
 

Letter

Protocol-Based Non-Fragile State Estimation for Delayed
Recurrent Neural Networks Subject to Replay Attacks

Fan Yang , Hongli Dong , Senior Member, IEEE,
Yuxuan Shen , Xuerong Li , and Dongyan Dai 

   Dear Editor,

This  letter  focuses  on  the  protocol-based non-fragile  state  estima-
tion problem for a class of  recurrent  neural  networks (RNNs).  With
the  development  of  communication  technology,  the  networked  sys-
tems  have  received  particular  attentions.  The  networked  system
brings advantages such as easy to implement, high flexibility as well
as low cost, and also has disadvantages such as limited bandwidth of
the  communication  network  which  lead  to  networked-induced  phe-
nomena [1], [2]. To alleviate the network-induced phenomena, com-
munication  protocols  have  been  introduced  in  the  communication
networks of  the networked systems [3],  [4].  As a widely used com-
munication  protocol  in  real  practice,  the  round-robin  (RR)  protocol
has received research interest and the state estimation problem under
the RR protocol is an on-going hotspot in the area of signal process-
ing [5]. Nevertheless, for the RNNs, the corresponding RR protocol-
based  state  estimation  problem  still  needs  further  research  effort
which is the first motivation of this letter.

On the other hand, in the networked systems, the signals are prone
to  be  attacked  when  transmitted  through  the  wireless  networks.  In
general, the cyber attacks can be categorised into three types, namely,
denial-of-service  attacks,  deception  attacks,  and  replay  attacks
[6]–[8]. Among others, the replay attack has its distinctive character-
istic [9]. In the replay attack, the attacker first eavesdrops the histori-
cal  data  transmitted  in  the  network  and  saves  the  data  in  a  storage
space. Then, the attacker randomly replays the saved data to the sys-
tem.  The  replay  attacks  can  destroy  the  performance  of  the  system
even  without  any  prior  information  of  the  system.  Furthermore,  the
replay  attack  is  difficult  to  be  detected.  Therefore,  the  state  estima-
tion problem under replay attack is of great significance.

Based  on  the  previous  analysis,  this  letter  studies  the  problem  of
protocol-based  non-fragile  state  estimation  for  delayed  RNNs  sub-
ject  to  replay attacks.  Two important  questions  to  be addressed are:
1)  How  to  build  a  suitable  mathematical  model  to  describe  replay
attacks? and 2) How to address the impact of the RR protocol and the
replay attacks on the state estimation performance? The main contri-
butions of this letter are that: 1) The replay attacks considered satis-
fies engineering practice; 2) A new mathematical model is designed
to describe the replay attacks;  and 3)  The effect  of  the RR protocol
and  the  replay  attacks  is  considered  and  a  non-fragile  estimator  is
designed to ensure the desired performance.

nProblem  statement: Consider  a -neuron  delayed  RNNs  as  fol-
lows:
 



xi(ζ +1) = āixi(ζ)+
n∑

j=1

b̄i jg j(x j(ζ))+ ēivi(ζ)

+

n∑
j=1

c̄i jg j(x j(ζ − r(ζ))), i = 1,2, . . . ,n

yl(ζ) =
n∑

j=1

d̄l jx j(ζ), l = 1,2, . . . ,n

(1)

xi(ζ) ∈ R i yl(ζ) ∈ R
l g j(·)

j g j(0) = 0 āi
b̄i j c̄i j

vi(ζ) ∈ R
l2[0,∞) d̄l j ēi r(ζ)

0 ≤ r̄1 ≤ r(ζ) ≤ r̄2 r̄1 r̄2

where  represents the state of the th neuron.  is the
th sensor measurement.  is the nonlinear activation function for

the th  neuron  with  the  initial  condition .  expresses  the
state  feedback coefficient.  and  denote  connection weight  and
delayed  connection  weight,  respectively.  is  the  process
noise which belongs to .  and  are known scalars.  is
the  time-varying  delay  satisfying  where  and 
are known constants.

δ1 δ2 (δ1 , δ2)
gi(·)

Assumption  1: For  any  scalars  and  ,  the  nonlinear
function  satisfies
 

ϕ−i ≤
gi(δ1)−gi(δ2)
δ1 −δ2

≤ ϕ+i , i = 1,2, . . . ,n

ϕ−i ϕ+iwith  and  are known scalars.

ξ(ζ)
ζ ξ(0) = n ξ(ζ)

In this letter, the RR protocol is used to schedule data communica-
tion.  Let  be  the  sensor  node  which  can  transmit  data  at  time
instant  with  the  initial  condition .  The  value  of  is
obtained by
 

ξ(ζ) =mod(ζ −1,n)+1.

m̃

Ms(ζ) ≜ {ys(ζ1),ys(ζ2), . . . ,ys(ζm̃)} (s = 1,2, . . . ,n) ζ1 , ζ2
, · · · , ζm̃ ζᴊ < ζ (ᴊ = 1,2, . . . , m̃)

ζ

In  the  following,  the  replay attack is  considered.  We consider  the
case that each sensor is attacked separately. Under the replay attack,
the attacker first eavesdrops and then saves the data in a limited stor-
age space. Since the storage space is limited, we assume that  pack-
ets can be stored at most and the set of stored signals is represented
by   where 

 and  . When a replay attack occurs at
time , the attack process is as follows:

1) ys(ζ) ζ Delete the measurement data  sent at th time instant;
2)

Ms(ζ)
 Replay  the  historical  measurement  selected  from  the  storage

space ;
3) ys(ζ) Ms(ζ)

Ms(ζ) Ms(ζ +1) = Ms(ζ)
 Keep  the  data  in  the  storage  space  and  delete  the

earliest data in . Then, let .

ys(ζ)

αs(ζ)

αs(ζ) 1 αs(ζ) 0
αs(ζ) = 0 ys(ζ)

Ms(ζ)
Ms(ζ)

ζ = 0
αs(0) = 0

To  deal  with  the  replay  attack,  the  time  stamp  approach  is  used.
Each  measurement  signal  is  first  packaged  in  a  time  stamped
packet  before  being  sent  to  the  estimator.  Therefore,  it  is  easy  to
detect whether the attack is occurred or not. A variable  is intro-
duced  to  indicate  whether  an  attack  occurs  or  not.  When  a  replay
attack  occurs,  is  set  to .  Otherwise,  is  set  to .  For

,  the  measurement  signal  may  also  be  eavesdropped
by  the  attacker  and  stored  in .  If  the  storage  space  is  insuffi-
cient, the earliest data in  will be deleted and the new data will
be  stored.  When ,  the  storage  space  is  empty  and  the  attacker
can only eavesdrop. Therefore, .

In this letter, we assume that the attacker has limited energy. Note
that the replay attack costs a certain amount of energy. Therefore, the
number  of  consecutive  replay  attacks  is  limited.  By  introducing  a
variable
 

ds(ζ) =
{

ds(ζ −n)+n, if αs(ζ) = 1 and ζ > n
0, if αs(ζ) = 0

ds(ζ)
ds(ζ) ≤ d̃s d̃s

d̃s

it  is  easily known that  is  related to the number of  consecutive
replay  attacks  and  therefore .  It  is  worth  noting  that  is
hard  to  be  obtained  in  practical  application.  Fortunately,  is  not
required in the proposed algorithm.

Considering  the  influence  of  the  RR  protocol  and  the  replay
attacks, the actual signal received by the estimator is
 

ȳs(ζ) =
{

ys(ζ −ds(ζ)), if s = ξ(ζ)
ȳs(ζ −1), else (2)
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which is rewritten in the following compact form:
 

ȳ(ζ) =
n∑

s=1

(
Φsy(ζ −ds(ζ))+ (Ĩs −Φs)ȳ(ζ −1)

)
(3)

where
 

ℜ(ζ) ≜ col{ℜ1(ζ),ℜ2(ζ), . . . ,ℜn(ζ)} (ℜ = y, ȳ)
Φs ≜ diag{0, . . . ,0,︸  ︷︷  ︸

s−1

δ(ξ(ζ)− s),0, . . . ,0}

Ĩs ≜ diag{δ(ξ(ζ)− s), δ(ξ(ζ)− s), . . . , δ(ξ(ζ)− s)}.
By letting

 

ℑ(ζ) ≜ col{ℑ1(ζ),ℑ2(ζ), . . . ,ℑn(ζ)} (ℑ = x,v)
ǵ(x(ζ)) ≜ col{g1(x1(ζ)),g2(x2(ζ)), . . . ,gn(xn(ζ))}
A ≜ diag{ā1, ā2, . . . , ān}, B ≜ [b̄i j]n×n, C ≜ [c̄i j]n×n

D ≜ [d̄l j]n×n, E ≜ diag{ē1, ē2, . . . , ēn}
we have
 {

x(ζ +1) = Ax(ζ)+Bǵ(x(ζ))+Cǵ(x(ζ − r(ζ)))+Ev(ζ)
y(ζ) = Dx(ζ).

Further denoting
 

x̄(ζ) ≜
[

xT (ζ) ȳT (ζ −1)
]T

ḡ(x̄(ζ)) ≜
[

ǵT (x(ζ)) ǵT (ȳ(ζ −1))
]T

one has
 

x̄(ζ +1) = Āx̄(ζ)+ B̄ḡ(x̄(ζ))+ C̄ḡ(x̄(ζ − r(ζ)))
+χs1D̄x̄(ζ −ds(ζ))+ Ēv(ζ)

ȳ(ζ) = χs2D̄1 x̄(ζ −ds(ζ))+ D̄2 x̄(ζ)
(4)

where
 

Ā ≜ diag{A,χs3}, B̄ ≜ diag{B,0}, C̄ ≜ diag{C,0}

D̄ ≜
[

0 0
D 0

]
, Ē ≜

[
E
0

]
, D̄1 ≜

[
D 0

]
, D̄2 ≜

[
0 χs3

]
χs1 ≜

n∑
s=1

(I⊗Φs), χs2 ≜
n∑

s=1

Φs, χs3 ≜
n∑

s=1

(Ĩs −Φs).

In this letter, the non-fragile state estimator is designed as follows:
 

x̂(ζ +1) = Āx̂(ζ)+ B̄ḡ(x̂(ζ))+ C̄ḡ(x̂(ζ − r(ζ)))
+χs1D̄x̂(ζ −ds(ζ))+ (K +∆K)
× (ȳ(ζ)−χs2D̄1 x̂(ζ −ds(ζ))− D̄2 x̂(ζ)

)
(5)

x̂(ζ) K
∆K

∆K =
M1F1(ζ)N1 M1 N1

F1(ζ) FT
1 (ζ)F1(ζ) ≤

I,∀ζ ∈ N+

where  is the estimate of the neural network state,  is the gain
parameter of the estimator.  indicates the variation of the estima-
tor  gain  and  meets  the  additive  norm-bounded  condition 

,  where  and  are  known matrices  with  appropriate
dimensions.  is  unknown  matrix  that  satisfies 

.
e(ζ) ≜ x̄(ζ)− x̂(ζ) η(ζ) ≜ [x̄T (ζ) eT (ζ)]T ğ(η(ζ)) ≜

[ḡT (x̄(ζ)) ḡT (x̄(ζ))− ḡT (x̂(ζ))]T
Denoting ,  and 

,  we  obtain  the  following  augmented
system:
 

η(ζ +1) =Aη(ζ)+Bğ(η(ζ))+Cğ(η(ζ − r(ζ)))
+ (D1 −D2)η(ζ −ds(ζ))+Ev(ζ) (6)

where
 

A ≜ diag{Ā, Ā− (K +∆K)D̄2}, B ≜ diag{B̄, B̄}
C ≜ diag{C̄,C̄}, D1 ≜ diag{χs1D̄,χs1D̄}
D2 ≜ diag{0, (K +∆K)χs2D̄1}, E ≜

[
ĒT ĒT

]T
.

γ > 0 0 < δ < 1
Definition 1: The system (6) is exponentially mean-square stable if

there exist scalars  and  such that
 

E{∥η(ζ)∥2} ≤ γδζ max
j∈[−r̄2,0]

∥x( j)∥2, ∀ζ > 0.

This  letter  focuses  on  design  a  non-fragile  state  estimator  for
delayed RNNs (1) such that the following conditions are satisfied:

v(ζ) = 01)  For ,  the  augmented system (6)  is  exponentially  mean-
square stable.

2)  When  the  initial  condition  is  zero,  for  a  known  disturbance

ν > 0 v(ζ) η(ζ)attenuation level  and all nonzero ,  satisfies
 

∞∑
ζ=0

E{∥η(ζ)∥2} ≤ ν2
∞∑
ζ=0

E{∥v(ζ)∥2}. (7)

Main results:
ν > 0

H∞
v(ζ) ϵ > 0

W = diag{W1,W2} > 0 T > 0 S > 0
O > 0 H > 0 J > 0 Y > 0 Z

Theorem 1: Let  the  scalar  be  given.  The augmented system
(6)  is  exponentially  mean-square  stable  and  the  performance
index is achieved for nonzero  if there exist positive scalar ,
positive definite matrices , ,  and
diagonal matrices , , , ,  satisfying
 

ℵ =

 Ξ ϵP QT

∗ −ϵI 0
∗ ∗ −ϵI

 < 0 (8)

where
 

Ξ ≜



Θ1 + I −Λ21 0 0 0 0 ΦT
17

∗ −H̄ 0 0 0 0 ΦT
27

∗ ∗ −Q̄ −Λ22 0 0 0

∗ ∗ ∗ −J̄ 0 0 ΦT
47

∗ ∗ ∗ ∗ −ι 0 ΦT
57

∗ ∗ ∗ ∗ ∗ −ν2I ΦT
67

∗ ∗ ∗ ∗ ∗ ∗ −W


Φ17 ≜ diag{W1Ā,W2Ā−ZD̄2}, Φ27 ≜ diag{W1B̄,W2B̄}
Φ47 ≜ diag{W1C̄,W2C̄}, Φ57 ≜ diag{Φ571,Φ572}
Φ571 ≜ W1χs1D̄, Θ1 ≜ (r̄2 − r̄1 +1)T −W−Λ11 + ι

Φ572 ≜ W2χs1D̄−Zχs2D̄1, Φ67 ≜
[

ĒTWT
1 ĒTWT

2

]T
P ≜

[
R1 0 0 0 R2 0 0

]
, Q̄ ≜ T +Λ21

Q ≜
[

0 0 0 0 0 0 Q1
]
, H̄ ≜ diag{O,H}

R1 ≜
[
RT

a 0 0 0 0 0 0
]T
, J̄ ≜ diag{J ,Y}

R2 ≜
[

0 0 0 0 RT
b 0 0

]T
, ι ≜ ĪTχT

s2Sχs2 Ī

Q1 ≜
[
QT

a 0 0 0 QT
a 0 0

]T
, Ī ≜ [0 I 0 I]

Ra ≜ diag{0, D̄T
2 NT

1 }, Rb ≜ diag{0, D̄T
1 χ

T
s2NT

1 }
Qa ≜ diag{0,−MT

1W
T
2 }, Λ11 ≜ diag{OL1,HL1}

Λ21 ≜ diag{−OL2,−HL2}, Λ22 ≜ diag{−JL2,−YL2}
L1 ≜ diag{ϕ+1ϕ

−
1 ,ϕ
+
2ϕ
−
2 , . . . ,ϕ

+
nϕ
−
n }

L2 ≜ diag{(ϕ+1 +ϕ
−
1 )/2, (ϕ+2 +ϕ

−
2 )/2, . . . , (ϕ+n +ϕ

−
n )/2}.

Moreover, the gain matrix is determined by
 

K =W−1
2 Z. (9)

Proof: A Lyapunov functional of the following form is established:
 

V(ζ) =
3∑

i=1

Vi(ζ) (10)

where
 

V1(ζ) ≜ ηT (ζ)Wη(ζ)

V2(ζ) ≜
ζ−1∑

v=ζ−r(ζ)

ηT (v)T η(v)+
−r̄1∑

l=1−r̄2

ζ−1∑
v=ζ+l

ηT (v)T η(v)

V3(ζ) ≜
ζ−1∑

w=ζ−ds(ζ)

ηT (w)ĪTχT
s2Sχs2 Īη(w).

V(ζ)Calculating  the  difference  of  and  noting  Assumption  1,  we
obtain
 

E{∆V(ζ)}+E{ηT (ζ)η(ζ)}− ν2E{vT (ζ)v(ζ)} ≤ Π̃T (ζ)ΓΠ̃(ζ)
where 
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Π̃(ζ) ≜ [ηT (ζ) ğT (η(ζ)) ηT (ζ − r(ζ)) ğT (η(ζ − r(ζ)))

ηT (ζ −ds(ζ)) vT (ζ)]T

Γ ≜



Θ̃1 + I Θ12 0 ATWC Θ15 ATWE
∗ Θ22 0 BTWC Θ25 BTWE
∗ ∗ −Q̄ −Λ22 0 0
∗ ∗ ∗ Θ44 Θ45 CTWE
∗ ∗ ∗ ∗ Θ55 Θ56
∗ ∗ ∗ ∗ ∗ Θ66


Θ̃1 ≜ Θ

∗
1 −Λ11, Θ12 ≜ATWB−Λ21, Θ22 ≜ BTWB− H̄

Θ44 ≜ CTWC− J̄, Θ15 ≜ATW(D1 −D2)

Θ25 ≜ BTW(D1 −D2), Θ45 ≜ CTW(D1 −D2)

Θ55 ≜ (D1 −D2)TW(D1 −D2)− ι, Θ56 ≜ (D1 −D2)TWE
Θ66 ≜ ETWE− ν2I, Θ∗1 ≜A

TWA+ (r̄2 − r̄1 +1)T −W+ ι.
By applying Schur complement lemma, we derive that

 

∞∑
ζ=0

E{∥η(ζ)∥2}− ν2
∞∑
ζ=0

E{∥v(ζ)∥2} < V(0)−V(∞).

V(∞) ≥ 0

ϵ
Ξ+ ϵ−1PPT + ϵ−1(ϵQ)T (ϵQ) < 0

H∞
v(ζ) , 0

Z =W2K

It is easy to have  and subsequently (7) is obtained. Using
Schur  complement  lemma,  S-procedure  lemma  and  matrix  analysis
technique, it is obtained that if there exists a positive scalar  satisfy-
ing ,  then  the  augmented  system  is
exponentially  mean-square  stable  and  the  performance  index  is
achieved  for .  The  estimator  gain  can  be  obtained  by

.
Numerical example: Consider a 2-neuron delayed RNNs (1) with

 

A = diag{−0.8,−0.085}, E = diag{0.01,0.01}

B =
[
−0.013 0.015
0.012 −0.011

]
, C =

[
0.002 −0.001
0.003 −0.002

]
D =
[

0.3 0.4
0.2 0.1

]
.

g(x(ζ)) = tanh(4x(ζ)) r̄1 = 1 r̄2 = 3

e(ζ)

The activation function . , . Fig. 1
is  the  error  between  the  true  states  and  the  estimated  states. Fig. 2
shows  the  instants  when  replay  attacks  occur. Fig. 3 expresses  the
norm of the estimation error .
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x1(ζ ) − x1(ζ )ˆ

x2(ζ ) − x2(ζ )ˆ

 
Fig. 1. The error between true states and estimated states.
 

H∞

Conclusion: In this letter, we have studied the protocol-based non-
fragile  state  estimation  problem  of  delayed  RNNs  under  replay
attacks.  While  ensuring  exponentially  mean  square  stability  of  the
system, the  performance index has been satisfied. Then, by using
matrix  analysis  technique,  the  estimator  gain  has  been  solved.
Finally, the effectiveness of the proposed estimation method is veri-
fied by numerical simulation.
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Fig. 2. The instants of replay attacks occurred.
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