In each model, the tracking is carried out with the standard Kalman

filter and detailed calculation refers to [16]. In the jth filter, the likeli-
hood  function  is  calculated  by 

,  which  reflects  the  deviation
between measurements and predictions in each filter.

u j(k) = Λ j(k)û0, j(k)/C0(k)
Using the tracking results from multiple filters, the weight of mul-

tiple models is once updated as .
X(k) =

∑3
j=1

X̂ j(k |k)u j(k) k+1
Finally, the output target state at time k is denoted by 

,  which  is  also  the  input  state  of  time .  The  flow
chart of the whole tracking method is shown in Fig. S4 in Appendix.

Q = 10−3

Simulation example: Monte Carlo experiments are conducted in a
3D scenario on a computer with the Microsoft  Windows 10 System
using the software MATLAB R2021b. When a non-cooperative tar-
get  invades  the  ocean  region,  it  is  assumed  that  four  nodes  in  the
UWSN can continuously detect the target together. The positions of
these nodes are (−400 m, −400 m, 0 m) , (−350 m, 700 m,10 m), (800 m,
−300 m, 5 m) and (700 m, 600 m, 0 m). The motion state of the non-
cooperative  maneuvering  target  transforms  among  CV,  CA  and  CT
models during the period of 150 s, and the initial state of the target is
(−350, 3, 0, −350, 2, 0, 80, 0, 0). In the simulation, the motion model
changes  every  20  seconds,  and  the  movement  error .  The
position,  velocity,  and  acceleration  on  the x-axis  of  the  target  in  an
experiment  are  shown  in Fig. 1,  where  grey  lines  represent  the
moment when the motion state of the target changes.

0.5 10

In the simulation, the detected signal frequency is 200 Hz. Accord-
ing  to  the  research  [17],  the  average  errors  of  DOA estimations  are
set as  rad and the measurement variance is approximately  m.
The turning speed of the CT model is set as 0.5 rad/s. When the tar-
get  is  similar  to  the  moving  destroyer,  parameters a and b of  the
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Fig. 1. Real target state on the x-axis.
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Qc = 0.2intensity  model  are  set  as  80  dB  and  3  dB/m/s,  and  [18].
The feature of the signal intensity received by a node is displayed in
Fig.  S5  in  Appendix,  from  which  each  node  estimates  the  possible
motion model that the target may follow.

In  the  central  node,  100  tracking  experiments  are  conducted  with
different methods and the root means square error (RMSE) is used to
illustrate  the  results.  In Fig. 2,  the  tracking  results  of  our  proposed
FAMM  algorithm  are  compared  with  several  algorithms:  the  best
multi-model  (BMM)  [6],  the  original  IMM  [7],  the  adaptive  IMM
(AIMM)  [10]  and  another  adaptive  IMM  methods  [11].  Specific
steps of these algorithms can be found in these references.
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Fig. 2. RMSE of tracking with different methods.
 

Fig. 2 shows that  our  algorithm achieves  the  most  accurate  track-
ing results among these methods. The BMM selects only one model
based  on  error  but  the  model  judgement  is  often  wrong.  The  IMM
relies  on  error  and  the  state  transition  probability,  but  its  Markov
transition probability  matrix is  fixed,  which requires  sufficient  prior
information and history data of target motion. In addition, it ignores
the  irrationality  of  the  transition  matrix  designation,  which  make  it
difficult  to  adapt  to  different  targets  and  environments.  Adaptive
methods can dynamically regulate the matrix between different mod-
els.  However,  the  first  AIMM only  works  well  for  two models,  but
not for three models or more. The other AIMM improves the track-
ing accuracy effectively but still has some problems in timely model
switching.

In contrast, our proposed algorithm achieves the smallest error dur-
ing  both  stable  tracking  and  model  switching  periods.  To  demon-
strate the improvement, we list the specific percentage of error reduc-
tion  compared  to  localization  and  the  second  AIMM  algorithms  in
Table 1. The table shows that our filter significantly reduces position-
ing  error,  and  achieves  better  results  than  the  AIMM  in  all  states,
especially during the model switching process. Besides, the computa-
tion  time  and  communication  burden  do  not  increase  significantly.
Other 4 methods do not consider multiple nodes with different confi-
dence levels. In practice, the FAMM method can adjust according to
the  application  environment  and  obtain  better  effect  for  target  of
interest.
 

Table 1.  Comparision of Accuracy Improvement

Comparison (%) Model switch CV CA CT
With position 44.15 42.23 35.87 45.96
With AIMM2 18.07 4.12 3.09 1.18

 
 

Conclusion: In  this  letter,  we  investigate  the  correlation  between
the intensity feature of underwater acoustic signals received by pas-
sive  nodes  and  the  motion  of  underwater  targets.  A  feature-assisted
multi-model  maneuvering  target  tracking  method  is  proposed  based
on  a  multi-node  underwater  sensor  network.  Feature  information  is
used to predict the tracking model and the tracking error is combined
to adjust the probability of multiple models in the center. Precise tar-
get  tracking  is  realized  in  the  center  based  on  the  multi-model

Kalman  filter.  Compared  to  the  IMM-based  algorithm,  our  FAMM
method avoids reliance on motion state transition information. More-
over, the algorithm exhibits advantages in information fusion among
different nodes. Simulation results show that the proposed algorithm
improves  tracking  accuracy  in  both  the  model  transition  and  stable
processes.  In  summary,  the  proposed  FAMM  is  effective  to  track
non-cooperative maneuvering target in underwater environments.
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Appendix: Supplementary  material  of  this  letter  can  be  found  in
links https://doi.org/10.57760/sciencedb.10840.
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