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Letter

Prescribed-Time Fully Distributed Nash Equilibrium
Seeking Strategy in Networked Games

Cheng Qian  and Lei Ding ', Senior Member, IEEE

Dear Editor,

This letter is concerned with prescribed-time fully distributed Nash
equilibrium seeking for networked games under directed graphs. An
adaptive algorithm is proposed to ensure the convergence of all play-
ers to the Nash equilibrium without requiring any knowledge of
global parameters. Moreover, it is theoretically proved that the con-
vergence time of the proposed seeking strategy can be predefined
based on practical requirements. Finally, a numerical example is pre-
sented to validate the effectiveness of the proposed method.

As a key concept in game theory, Nash equilibrium has found
wide-ranging applications in practical engineering fields [1], [2]. As
a result, numerous research methods have been proposed for the
design and analysis of distributed Nash equilibrium seeking strate-
gies depending only on the local neighborhood information [3]. For
instance, a distributed Nash equilibrium seeking strategy for general
games was proposed by combining a leader-follower consensus pro-
tocol and a gradient play [4]. The problem of distributed Nash equi-
librium seeking was investigated for networked systems with
bounded control inputs [5]. A distributed nonsmooth algorithm with
a projected differential inclusion was proposed to solve the general-
ized Nash equilibrium seeking problem for multi-cluster games [6].
In the presence of external disturbances, a robust distributed algo-
rithm was proposed to drive all agents to reach the Nash equilibrium [7].

Note that, in all aforementioned results, the parameter design of
distributed Nash equilibrium seeking strategies is always dependent
on the global information such as the eigenvalues of Laplacian matri-
ces, which may be difficult to obtain in practical implementations. As
a result, there is a growing demand for the development of fully dis-
tributed strategies which can be effective in avoiding global informa-
tion [8]. In [9], adaptive approaches were utilized to achieve fully
distributed Nash equilibrium seeking in networked games with undi-
rected graph. Under directed graph, a fully distributed approach to
finding the Nash equilibrium was presented for high-order players
subject to actuator limitations [10].

While significant progress has been made in the fully distributed
Nash equilibrium seeking, practical scenarios still pose some chal-
lenging issues in terms of algorithm convergence speeds. It should be
mentioned that the distributed Nash equilibrium seeking strategies
[9], [10] can only ensure the asymptotic convergence. However, in
certain engineering applications, it may be required to realize the
convergence of algorithms within a prescribed time rather than an
infinity time [11]. To meet this requirement, various distributed con-
trol strategies have been presented. For example, a distributed time-
varying seeking strategy that utilizes a prescribed-time observer
under undirected graphs was proposed to achieve the convergence
within a set time [12]. Utilizing the distributed motion-planning
method and the gradient search, a class of prescribed-time dis-
tributed Nash equilibrium seeking algorithms have been developed
for first and second order multi-agent systems [13]. However, these
distributed methods require global information of the game and thus
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are not fully distributed. Therefore, it is necessary and important to
design a prescribed-time fully distributed Nash equilibrium seeking
strategy under directed graphs, which is the motivation behind this
letter.

Building on the analysis above, this letter makes the following con-
tributions: 1) A new prescribed-time fully distributed Nash equilib-
rium seeking strategy under directed graphs is proposed by design-
ing an adaptive algorithm to adjust the control parameter according
to the consensus error; 2) Theoretical analysis is conducted to prove
that the proposed strategy can make all agents convergent to the Nash
equilibrium in a prescribed time, which is beneficial for practical
engineering applications with specific time constraints.

Notations: The set of real numbers is denoted by R. Let [, and 1,,
denote, respectively, the n-dimensional identity matrix and the m-
dimensional column vector with all elements being 1. diag{p;;} for
i,je€{l,2,...,N} stands for a diagonal matrix whose diagonal entries
are pi1, P12,.---PIN> P21.---» PNN, successively. Let [w;lvec = [wlT,
wg,...,w{]]T for i=1,2,...N. Apin(A) and Amax(A), respectively,
denote the minimum and maximum eigenvalue of a real and symmet-
ric matrix 4. Let || -|| be the Euclidean norm of a vector or the 2-norm
of a matrix and the symbol ® denote the Kronecker product.

Problem formulation: Consider a game with N players, where
v={1,2,...,N} denotes the set of players. Let fj(x) represent player
i’s cost function, where x = [xlT,xg ,m,xﬁ]T is a vector of all play-
ers’ actions, x; € R" is the action of player i and n; is a positive inte-
ger. In the considered game, each player is self-interested to mini-
mize its own cost function, i.e.,

min f;(x) or min fi(x;,x—;) (1)
Xi Xi
1T T T T T1T
where x_; —[xl,xz,...,xifl,xprl,...,x 1.

Then, we present the following Nash equilibrium definition.

Definition 1 ([3]): Nash equilibrium is an action profile on which
no player can reduce its cost by unilaterally changing its own action,
i.e., an action profile x* = (x7,x*;) is a Nash equilibrium if for all
xi€RM jev,

Silxl, x5 < filxi, x5). (2)

In this letter, it is assumed that players can communicate with their
neighbors via a directed graph denoted as G(v, &), where ¢ denotes the
set of edge among the players. A = (a;j)nxn be the adjacent matrix.
For a directed communication topology, edge ej; € & indicates that
player j can receive information from player i. If ¢;; € &, then a;; > 0;
otherwise, a;; = 0. Moreover, a;; =0, i€v. A directed communica-
tion graph is strongly connected if there exists a directed path
between any pair of distinct players.

The following assumptions promote the Nash equilibrium seeking.

Assumption 1: For iev, the player’ objective function f;(x) is
twice-continuously differentiable and V; f; (x) = %
schitz, i.e., there exists a positive constant /; such that

IVifi(x) = Vi fi@Il < Lillx =zl 3)

for all x,z € RN, where N = Zfil n;.

is globally Lip-

Assumption 2: For all x,z € RV, [V, £(.)] vec is strongly monotone
(x=2)" ([Vifi(0)] vee - [Vif; (2)] vec) > ml|x— 2] @

where m is a positive constant.

Remark 1: Assumption 1 is a solid base for guaranteeing the exis-
tence of gradient vectors with continuous differentiability. Assump-
tion 2 indicates the strong/strict monotonicity of pseudo-gradient
vectors, guaranteeing the existence and uniqueness of the Nash equi-
librium.

Assumption 3: The communication topology is directed and
strongly connected.

Main results: Note that in a networked game, each player’s action
and objective function are only available for itself but not others. As
a result, the traditional centralized algorithm is no longer applicable
due to a lack of global information about all players’ action and
objective functions. In order to solve this problem, it is supposed that
each player can generate a local estimate on the players’ actions x.
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Let y;; be player i’s estimate on player j’s action x; in the game, and
yi= [yiT1 ,yiz, R yl?;v]T denote player i’s estimates on the players’
actions. Then, we design a fully distributed prescribed-time Nash
equilibrium seeking strategy as

i =—7—Vifi() (%)

Yij = =7 0imij> 0ij = pij+mmij (6)

Dij = 7" nijmij @)
N

77ij=Zaik(}’ij_ykj)"‘aij(}’ij_xj) (®)
k=1

where 0;; is the adaptive gain of player i, p;;(0) >0, p;j()>0, T >0
is the set convergence time, and y is a time- -varying parameter shown
later.

Let A :diag{aij®ln,.}, @:diag{eij®lni},
I5+Ao,

M= (mij)NXN =IL®
n=[m".nl... ,n,TV]T,ni— [y ,niTN]T,y=[y1T,y§,--.,
yN]T Then, defining e;; = y;j - x;, r,]—r] nij, R= dlag{ln,®ru}
and P = diag {I,,i ® pi j}, one can obtain that

1
¢=y-ly@i=———OMe-ly@i )

1
f]:Mé:_T_—l‘M@Me_ (10)

where @ =P+R, e= [elT,ezT,...,eK,]T and ¢; = [el.Tl,eiTz, ,elN]T It
is not difficult to know that —M is Hurwitz, which implies that there
exist a real positive-definite diagonal matrix = = diag{¢1,é2,....éN)
with & < 1 and a symmetric positive definite matrix Q € RIVV*X(VN)
such that MT (E@ Iy, y) + (E@ Iy y)M = Q0.

In the following, we present the theorem of the letter.

Theorem 1: Under Assumptions 1-3 hold, fully distributed Nash
equilibrium seeking can be achieved by (5)—(8) in a predefined time

T, if the time-varying parameter satisfies y = where y(0) >0 is
the initial condition.

Proof: To facilitate the proof, we define positive constants uy, uo,

L ievfli
€, o that satisfy Api, (Q)— ( ”12) €>0, o> %,
max;e, {/;} is the largest value ofl, fori e v and I, = 2N max;e, {/;}.

Zizlzjzlfjeijeij,
ot

& (2 +2rpij), Va=
_ w4 1 X
V—Zizlvl

with Pz
=2 VN max;e, {l;

M(AnN®%)

1
(T-ne>

where

Define the Lyapunov candidate function as V| =
iz =) (x-2), Va=3N 5N,
N N e, 2
Zi=1 Zj:] e (plj _P:‘j) 5
L1 +9P iy N+ 2 +o (T +maxie, {1;})
/lm‘m(M M)

get that V) = th ZNl‘fj

OQ¢ + TZ' llell* + 12 7 llx—x ||||e|| _,||e||2+T ;
&i=—g5 Vifii) = ——(V i 1) = Vifi(0) = 75 (Vifi(x) - V ﬁ(x s

S0 the followmg inequality is obtained by ||2_.eT (1n ®x)” < 7t t||e||2

where

i}. Then, we can
T

, and [

2:eT(1N®x)<—Le

, and

Under Assumption 2 and [V;f; (x*)],.. =0, it is easy to obtain that

VZ —__ —(x—x )T ([V fl(YZ ]Vec [V fl(-x )]vec )< max,a i [l — x ”X
llell - 72 [
Taking the time derivative of V3 yields

N N
Vs = Zzze ‘f] zﬂl,]?h] l_tZZé'((rijngj)’]ij)

i=1 j=1 i=1 j=1
N Ny
—(71+7)ZZT i\Tii +2rul’l/)
i=1 j=
N N
|ZZZnUHU$jm,]x]| - MT©QOMe

i

1 j=1

r +2r,Jp,J)

Taking the time derivative of V4 gives Vy < T ~ Zl 1 Z} 1(5Ptj’hj><
nijpij+ ;TIUTIU—Pijfll-jnij)—()’t*')’)z ZJ L (pij - P,j)zv
Hence,

1
v3+v4<|222n” b1 mij |~ — " MT©QOMe
i=1 j=1

1 12
+——eel MT (P2 + Rz)Me et Ze" MT Me

T-t

N N
1 T asT p* :
———e M P"Me—(yt+
e e=(y y;;

N
~G1+7)

i=1 j

— t

r +2r,jp,j)

e"’t 2
5= Pij)
where P* = diag {Inj ® pl’.‘j} and a positive constant € is defined. Then,
we can get that Zﬁlzjiﬂnfj%fjmuxj < ﬁ( : ) TMT®?

M1 H2
Amax (MT M)
s OEIDE (1 Nell2 + N2 [lx = x* ), where g

Mz

_ 2
(:®IN><1V) Me +
and pp are defined. Since Iy vy —(E® INXN)>O, one has

0’ >0 (E@INXN)Z. Hence,

VSTZ_I_ZHEHZ_Tl_t“x_X* 2 12+maXiEv{li}||x_x*

T -

lell
1 (1 1
+—(—+—)eTMT®2Me
T-t\p1 o

Amax (MT M) 2 5
+ (T_t) (11 V1el? + 2V -2

A;
Awin (@) 7 )72 pe + 1 ee” T (P?+R*) M
T—1 T—t

— " MTP*Me

By using 6;j = pjj +rij, pij(0) > 0, p;;(f) > 0, one has
. 1 - 249
V< — + 9PN + = = Amin (P*) Amin (MTM)
T-t €

+ 0 (B + maxiey {1} llell

1 D> + max;e, {I;
+— (ﬂizyzNz —-m+ 2—'E‘){l})”x—x* 2
T-t o
N N _
1 e
T > —¢(riy + 2rijpij)
i=1 j=1
N N _
1 e 2
_T_ZZZ 2 (p,, p,,)
i=1 j=1
where & = Amax (MTM If p:fj and o meet p;kj >
i +9P iy N+ 22 +or (I +max;e, (1;}) T +max;e, {1i} .
/lmm(M M) o2y We conclude ﬂﬁtm};ﬁ
m';utl V, where A is a positive constant. Hence, V(¢) < % ’

V(0), from which it is clear that lim,_,7 V(¢) = 0. To this end, the con-
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clusions of Theorem 1 can be obtained.

Remark 2: It is noted that, due to the presence of communication
networks, the algorithm (5)—(8) will be inevitably subject to a vari-
ety of communication constraints such as communication delays and
data losses. As a result, it is an interesting topic to further consider
the effects of such communication constraints on distributed pre-
scribed-time Nash equilibrium seeking strategy, which will be inves-
tigated in our future research work. |

Remark 3: Different from the existing literature [4], [9], [10], [13],
Theorem 1 shows clearly that the proposed distributed Nash equilib-
rium seeking strategy is fully distributed by utilizing a PI adaptive
algorithm to avoid the global information under a directed graph, and
also ensures the prescribed convergence time 7 by introducing % in
the adaptive parameter (8).

Numerical example: Consider a 5-player game in which each
player’s action x; € R. Let

Fi(x) =323, + 202, +2x103 — x11 — X12
FH(x) =2.5x3, +3x3, +2x0x4 — 2321 — 2222
f3(x) :5x§1 + 4x§2 +6x3x5 —3x31 —3x32
fa(x) =6le + 5x‘212 +4x4x0 —4x41 —4x40

f5(x) =7x§1 + 6x§2 +2x5x3 —5x51 — Sx50

in which x; = [x;1,x]7, x = [x{,xg,xg,xz,xg]T. It is calculated that
x* of the game is x* =[-0.012,-0.017,0.308,0.230,0.041,0.043,
0.230,0.308,0.259,0.297]. The strongly connected communication
topology is given in Fig. 1. In addition, x(0) = [-1,-3,1.5,-2,-3,2,3,
1, —2,4]T, and the initial values of all other variables are zero. Set the
prescribed convergence time as 7 = 3.5 s for the proposed seeking
strategy. Correspondingly, the simulation result of players’ actions in
Fig. 2 indicates that they converge to the actual Nash equilibrium.
From Fig. 3, it is demonstrated that y;; is convergent to x; at the pre-
scribed convergence time 3.5 s. Thus, the proposed prescribed-time
control strategy has been numerically verified.

Fig. 1. Strongly connected communication topology.

— Player 1

Player 2
— Player 3
— Player 4
— Player 5

Fig. 2. The trajectories of players’ actions.

Conclusion: This letter introduces a new prescribed-time fully dis-
tributed Nash equilibrium seeking strategy under directed graphs.
The prescribed-time seeking strategy does not require any global
information on communication topology and allows to set the con-
vergence time in advance based on specific requirements. Future
research will be focused on fully distributed Nash equilibrium seek-
ing in presence of cyberattacks [14] and communication constraints
[15].
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The players’ estimates of x
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Fig. 3. The estimates y;; on players’ actions x for all i, j € {1,2,,5}.
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