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Letter 

Control of 2-D Semi-Markov Jump Systems: A View 
from Mode Generation Mechanism 

Yunzhe MenG , Jian SunG , and Jie Chene 
Dear Editor, 

Two-dimensional (2-D) systems have wide applications in image 
data processing, gas absorption and fluid dynamics analysis [1]-[3]. 
When there exist abrupt changes in 2-D systems, they are usually 
modeled by 2-D Markov jump systems (MJSs) or 2-D semi-Markov 
jump systems (SMJSs). This letter investigates the control of 2-D 
SMJSs based on a novel mode generation mechanism, which could 
avoid mode ambiguousness phenomenon caused by the evolution of 
system mode in two different directions. The criterion that guarantees 
the almost surely exponential stability of the system is obtained. 
A thermal process is studied to demonstrate the availability of the 
proposed method. 

Engineering background: A wide range of real-world systems 
have inherent 2-D dynamical structures, and the information broad­
casts in two directions in such systems. For example, the multipass 
metal rolling process is a typical type of linear multipass process 
in industrial manufacturing [4]. Its system dynamics depend not 
only on the time direction, but also on the batch direction. In the 
heat exchanger and long transmission line, system dynamics are 
determined by both time and position [5]. The Roesser state-space 
model was established to deal with linear image processing, and two­
state sets were used to describe system dynamics in two directions 
[6]. In this way, many methods for temporal systems can be extended 
to such a spatial model. In addition, Roesser model has drawn much 
attention attribute to its simple structure and intuitive form compared 
with other 2-D models such as Attasi model and Fomasini-Marchesini 
(FM) model [7] . In engineering, the machine may switch to different 
working modes or the parameter of components may be changed due 
to many factors, and it is important to ensure that the control strategy 
matches with working mode. In this regard, it is practical to consider 
2-D systems with jumping parameters. 

Related work: In recent years, 2-D MJSs have become a hot 
topic which focuses on the modeling of abrupt changes occurring to 
2-D systems. In [8], the authors designed a kind of asynchronous 
controller for 2-D MJSs based on the hidden Markov model. In [9], 
the Hoo control issue was addressed in the sense of finite-region. 
The sliding mode control was studied in [10], where a novel 2-D 
sliding surface was presented. Considering the existences of time 
delay and uncertainties in transition information, the stability analysis 
was investigated in [11]. The filtering problem was studied for 2-D 
MJSs with deficient mode information in [12]. To the best of our 
knowledge, the above works are based on an assumption that the 
transition probabilities in two directions are equal [13]. However, 
only one variable was used in these works to determine a system 
mode. When current modes in the horizontal and vertical direction 
are different, how to determine the next system mode becomes 
unclear. For instance, the mode in the horizontal direction switches 
from mode 2 to mode 3 (2 -+ 3), and the mode in the vertical 
direction switches from mode 1 to mode 3 (1 t 3). In this case, the 
transition probabilities in two directions are not equal, and we cannot 
determine the next system mode based solely on one direction. Such 
a phenomenon is named as mode ambiguousness. This problem can 
be eliminated by assuming that mode evolutions in two directions 
are identical all the time. Unfortunately, this assumption is too strict 
or may be unreasonable for a stochastic system. Furthermore, it 
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may be meaningless to consider the case that two mode evolution 
directions follow different transition probabilities, if the problem of 
mode ambiguousness is not removed. 

As is well known, the transition probability of discrete-time MJSs 
is constant, which is independent of the sojourn time [14], [15]. 
In many fault-tolerant systems, the transition rate function follows 
a bathtub curve, and it is time-varying. SMJSs could model such 
systems more accurately since their transition processes are governed 
by the sojourn time as well as transition probabilities. Based on the 
theories developed for SMJSs, many applications for 2-D SMJSs have 
also been launched, e.g., broadcast wireless network, edge detection 
techniques and inverse heat conduction [16]-[18]. System dynamics 
and the mode evolution process of 2-D SMJSs are more complex 
due to the effect of sojourn time on two directions. In this regard, 
how to avoid mode ambiguousness phenomenon in 2-D SMJSs is a 
crucial subject. Although 2-D SMJSs have a vast application prospect, 
they have not yet aroused attention in the control community, which 
motivates this letter. 

Our contributions: Motivated by the discussions above, this letter 
makes attempt to investigate the control problem of 2-D SMJSs. The 
contributions are: 1) The designed controller can obtain mode infor­
mation more accurately by removing mode ambiguousness problem, 
which improves its adaptability to abrupt changes in the system. 2) 
By introducing adjustment parameters and sojourn time, the ability of 
the controller to stabilize the system can be enhanced. 3) The almost 
surely exponential stability condition is established by introducing 
some concepts in the switched systems. 

Notation: Throughout the paper, z+ is the positive integer and 
Z~n is the integer no less than n. lE{ ·} denotes the mathematical 
expectation. Symbol "*" denotes the symmetric term, and ()' is the 
matrix transpose. Amin ( ·) is the smallest eigenvalue of a matrix. 

Problem statement: t'onsider the following 2-D SMJSs in Roesser 
model: 

x+(i,j) = Ao(i,j)x(i,j) + Bo(i,j)u(i,j) (1) 

where 

( • ·)- [ xh(i,j) ] +(· .) _ [ xh(i+ l,j) ] 
x i,J - xv(i,j) ,x i,J - xv(i,j + l) 

A . . _ [ A10(i ,i ) A20(i ,j) ] B .. _ [ B10(i ,i ) ] 
O(i ,3 ) - A30(i,i) A40(i ,j) ' O(i ,3) - B20(i,i) 

and xh(i,j), xv(i,j), u(i , j) are the horizontal state, vertical state and 
control input, respectively. System matrices are governed by a semi­
Markov chain 0(i,j), and it is noted that 0(i,j) only depends on the 
value of i + j . Define k1 as the time index of the Ith jump, and w 1 is 
the index of system mode of the Ith jump. When i + j = k E [k1 , k1+1), 
we denote 0(i , j) = 0k = p E § = {l, 2, .. . s}. The sojourn time of mode 
pis defined by Tp = kl+ 1 - k1, which satisfies lE{Tp} = ap E z+. 
:rhe_ transition probability matrix of the embedded chain { w 1, I E z+} 
1s given by 

II= [7rpq]sxs, Pr{ tv1+1 = qlrv1 = p} = 1rpq (2) 

where O ~ 7rpq ~ 1, p -I q, 1rPJ' = 0. As stated in [19], the embedded 
Markov chain has a unique stationary distribution 

w = [ w1 w2 Ws ] , wIT = w, Wp > 0, Ls Wp = 1, 'rip E §. 
p=l 

The boundary conditions (Xo , Qo) of system (1) are 

Xo = {xh(O,j),xv(i,O)li,j E Z},Qo = {0(0,j),0(i,O)li,j E Z}. (3) 

Assumption 1 [8]: Assume that Xo satisfies the following condition: 
N 

lim lE{'°'(llxh(O,n)ll2 + llxv(n,0)11 2 )} < oo. (4) 
N-tOC> L.,; 

n=O 

Control objectives: The main objectives are to employ the proposed 
mode generation mechanism to avoid mode ambiguousness problem, 
and to design a state feedback controller u(i,j) = Ko(i ,j)x(i,j) = 
[ K10(i,j) K20(i,j) ] x(i,j) to stabilize system (1). 

Mode ambiguousness problem: In the previous works about 2-D 
MJSs, the transition probability satisfies 

Pr{0(i + 1, j) =ql0(i , j) =p} = Pr{0(i, j + 1) =ql0(i,j) =p} =7rpq (5) 

besides, transition probabilities of the horizontal and vertical directions 
are allowed to be different. The drawback is that these works need 
an implicit assumption, that is, the mode evolution in two directions 
are identical. Otherwise, the index of system mode cannot be simply 
defined by 0(i,j). We use Fig. l(a) to explain the phenomenon of 
mode ambiguousness, which shows the mode evolution process in two 
directions obeying condition (5), and we regard ( i, j) as a coordinate 



MEN et al.: CONTROL OF 2-D SMJSS: A VIEW FROM MODE GENERATION MECHANISM 259 

I 2 (a)4 5 6 7 i 

Fig. I. Two different mode generation mechanisms. 

that contains mode information. Denote symbols ➔ and t as the mode 
evolution in the horizontal direction and vertical direction, respectively. 
It can be indicated that the mode of a coordinate can evolve along two 
directions, e.g., (1 , 4) t (1, 5) and (1, 4) ➔ (2, 4). They follow the same 
transition probability 1r23, and the condition (5) can be guaranteed. In the 
green triangle area of Fig. l(a), there are two mode evolution processes: 
(1, 5) ➔ (2, 5) and (2, 4) t (2, 5) . It is a normal case of mode evolution, 
and both the horizontal and vertical modes could switch to the same mode 
with the transition probability 1r31. However, in the blue triangle area of 
Fig. l(a), evolution processes (3, 3) ➔ ( 4, 3) and ( 4, 2) t ( 4, 3) follow 
different transition probabilities ( 1r12 and 1r22). In this situation, bow 
to determine the mode of (4,3) if coordinates (3,3) and (4,2) switch 
to different modes? To avoid mode ambiguousness phenomenon, it is 
required that 0(i+ 1,j) = 0(i , j + 1), whereas no literature has explicitly 
stated this hypothesis. Furthermore, assuming that transition probabilities 
in both directions are different cannot avoid this problem effectively. 

Fig. l(b) shows a mode generation mechanism subject to the value of 
i + j . It is intuitive that coordinates in the line i + j = k have the same 
mode, which is regarded as the global mode (0k) - Actually, system mode 
evolves along each line with different k under this generation mechanism. 
Such a mechanism could ensure that the left-adjacent and lower-adjacent 
coordinates to a certain coordinate share the same global mode, thus 
avoiding mode ambiguousness phenomenon. For SMJSs, a system mode 
for different k may be the same due to the effect of sojourn time, which 
may create a mode region as shown in the blue area of Fig. l(b). 

The following lemma and definition are necessary for the stability 
analysis. 

Lemma l [19], [20]: Let Tp(k) and Np(k) be the total activation time 
and the occurrence number of mode p m time interval [O, k], then the 
following equations hold: 

. Tp(k) . Tp(k) - - WpUp 
hm --(-)=up, a.s., hm -- =wp, Wp = .,_-s , a.s. 

k-+oo Np k k-+oo k L-l=l w1u1 

Definition I [20], [21]: System (1) is almost surely exponentially 
stable (ASES), if for any boundary conditions Xo and Qo, the following 
condition holds: 

. lnI:i+j=k llx(i , j)ll2 
hmsup--~----- < O, a.s. (6) 

k-+oo k 

Main results: The stability criterion will be given in the form of linear 
matrix inequalities (LMis ), and gains of the controller will be determined. 

Theorem 1: 9iven sc~ars >.p =:- 0, µP :::_ 0 and up E Z2'. i, if there 
exist matrices Qp > 0, Up > 0, K1p and K2p, such that the following 
LMis hold v'p, q E § : 

[ <:1 i~ ] < 0 (7) 

(8) 

(9) 

where 

81 ~ diag{->.pQp, ->.p(Up - Qp - Q~)}, 83 ~ diag{-Qp, -Up} 

8 .!;. [ q;Aip + ~ipBip q;A~p + ~ipBbp ] 
2 - Q;A~p + KbpBip Q;A~p + K~PB~p 

and the definition of wp is the same as that in the Lemma 1, then system 
(1) under Assumption 1 is ASES. The controller gain can be determined 
by 

Kp = [ K1p K2p ] , Kp = [ K1pQ; 1 K2pQ; 1 ] . 

Proof: For any i + j = k E [k1, k1+1) and 0k = p, constructing a 
Lyapunov function as follows: 

V(x(i , j) , 0k) = x' (i , j)diag{Qe(i ,j) , U0(; ,j)}x(i, j) 

= x'(i , j)diag{Q0(L) ,Ul1(L)}x(i, j) (10) 

and in order to simplify the notation, we denote x(i,j) ~ x(k) for any 
i and j satisfying i + j = k. 

Since (Up - Qp)'Ui 1(Up - Qp) 2: 0, one bas -Q;u;1Qp:::; Up -
Qp - Q;. Then, it can be inferred from (7) that 

(11) 

where 01 
multiplying 
[ K1pQp 

diag{->.pQp , ->.pQ;u; 1Qp}. 
(11) with diag{Q;1,Q; 1,J, I}, and 
K2pQp ] , yields 

Pre- and post­
defining Kp = 

(12) 

which implies that 

V(x(k + 1), 0k+1) < >.0k V(x(k) , 0k)- (13) 

Hence, for any i, j satisfying i + j = k + 1 and i + j = k, we have 

L V(x(k + 1), 0H1) < >.0k L V(x(k), 0k)- (14) 
i+j=k+l i+j=k 

In addition, inequalities in (8) result in 

V(x (kl) , 0ki) < µ9kl V(x (kl) , 0kz _1 ), wkl -1 = q. (15) 

For k E [k1, k1+1), iterating inequalities (14) and (15) leads to 

L V(x (k),0k) < >.0k - i L V(x(k-1) ,0k- 1) 
i+j=k i+j=k-1 

< >.k0-ki °" V(x(k1),0ki) < µ9k >.k0-ki °" V(x(k1),0kz_1) 
k-1 ~ l k-1 ~ 

i+j=ki i+j=ki 

< rr _1 µ1;v(k) >.;p(k) E V(x(O) , 0o). (16) 
P- i+j=O 

According to Lemma 1, it can be established from conditions (9) and 
(16) that 

. In I:i+j=k V(x(k), 0k) 
hmsup----'-"------

k-+oo k 
I IT S Np(k), Tp(k) .._- V( ( ) 0 ) 

. n p=l µp Ap L-i+j=O X O , 0 < hmsup-~--------~-----
k-+oo k 
. I:i+j=O V(x(O) , 0o) 

= hmsup-~~-----
k-+oo k 

+ limsup I:)Np(k) lnµP + Tp(k) In Ap] = t wp(ln>.p+ lnµP) <O 
k-+oo p=l k k p=l Up 

which further implies inequality ( 6) since 

. lnI:i+j=k llx(i, j)ll2 
hmsup--~-----
k-+ oo k 

ln>.- 1 (diag{Q U }) ~ Inµ 
:::; limsup mm p, P + L.,, wp(ln>.p + __ P) < 0. 

k-+oo k p=l Up 

Therefore, system (1) is ASES recalling to Definition 1. ■ 
Remark 1: The existing literature about the control of discrete-time 

SMJSs is mainly based on the concept of semi-Markov kernel proposed 
in [22], and analyzes the u-error mean-square stability. However, the 
above method is hard to be extended to 2-D SMJSs due to the existence 
of matrix power and the truncation on sojourn time. By introducing the 
concepts of activation time T-1/k) and jump number Np(k) which are 
commonly employed in switched systems, the matrix power could be 
avoided in this letter. And the almost surely exP.onential stability criterion 
can be established by using stationary distnbution w and Lemma 1. 
Condition (8) is a typical stability constraint in switched systems. 

Simulations: This section provides an example to verify the effec­
tiveness of the proposed approach. Consider a thermal process described 
by 

where T(x, t) denotes the temperature at space x E [O, x 8 ] and time 
t E [O, oo) . Constant coefficients he(x ,t ) and fe( x,t) are subject to a 
semi-Markov signal 0(x , t). According to [23], the state-space model is 
given by 

x+(i,j) = Apx(i, j) + Bpu(i , j),p = 0(i,j) = 1, 2,3 
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(a) Horizontal open-loop response (b) Horizontal closed-loop response 

(d) Vertical open-loop response 

(e) Vertical closed-loop response 

Fig. 2. Simulation results. 

(f) Platform of mode 

where 

A p = [ t ! 1 - f ! 1_ h ptlt ] , Bp = [ 
x h(i , j) = T(i-1 , j) ,xv (i,j) = T(i,j) . 

0 
fptlt 

For different subsystems, relevant parameters are taken as h1 = 1.25, 
h2 = 1.58, h3 = 2.86, Ji = 1, /2 = 0.5, /3 = 1, flt = 0.1 and tlx = 
0.1. Other simulation parameters are >.1 = 0.7, >.2 = 0.8, >.3 = 1.02, 
µ 1 = 1.1, µ 2 = 1.05 and µ!.l = 1.12. Assume that the sojourn time of 
each mode follows Poisson distribution, that is, T1 ~ Pois(3) + 1, T2 ~ 
Pois ( 4) + 1 and TI ~ Pois(5) + 1. Clearly, a1 = 4, a2 = 5, a 3 = 6. The 
transition probability matrix and the corresponding stationary probability 
matrix are 

II= [ 0~6 
0.58 

0.4 
0 

0.42 

0.6 ] 
004 , w = [ 0.3708 0.2906 

and it can be easily verified that condition (9) is satisfied. 

o.3386 l 

By solving Theorem 1, we get a feasible controller with the following 
gains: 

K1 = [ -10 1.25 l,K2 = [ -20 3.16 ],K3 = [ -10 2.86 ] . 

The boundary conditions are xh(0, j) = 7 (0::; j::; 20) and xv (i , 0) = 
-4. 7 (O ::; j ::; 30). Applying the designed controller to stabilize system 
(1), simulation results are presented in Figs. 2 and 3. It is obvious that 
the controller could stabilize the system effectively. Besides, Figs. 2( c) 
and 2(f) show the mode evolution process that follows rule (2). Seeing 
from the platform of Fig. 2( c ), the generated modes create multiple mode 
regions, which are consistent with Fig. l(b). 

Multiplying the system matrix Ap by a scalar fJ, and f3 max can be 
regarded as a performance evaluation indicator which reflects the the 
difficulty of stabilizing a system. We obtain a set of data of (>.1 ,f3ma11) 
by changing the value of >.1 , that is, (0.2, 0.6324), (0.3, 0.7745), 
(0.4, 0.8944) , (0 .5, 0.9999) and (0.6, 1.0954). It is obvious that a larger 
>.1 helps to stabilize the system. The value of >.1 is allowed to be larger 
if we mcrease a p, meanwhile, the condition (9) can be guaranteed. 

Conclusions: The control issue of 2-D SMJSs has been studied in 
this letter. Considering that a system mode can be generated from two 
directions in the Roesser model, which gives rise to mode ambiguousness 
phenomenon, a novel mode generation mechanism has been presented to 
avoid such a problem. The proposed mechanism has taken the effect 
of sojourn time into account. The almost surely exponential stability 
critenon has been obtained for the system based on the proposed 
mechanism. The developed method has been applied to the control of 
a thermal process. Future research topics may include 2-D SMJSs with 
time-delay and actuator saturation [24]-[26]. 
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