
 

Letter

Intelligent Electric Vehicle Charging Scheduling in
Transportation-Energy Nexus With Distributional

Reinforcement Learning

Tao Chen and Ciwei Gao

   Dear Editor,

This  letter  is  concerned  with  electric  vehicle  (EV)  charging
scheduling  problem  in  transportation-energy  nexus  using  an  intelli-
gent decision-making strategy with probabilistic self-adaptability fea-
tures. In order to accommodate the coupling effects of stochastic EV
driving  behavior  on  transport  network  and  distribution  network,  a
risk-captured  distributional  reinforcement  learning  solution  is  pre-
sented  by  using  explicit  probabilistic  information  for  action  and
reward function in Markov decision process (MDP) model, where the
Bellman  equation  is  extended  to  a  more  generalized  version.
Scheduling EV charging in a transportation-energy nexus, according
to both transport and distribution network conditions, is an important
topic  in  recent  studies  to  improve  the  driving  and  charging  energy
efficiency,  especially  considering  the  high  penetration  rate  of  EV
nowadays  and even more  extremely higher  one in  the  future  [1].  In
order to accommodate the coupling effects  of  stochastic EV driving
behavior and battery state-of-charge (SoC) on transport and distribu-
tion network, various methods have been developed for designing the
smart  charging  scheduling  strategy  with  consideration  of  electricity
price, renewable energy adoption, road conditions and many others.

However,  it  can  be  pointed  out  that  most  of  existing  works  are
dependent heavily on the optimization-based solutions with assump-
tion  of  convex  characteristics  and  various  pre-defined  forecasting
information  in  a  deterministic  manner.  In  practices,  the  transporta-
tion-energy nexus is close to a complex system without holding such
good  model  characteristics  and  well-structured  given  input  parame-
ters for highly stochastic driving and charging behaviors.  Thus, it  is
desirable  to  address  EV charging  scheduling  problem in  transporta-
tion-energy nexus environment using an distributional reinforcement
learning-based  strategy  with  probabilistic  and  self-adaptability  fea-
tures. Many EV and ordinary vehicle navigation and routing applica-
tions  using  deep  reinforcement  learning  (DRL)  framework  are
briefed and summarized in  [2].  Less  works study the joint  transport
routing  and  energy  charging  problems  due  to  the  resultant  complex
coupled constraints of congestion management,  traffic flow overlap,
energy allocation and many other issues that are not incurred in sepa-
rated  system  [3].  A  few  works  tried  DRL  framework  to  solve  EV
charging  and  navigation  problems  at  the  same  time  in  the  coordi-
nated smart grid and intelligent transportation system [4], [5]. How-
ever, most of these works just exploit conventional DRL algorithms
(e.g.,  soft  actor-critic  (SAC),  deep  deterministic  policy  gradient
(DDPG),  deep  Q-network  (DQN))  that  are  heavily  dependent  on
deterministic  reward  value  feedback  and  hard  to  capture  the  joint

uncertain and distributional probability information, especially causal
risks,  in  the  coupled  transport  and  distribution  network  system
model.

Motivated  by  the  above  observation,  this  letter  aims  to  develop  a
risk-captured distributional reinforcement learning solution for a joint
routing  and  charging  problem  in  the  transportation-energy  nexus.
The  main  contributions  of  this  letter  can  be  summarized  as:  1)  An
intelligent decision-making strategy with probabilistic self-adaptabil-
ity  features  is  designed  to  capture  the  system  dynamics  of  coordi-
nated transportation and distribution network. 2) Some key character-
istics of C51 algorithm are analyzed and derived to ensure the good
enough performance for  the  joint  EV routing and charging problem
in the uncertain MDP environment.

G(V,E)

Problem  formulation: An  expanded  transportation  network  pre-
sented in [6] is  used to model the EV driving and routing behavior,
which  could  be  further  coordinated  with  the  distribution  network
with consideration of promoting renewable energy as charging power
source. Taking as example a simple network  in Fig. 1.
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Fig. 1. The original (solid line) and expanded (dashed line) network.
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It  only  has  a  single  origin-destination  (OD)  pair, .  The
edges  in  edge  set  are  unidirectional  arcs  with  distance  marked
besides. The vertices in vertex set  are indexed by numbers in the
circles.  They  denote  transportation  links  (roads)  and  transportation
nodes with charging station available, respectively. The energy con-
sumption in the selected travelling path g is denoted as  in the O-D
travelling  tuple .  Further  more,  this  network  can  be
expanded to a new network  by connecting any two nodes by
a  pseudo  edge  if  they  are  neighbored  to  the  same  node.  The  trans-
portation network constraints are written as follows:
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where  is the portion of traffic flow driving on edge  with the
associated  energy  demand .  It  is  assumed  some  transport  nodes
with  available  charging  stations  are  supplied  by  distributed  renew-
able  energy  resources,  which  would  prioritize  such  route  passing
green  energy  nodes  and  charging  options  using  clean  energy.  This
assumption enables the modification of [6]. By mapping the decision
variables  to  action  status  in  MDP  model,  we  can  let  action

, where  stands for the vector of power output from
conventional energy resources,  for vector of adopted power from
renewable energy resources, and  for vector of nodal traffic flow.
By  using  similar  symbols  in  [6],  we  let  state ,
where  stands for the vector of variable available driving speed of
EVs depending on road conditions, P and Q stand for  the vector  of
real and reactive power injection respectively in the distribution net-
work, V for the vector of node voltage, and  for the vector of pre-
dicted  renewable  energy  power  output  at  each  possible  node.  The
reward function in MDP is designed similar to the objective function
in  [6]  except  for  the  add-on  term  indicating  the  credit  token  to
award and prioritize the renewable energy adoption
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where  stands for the per-unit time cost, ξ for the energy consump-
tion  of  each  route  distance, η and  for  charging  efficiency  and
rated charging power, Q and c for the quadratic and linear cost coef-
ficients  of  power  supply,  for  the  carbon  tax,  and  for  the
renewable promotion credit (e.g., certified emission reduction).
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To quantify the implicit uncertainty characteristics of reward func-
tion r caused by the stochastic power output  of distributed renew-
able energy resources and the driving behavior of routine choice for
O-D travelling tuple , the reward function r in conventional
Markov decision process (MDP) model should be replaced by a ran-
dom return function Z.

Definition  1: Z is  denoted  as  the  random  return  or  reward  value,
whose  expectation  is  the  normal Q value  function,  in  the  modified
MDP model within distributional reinforcement learning framework.

(S ′,A′)
Z(S ′,A′)

By  using  such  representations,  the  random  return  function Z
instead  of  deterministic  straightforward  reward  value  will  also  be
linked to the volatile transition probabilities on top of stochastic defi-
nitions  of  action  space  and  state  status  space.  Following  the  recur-
sive  equation  to  describe Q value  function,  the  distribution  of  ran-
dom variable Z is characterized by the interaction of three other ran-
dom  variable R,  the  next  state-action  pair  and  its  random
return .  This quantity is called value distribution as the fol-
lowing equation:
 

Z(s,a) := R(s,a)+γZ(S ′,A′). (4)
Main  results: In  this  section,  some  sufficient  conditions  are

derived  to  ensure  the  applicability  of  distributional  reinforcement
learning framework for the well-defined reward maximization prob-
lem, where the characteristics of distributional Bellman operator are
described.

T π T ∗
Next,  we  state  the  following  main  result.  In  normal  MDP model,

the  conventional  Bellman  operator  and  optimality  operator 
are  dependent  on  the  expectation  calculation  and usually  defined as
the following:
 

T πQ(x,a) = ER(x,a)+γEP,πQ(x′,a′) (5)
 

T ∗Q(x,a) = ER(x,a)+γEP max
a′∈A

Q(x′,a′). (6)
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(Ω,F ,Pr)
∥u∥p Lp

u ∈ RX 1 ≤ q ≤∞ Lp U : ω→ RX
∥U∥p = [E[∥U(ω)∥pp]]1/p p =∞ ∥U∥∞ =

sup∥U(ω)∥∞
FU (y) = Pr{U ≤ y}

F−1
U (q) = inf{y : FU (y) ≥ q}

However, in the distribution reinforcement learning framework, the
expectations  inside  Bellman's  equations  could  be  taken  away  with
consideration of the full distribution of any random variable appeared
in  MDP  [7].  Here,  we  can  define  a  random  variable  similar  to
reward  function  to  indicate  a  mmapping  from  state-action
pairs  to distributions over returns or value distribution. To help
analyze the theoretical behavior of the distributional analogues of the
Bellman  operators,  the  probability  space  is  used  to  help
derivation.  We  will  write  to  denote  the  norm  of  a  vector

 for . The  norm of a random vector 
is  then ,  and  for  we  have 

.  We  will  denote  the  cumulative  distribution  function
(c.d.f.) of a random variable U by , and its inverse
c.d.f. by .

Zπ
With these definitions, we can write the policy evaluation in MDP

following such distributional settings of value distribution  similar
to instantiated reward function.

Zk = TZk−1
Z0 ∈ Z X A

Theorem  1: Convergence  of  value  distribution.  Let 
with ,  be measurable and suppose that  is finite. Then,
 

lim
k→∞

inf
Z∗∈Z∗

dp(Zk(x,a),Z∗(x,a)) = 0 ∀x,a. (7)

Zk Z∗ X
Z∗ ∈ Z∗

Π∗

It  could be claimed that  converges to  uniformly when  is
finite. This claim also applies for any  if there is a total order-
ing < on .
 

TZ∗ = T πZ∗ with π ∈ GZ∗ , π < π
′∀π′ ∈= GZ∗ \ {π} (8)

T Z∗ ∈ Z∗then  has a unique fixed point .
Proof: For  every  state x,  there  is  a  time k after  which  the  greedy

Qk
π′

Qk := EZk Gk := GZk B := 2supZ∈Z ∥Z∥∞ <∞
ϵk := γkB Xk ⊆ X

Q∗

policy w.r.t,  is mostly optimal; a unique and therefore determinis-
tic optimal policy  is assumed. For rotational convenience, it can be
written as  and . Let  and
let .  We  can  define  the  set  of  states  whose  values
must be sufficiently close to  at time k
 

Xk :=
{
x : Q∗(x,π∗(x))− max

a,π∗(x)
Q∗(x,a) > 2ϵk

}
. (9)

TD
TE

By the characteristics of linearity of expectation, we can write 
for  the  distributional  operator  and  for  the  usual  operator  as  fol-
lowing:
 

∥ETDZ1 −ETDZ2∥∞ = ∥TEEZ1 −TEEZ2∥∞
≤ γ∥Z1 −Z2∥∞. (10)

Thus, after k iterations
 

|Qk(x,a)−Q∗(x,a)| ≤ γk |Q0(x,a)−Q∗(x,a)| ≤ ϵk. (11)
x ∈ X a∗ := π∗(x)

a ∈ A
For ,  let .  The  following  can  be  deduced  for  any

:
 

Qk(x,a∗)−Qk(x,a) ≥ Q∗(x,a∗)−Q∗(x,a)−2ϵk. (12)
x ∈ Xk Qk(x,a∗) > Qk(x,a′)

a′ , π∗(x) πk(x) := argmaxaQk(x,a)
π∗

If ,  it  can  be  written  as  that  for  all
:  thus,  the  greedy  policy  corre-

sponds to the optimal policy  for these states. ■

N ∈ N Vmin,Vmax ∈ R
{zi = Vmin + i∆z : 0 ≤ i < N} ∆z = (Vmax −Vmin)/(N −1)

θ : X×A→ RN

By  using  the  distributional  version  of  Bellman  operator,  we  can
model the value distribution using a discrete distribution parameter-
ized  by  and ,  and  whose  support  is  the  set  of
atoms , .  The
atom probabilities are given by a parrametric model 
as follows:
 

Zθ(x,a) = zi w.p. pi(x,a) :=
eθi(x,a)∑
j eθ j(x,a)

. (13)

TZθ Zθ
T̂Zθ

Zθ

However,  using  such  a  discrete  distribution  will  pose  a  problem
that the Bellman update  and the parametrization  always have
disjoint  supports.  Thus,  the  sample  Bellman  needs  to  update
onto the support of original  as illustrated in Fig. 2.
 

(a) (b)

(c) (d)

Pπ Z γPπ Z

R + γPπ Z Φ π Z

 
Fig. 2. Illustration of  distributional  Bellman operator  for  a  deterministic
reward function: (a) Next state distribution update policy π; (b) Discounting
shrinks  the  value  distribution;  (c)  Reward  shifts  the  value  distribution;
(d) Projection to the pre-defined support.
 

EZθ (x,a,r, x′)
T̂ z j = r+γz j z j

p j(x′,π(x′))
T̂ z j ΦT̂Zθ(x,a)

In  the  reward  shrinking  and  shifting  process  the  Bellman  update
will be reduced to multi-class classification. Let π be the greedy pol-
icy  w.r.t. .  Given  as  a  transition  sample,  the  Bellman
update  can be computed for  each atom .  The proba-
bility  should also be distributed to the immediate neigh-
bours of . In the projected update , the ith component
is computed as follows:
 

(ΦT̂Zθ(x,a))i =

N−1∑
j=0

1− |[T̂ z j]
Vmax
Vmin
− zi|

∆Z


1

0

p j(x′,π(x′)). (14)

[·]b
a [a,b]

θ̃
Lx,a(θ)

where  indicates the bounds within . The next state distribu-
tion can be parametrized using . The cross-entropy term of the Kull-
back-Leibler (KL) divergence is used to define  as sample loss
 

DKL(ΦT̂Zθ̃(x,a)||Zθ(x,a)). (15)

N = 51

Then,  the  sample  loss  can  be  readily  minimized  using  gradient
descent.  The  solution  algorithm  following  such  choice  of  loss  and
distribution is called categorical algorithm or C51 when  cho-
sen  for  the  number  of  support  atoms.  The  particular  C51  algorithm
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for the coordinated EV routing and charging problem is presented in
Algorithm 1 based on the standard distributional DQN algorithm [7].

Algorithm 1 C51 Algorithm for Coordinated EV Routing and Charging

xt ,at ,rt , xt+1,γt ∈ [0,1]1: Input A transition 
Q(xt+1,a) =

∑
i zi pi(xt+1,a)2: 　  for random EV SoC

a∗← argmaxaQ(xt+1,a)3: 　
mi = 0, i = 0, . . . ,N −14: 　

j = 0, . . . ,N −15: 　for  do
T̂ z j← [rt +γtz j]

Vmax
Vmin

6: 　　  with physical constraints
b j← (T̂ z j −Vmin)/∆z7: 　　

l← ⌊b j⌋ u← ⌈b j⌉8: 　　 , 
ml← ml + p j(xt+1,a∗)(u−b j)9: 　　

mu← mu + p j(xt+1,a∗)(b j − l)10: 　 
11: 　for

−∑i mi log pi(xt ,at)12: Output 

γ = 0.99 α = 0.001
Natoms = 51 Vmax/Vmin = ±20

Numerical example: In the numerical results, a 22-node highway
transport network with 6-node of available on-site renewable energy
resources is  considered in couple with a 14-node 110 kV high volt-
age distribution network. The transport network is modified from the
original 25-node version with detailed information in [8] and similar
coupling  relationship.  The  transport  network  the  particular  system
step-up and model parameters in [6] are used for the simulation with
emphasis  on the  performance of  learning-based methods.  Some key
parameters for C51 algorithm are provided as follows: Set discount-
ing  rate ,  learning  rate ,  number  of  atoms

,  and three-layer fully connected neural
networks.  The  simulation  results  out  of  multiple  runs  are  summa-
rized in Table 1 with learning performance using C51 algorithm pre-
sented in Fig. 3.
 

Table 1.  The Cost Comparison of Different Solution Methods

Optimization DQN algorithm C51 algorithm

Cost Avg 4840.4 5255.5 4962.3

(CNY) Max − 5640.3 5133.2

Min − 4988.4 4843.6
 
 

≤ 0.5%

≤ 60

We can easily observe that similar to most reinforcement learning-
based methods, the distributional categorical method also needs train-
ing  steps  to  gradually  improve  its  performance  with  incremental
average return values by sampling the distributional information. As
shown  in Table 1,  although  the  C51  algorithm  mostly  outperforms
conventional DQN algorithm, it hardly exceeds the upper bound lim-
its  calculated  from  the  well-defined  optimization  method.  It  can  be
explained  by  the  facts  that  in  the  simulations,  we  feed  the  learning
algorithm  much  less  input  information  (e.g.,  deterministic  per-unit
time cost) as a prior or assume no ideal prediction (accuracy less than
90%) for the future state estimation (e.g.,  accurate renewable power
output forecasting and guaranteed shortest path). Compared with the
results  reported  in  [6]  and  [8]  using  similar  system  setup,  the  pro-
posed method has slightly higher cost ( ) but with an ultimate
gradually  improved  economic  performance  in  the  long-term  opera-
tion  and  much  less  computational  cost  (  s)  if  using  pre-trained
reinforcement  learning  (RL)  agent  model  for  online  operation
directly.  Additionally,  the  C51  algorithm  only  has  an  insignificant
increase in computational time cost  compared with DQN algorithm,
costing roughly 30 000 s for 14 000 steps with about 12% more com-
putational load.

In Fig. 4, it is shown that most EVs actually indeed give priority to
the  transportation  nodes  with  renewable  energy  source  powered
charging options  (e.g.,  node 5,  9,  14).  By tuning the  value  of  green
credit  token,  the  weighting  of  appropriate  environmental  friendly
charging  options  can  overcome  the  possible  tension  caused  by  the
increased per-unit time cost due to traffic congestion.

Conclusion: In  this  letter,  the  coordinated  EV routing  and charg-
ing  scheduling  problem  in  transportation-energy  nexus  is  investi-
gated, particularly using an intelligent decision-making strategy with
probabilistic  self-adaptability  features.  In  order  to  accommodate  the
effect  of  stochastic  EV  driving  and  charging  behavior  on  transport
network and distribution network, a risk-captured distributional rein-
forcement learning solution is presented by using explicit probabilis-
tic information for action and reward function in MDP model.
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Fig. 3. Learning curve for the coordinated EV routing and charging benefit.
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Fig. 4. EV traffic flows in the coupled transport and distribution network.
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