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   Dear Editor,
This letter is concerned with prescribed-time fully distributed Nash

equilibrium seeking for networked games under directed graphs. An
adaptive algorithm is proposed to ensure the convergence of all play-
ers  to  the  Nash  equilibrium  without  requiring  any  knowledge  of
global  parameters.  Moreover,  it  is  theoretically proved that  the con-
vergence  time  of  the  proposed  seeking  strategy  can  be  predefined
based on practical requirements. Finally, a numerical example is pre-
sented to validate the effectiveness of the proposed method.

As  a  key  concept  in  game  theory,  Nash  equilibrium  has  found
wide-ranging applications in practical engineering fields [1], [2]. As
a  result,  numerous  research  methods  have  been  proposed  for  the
design  and  analysis  of  distributed  Nash  equilibrium  seeking  strate-
gies depending only on the local  neighborhood information [3].  For
instance, a distributed Nash equilibrium seeking strategy for general
games was proposed by combining a leader-follower consensus pro-
tocol and a gradient play [4]. The problem of distributed Nash equi-
librium  seeking  was  investigated  for  networked  systems  with
bounded control inputs [5]. A distributed nonsmooth algorithm with
a projected differential  inclusion was proposed to solve the general-
ized  Nash  equilibrium seeking  problem for  multi-cluster  games  [6].
In  the  presence  of  external  disturbances,  a  robust  distributed  algo-
rithm was proposed to drive all agents to reach the Nash equilibrium [7].

Note  that,  in  all  aforementioned  results,  the  parameter  design  of
distributed  Nash  equilibrium seeking  strategies  is  always  dependent
on the global information such as the eigenvalues of Laplacian matri-
ces, which may be difficult to obtain in practical implementations. As
a result, there is a growing demand for the development of fully dis-
tributed strategies which can be effective in avoiding global informa-
tion  [8].  In  [9],  adaptive  approaches  were  utilized  to  achieve  fully
distributed Nash equilibrium seeking in networked games with undi-
rected  graph.  Under  directed  graph,  a  fully  distributed  approach  to
finding  the  Nash  equilibrium  was  presented  for  high-order  players
subject to actuator limitations [10].

While  significant  progress  has  been  made  in  the  fully  distributed
Nash  equilibrium  seeking,  practical  scenarios  still  pose  some  chal-
lenging issues in terms of algorithm convergence speeds. It should be
mentioned  that  the  distributed  Nash  equilibrium  seeking  strategies
[9],  [10]  can  only  ensure  the  asymptotic  convergence.  However,  in
certain  engineering  applications,  it  may  be  required  to  realize  the
convergence  of  algorithms  within  a  prescribed  time  rather  than  an
infinity time [11]. To meet this requirement, various distributed con-
trol strategies have been presented. For example, a distributed time-
varying  seeking  strategy  that  utilizes  a  prescribed-time  observer
under  undirected  graphs  was  proposed  to  achieve  the  convergence
within  a  set  time  [12].  Utilizing  the  distributed  motion-planning
method  and  the  gradient  search,  a  class  of  prescribed-time  dis-
tributed  Nash  equilibrium  seeking  algorithms  have  been  developed
for  first  and second order  multi-agent  systems [13].  However,  these
distributed methods require global information of the game and thus

are  not  fully  distributed.  Therefore,  it  is  necessary  and  important  to
design  a  prescribed-time  fully  distributed  Nash  equilibrium  seeking
strategy  under  directed  graphs,  which  is  the  motivation  behind  this
letter.

Building on the analysis above, this letter makes the following con-
tributions:  1)  A  new prescribed-time  fully  distributed  Nash  equilib-
rium seeking  strategy  under  directed  graphs  is  proposed  by  design-
ing  an  adaptive  algorithm to  adjust  the  control  parameter  according
to the consensus error; 2) Theoretical analysis is conducted to prove
that the proposed strategy can make all agents convergent to the Nash
equilibrium  in  a  prescribed  time,  which  is  beneficial  for  practical
engineering applications with specific time constraints.
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Notations: The set of real numbers is denoted by . Let  and 
denote,  respectively,  the -dimensional  identity  matrix  and  the -
dimensional  column  vector  with  all  elements  being  1.  for

 stands for a diagonal matrix whose diagonal entries
are ,  successively.  Let 

 for .  and ,  respectively,
denote the minimum and maximum eigenvalue of a real and symmet-
ric matrix A. Let  be the Euclidean norm of a vector or the 2-norm
of a matrix and the symbol  denote the Kronecker product.
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Problem  formulation: Consider  a  game  with N players,  where
 denotes the set  of players.  Let  represent player

i’s  cost  function,  where  is  a  vector  of  all  play-
ers’ actions,  is the action of player i and  is a positive inte-
ger.  In  the  considered  game,  each  player  is  self-interested  to  mini-
mize its own cost function, i.e.,
 

min
xi
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xi

fi(xi, x−i) (1)
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Then, we present the following Nash equilibrium definition.

x∗ = (x∗i , x
∗
−i)

xi ∈ Rni i ∈ v,

Definition 1 ([3]):  Nash equilibrium is  an action profile  on which
no player can reduce its cost by unilaterally changing its own action,
i.e.,  an  action  profile  is  a  Nash  equilibrium  if  for  all

, 
 

fi(x∗i , x
∗
−i) ≤ fi(xi, x∗−i). (2)

G(v, ε)
A = (ai j)N×N

e ji ∈ ε
ei j ∈ ε ai j > 0

ai j = 0 aii = 0, i ∈ v

In this letter, it is assumed that players can communicate with their
neighbors via a directed graph denoted as , where ε denotes the
set  of edge among the players.  be the adjacent matrix.
For  a  directed  communication  topology,  edge  indicates  that
player j can receive information from player i. If , then ;
otherwise, .  Moreover, .  A  directed  communica-
tion  graph  is  strongly  connected  if  there  exists  a  directed  path
between any pair of distinct players.

The following assumptions promote the Nash equilibrium seeking.
i ∈ v fi(x)

∇i fi (x) ≜ ∂ fi(x)
∂xi

li

Assumption  1:  For ,  the  player’ objective  function  is
twice-continuously differentiable and  is globally Lip-
schitz, i.e., there exists a positive constant  such that
 

||∇i fi(x)−∇i fi(z)|| ≤ li||x− z|| (3)
x,z ∈ RN̄ N̄ =

∑N
i=1 nifor all , where .

x,z ∈ RN̄ [∇i fi(�)
]
vecAssumption 2: For all ,  is strongly monotone

 

(x− z)T ([∇i fi(x)
]
vec− [∇ifi (z)] vec

) ≥ m||x− z||2 (4)
where m is a positive constant.

Remark 1: Assumption 1 is a solid base for guaranteeing the exis-
tence  of  gradient  vectors  with  continuous  differentiability.  Assump-
tion  2  indicates  the  strong/strict  monotonicity  of  pseudo-gradient
vectors, guaranteeing the existence and uniqueness of the Nash equi-
librium.

Assumption  3:  The  communication  topology  is  directed  and
strongly connected.

Main results: Note that in a networked game, each player’s action
and objective function are only available for itself but not others. As
a result,  the traditional centralized algorithm is no longer applicable
due  to  a  lack  of  global  information  about  all  players’ action  and
objective functions. In order to solve this problem, it is supposed that
each  player  can  generate  a  local  estimate  on  the  players’ actions x.
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Let  be player i’s estimate on player j’s action  in the game, and
 denote  player i’s  estimates  on  the  players’

actions.  Then,  we  design  a  fully  distributed  prescribed-time  Nash
equilibrium seeking strategy as
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θi j pi j(0) > 0, pi j(t) > 0 T > 0where  is the adaptive gain of player i, , 
is the set convergence time, and γ is a time-varying parameter shown
later.
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Let , , 

,  
 Then,  defining , , ,

and , one can obtain that
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Ξ = diag {ξ1, ξ2, . . . , ξN }

ξi < 1 Q ∈ R(NN̄)×(NN̄)

MT (Ξ⊗ IN̄×N̄ )+ (Ξ⊗ IN̄×N̄ )M = Q.

where ,  and .  It
is not difficult to know that  is Hurwitz, which implies that there
exist  a  real  positive-definite  diagonal  matrix 
with  and a symmetric positive definite matrix 
such that 

In the following, we present the theorem of the letter.

γ̇ = 1
(T−t)t γ (0) > 0

Theorem  1:  Under  Assumptions  1−3  hold,  fully  distributed  Nash
equilibrium seeking can be achieved by (5)−(8) in a predefined time
T, if the time-varying parameter satisfies , where  is
the initial condition.
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Proof: To facilitate the proof, we define positive constants 
 that  satisfy , ,  where

 is the largest value of  for  and .
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Define the Lyapunov candidate function as ,
, , 

,  where  with 
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so the following inequality is obtained by 

. [∇i fi (x∗)
]
vec = 0

V̇2=− 1
T−t (x− x∗)T ([∇i fi (yi)

]
vec −

[∇i fi(x∗)
]
vec

)≤ maxi∈v{li}
T−t ∥x− x∗∥×

∥e∥− m
T−t ∥x− x∗∥2

Under Assumption 2 and , it is easy to obtain that
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V3Taking the time derivative of  yields

 

V̇3 =

N∑
i=1

N∑
j=1

2e−γtξ jθi jη
T
i jη̇i j +

1
T − t

N∑
i=1

N∑
j=1

ξ j
((

ri jη
T
i j

)
ηi j

)

− (γ̇t+γ)
N∑

i=1

N∑
j=1

e−γt

2
ξ j

(
r2

i j +2ri j pi j
)

≤ |
N∑

i=1

N∑
j=1

2ηT
i jθi jξ jmi j ẋ j| −
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 where λ is a positive constant. Hence, 
 from which it is clear that  To this end, the con-
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clusions of Theorem 1 can be obtained.
Remark 2:  It  is  noted that,  due to  the  presence of  communication

networks,  the  algorithm (5)−(8)  will  be  inevitably  subject  to  a  vari-
ety of communication constraints such as communication delays and
data  losses.  As  a  result,  it  is  an  interesting  topic  to  further  consider
the  effects  of  such  communication  constraints  on  distributed  pre-
scribed-time Nash equilibrium seeking strategy, which will be inves-
tigated in our future research work. ■

eγt
T−t

Remark 3: Different from the existing literature [4], [9], [10], [13],
Theorem 1 shows clearly that the proposed distributed Nash equilib-
rium  seeking  strategy  is  fully  distributed  by  utilizing  a  PI  adaptive
algorithm to avoid the global information under a directed graph, and
also ensures the prescribed convergence time T by introducing  in
the adaptive parameter (8).

xi ∈ R2
Numerical  example: Consider  a  5-player  game  in  which  each

player’s action . Let
 

f1(x) =3x2
11 +2x2

12 +2x1x3 − x11 − x12

f2(x) =2.5x2
21 +3x2

22 +2x2x4 −2x21 −2x22

f3(x) =5x2
31 +4x2

32 +6x3x5 −3x31 −3x32

f4(x) =6x2
41 +5x2

42 +4x4x2 −4x41 −4x42

f5(x) =7x2
51 +6x2

52 +2x5x3 −5x51 −5x52

xi = [xi1, xi2]T x = [xT
1 , x

T
2 , x

T
3 , x

T
4 , x

T
5 ]T

x∗ x∗ = [−0.012,−0.017,0.308,0.230,0.041,0.043,
0.230,0.308,0.259,0.297]

x(0) = [−1,−3,1.5,−2,−3,2,3,
1,−2,4]T

T = 3.5

yi j x j

in which , . It is calculated that
 of  the  game  is 

.  The  strongly  connected  communication
topology is given in Fig. 1. In addition, 

, and the initial values of all other variables are zero. Set the
prescribed  convergence  time  as  s  for  the  proposed  seeking
strategy. Correspondingly, the simulation result of players’ actions in
Fig. 2 indicates  that  they  converge  to  the  actual  Nash  equilibrium.
From Fig. 3, it is demonstrated that  is convergent to  at the pre-
scribed  convergence  time  3.5  s.  Thus,  the  proposed  prescribed-time
control strategy has been numerically verified.
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2

3 4
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Fig. 1. Strongly connected communication topology.
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Fig. 2. The trajectories of players’ actions.
 

Conclusion: This letter introduces a new prescribed-time fully dis-
tributed  Nash  equilibrium  seeking  strategy  under  directed  graphs.
The  prescribed-time  seeking  strategy  does  not  require  any  global
information  on  communication  topology  and  allows  to  set  the  con-
vergence  time  in  advance  based  on  specific  requirements.  Future
research will be focused on fully distributed Nash equilibrium seek-
ing  in  presence  of  cyberattacks  [14]  and  communication  constraints
[15].

Acknowledgments: This work was supported by the National Nat-
ural Science Foundation of China (NSFC) (62073171) and the Natu-
ral Science Foundation of Jiangsu Province (BK20200744).

References
 J.  Guo and I.  Harmati, “Evaluating semi-cooperative Nash/Stackelberg
Q-learning  for  traffic  routes  plan  in  a  single  intersection,” Control
Engineering Practice, vol. 102, p. 104525, 2020.

[1]

 A.  Deligiannis,  A.  Panoui,  S.  Lambotharan,  and  J.  A.  Chambers,
“Game-theoretic power allocation and the Nash equilibrium analysis for
a  multistatic  MIMO  radar  network,” IEEE  Trans.  Signal  Processing,
vol. 65, no. 24, pp. 6397–6408, 2017.

[2]

 M. Ye,  Q.-L.  Han,  L.  Ding,  and S.  Xu, “Distributed  Nash equilibrium
seeking in games with partial decision information: A survey,” Proc. the
IEEE, vol. 111, no. 2, pp. 140–157, 2023.

[3]

 M.  Ye  and  G.  Hu, “Distributed  Nash  equilibrium  seeking  by  a
consensus  based  approach,” IEEE  Trans.  Automatic  Control,  vol. 62,
no. 9, pp. 4811–4818, 2017.

[4]

 M.  Ye, “Distributed  Nash  equilibrium  seeking  for  games  in  systems
with bounded control  inputs,” IEEE Trans.  Automatic Control,  vol. 66,
no. 8, pp. 3833–3839, 2020.

[5]

 X.  Zeng,  J.  Chen,  S.  Liang,  and  Y.  Hong, “Generalized  Nash
equilibrium  seeking  strategy  for  distributed  nonsmooth  multi-cluster
game,” Automatica, vol. 103, pp. 20–26, 2019.

[6]

 M. Ye,  D.  Li,  Q.-L.  Han,  and  L.  Ding, “Distributed  Nash  equilibrium
seeking  for  general  networked  games  with  bounded  disturbances,”
IEEE/CAA J. Autom. Sinica, vol. 99, pp. 1–12, 2022.

[7]

 L.  Ding,  J.  Li,  M.  Ye,  and  Y.  Zhao, “Fully  distributed  resilient
cooperative  control  of  vehicular  platoon  systems  under  DoS  attacks,”
IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 937–940, 2022.

[8]

 M.  Ye  and  G.  Hu, “Adaptive  approaches  for  fully  distributed  Nash
equilibrium  seeking  in  networked  games,” Automatica,  vol. 129,  p.
109661, 2021.

[9]

 M.  Ye,  Q.-L.  Han,  L.  Ding,  and  S.  Xu, “Fully  distributed  Nash
equilibrium  seeking  for  high-order  players  with  actuator  limitations,”
IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1434–1444, 2023.

[10]

 B. Ning, Q.-L. Han, Z. Zuo, L. Ding, Q. Lu, and X. Ge, “Fixedtime and
prescribed-time  consensus  control  of  multiagent  systems  and  its
applications:  A  survey  of  recent  trends  and  methodologies,” IEEE
Trans. Industrial Informatics, vol. 19, no. 2, pp. 1121–1135, 2022.

[11]

 Q.  Tao,  Y.  Liu,  C.  Xian,  and  Y.  Zhao, “Prescribed-time  distributed
time-varying  Nash  equilibrium  seeking  for  formation  placement
control,” IEEE Trans. Circuits and Systems Ⅱ: Express Briefs, vol. 69,
no. 11, pp. 4423–4427, 2022.

[12]

 Y.  Zhao,  Q.  Tao,  C.  Xian,  Z.  Li,  and  Z.  Duan, “Prescribed-time
distributed  Nash  equilibrium  seeking  for  noncooperation  games,”
Automatica, vol. 151, p. 110933, 2023.

[13]

 X.  Ge,  Q.-L.  Han,  Q.  Wu,  and  X.-M.  Zhang, “Resilient  and  safe
platooning control of connected automated vehicles against intermittent
denial-of-service  attacks,” IEEE/CAA  J.  Autom.  Sinica,  vol. 10,  no. 5,
pp. 1234–1251, 2023.

[14]

 X. Ge, S. Xiao, Q.-L. Han, X.-M. Zhang, and D. Ding, “Dynamic event-
triggered  scheduling  and  platooning  control  co-design  for  automated
vehicles over vehicular ad-hoc networks,” IEEE/CAA J. Autom. Sinica,
vol. 9, no. 1, pp. 31–46, 2022.

[15]

 

1.5

1.0

0.5

0

−0.5

−1.0

−1.5Th
e 

pl
ay

er
s’ 

es
tim

at
es

 o
f x

0 0.5 1.0 1.5
t (s)

2.0 2.5 3.53.0

 
yi j i, j ∈ {1,2, ,5}Fig. 3. The estimates  on players’ actions x for all .

 

QIAN AND DING: PRESCRIBED-TIME FULLY DISTRIBUTED NASH EQUILIBRIUM SEEKING STRATEGY IN NETWORKED GAMES 263 


