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Engang Tian, Yi Zou, and Hongtian Chen

   Dear Editor,

This letter focuses on the finite-time synchronization (FTS) of neu-
tral-type  complex  networks  with  intermittent  couplings.  Different
from most of the existing references concerning neutral-type systems,
a delay-independent dynamical event-triggering controller is consid-
ered, operating the same way as the intermittent coupling and exclud-
ing the Zeno behavior naturally. By introducing a vector-based Lya-
punov-Krasovskii  functional  (LKF),  the  FTS  criteria  are  obtained
based on a set of vector inequalities, which are less conservative than
the  corresponding  algebraic  one.  Finally,  a  simulation  example  is
given to illustrate the merits of the theoretical analysis.

et al.

Recently, an increasing interest could be found in the synchroniza-
tion problem of complex networks (CNs) with intermittent couplings.
For  example,  Hu  [1]  considered  the  asymptotic  synchroniza-
tion  of  complex-valued  dynamic  networks  with  intermittent  cou-
plings. Wen et al. [2], [3] studied the consensus of linear multi-agent
systems  with  intermittent  communication.  However,  some  assump-
tions are used to support  these research,  including the periodic cou-
pling and decoupling intervals  [2],  [3],  or  a  large width of  coupling
intervals [1], which are not conducive to the practical applications of
intermittently coupled networks. Hence, it motivates us to find a new
relationship  between  the  coupling  and  decoupling  widths  to  shrink
the operation range of the coupling.

On  the  other  research  front,  the  finite-time  synchronization  and
control of CNs with time delays is a long-time research topic. While,
as  reported  in  [4],  it  is  hard  to  eliminate  the  effects  caused  by  time
delays in the finite-time control area. Recently, the FTS of neural net-
works  with  hybrid  delays  has  been  achieved  by  presenting  1-norm
analysis techniques in [5]. Along with this line, FTS of CNs with var-
ious types of delays has been investigated [6], [7]. However, there is
few research on FTS of neutral-type CNs (NTCNs), where the delays
occur  in  the  derivatives  of  the  system state.  Although He et  al.  [8],
[9]  attempted  to  study  the  FTS  of  neutral-type  systems,  those  con-
trollers  are  very  complex  and  contain  both  state  and  derivatives
delays, which are difficult to be applied in practice. It necessitates the
design  of  a  simple  controller  without  any  delayed  information  to
achieve FTS of NTCNs with intermittent couplings.

More recently, an event-triggering scheme (ETS) has stirred much
attention  from  scholars  since  it  can  reduce  the  unnecessary  data
transmission [10]–[12]. By introducing an internal dynamic variable,
the  dynamic  event-triggering  scheme  (DETS)  is  presented  in  [13].
Since  then,  a  multitude  of  studies  on  DETS  have  been  published
[14],  [15].  Although  [16]  considered  the  DETS-based  finite-time

control  for  switched  systems,  this  method  can  not  be  extended  to
delayed  systems,  also  not  mentioning  the  more  complex  NTCNs.
Therefore,  this  letter  is  devoted  to  design  a  simple  delay-free  con-
troller with DETS to guarantee the FTS of NTCNs with intermittent
couplings.

To sum up, the main contributions of this letter are summarized as:
1) An array of neutral-type nonlinear systems with intermittent cou-
plings are considered, where the restrictions on coupling and decou-
pling intervals are more general than those in [1]–[3]. Moreover, the
controllers are active in the same way as the coupling interval, which
is  different  from  the  existing  controlled  models.  2)  To  realize  the
FTS of  NTCNs,  a  simple controller  is  designed.  Different  from [8],
[9],  the  developed  controller  is  delay-independent,  which  is  more
practical since the time-varying delay is not available in many cases.
3) The DETS is introduced in the controller. Specifically, the estab-
lished DETS contains three parameters, which can exclude Zeno phe-
nomenon automatically and adjust the triggering intervals as well as
the  convergence  rate  flexibly.  4)  Novel  vector-based  LKFs  are
designed by introducing some free vectors, and sufficient conditions
formulated by vector inequalities are proposed to guarantee the FTS
of NTCNs, which are less conservative than the algebraic inequality
results [5].

In 0n(1n)
C ∈ ([−τ,0],Rn)

[−τ,0] Rn v > 0 (v < 0)
Na = {0,1, . . . ,a}

Notation:  is  the n-dimension  identity  matrix;  means  all
entries of the column vector are 0 (1);  denotes the set
of  continuous  functions  from  to ;  implies  all
the entries of v are positive (negative); .

Problem  statement: Considered  the  following  neutral-type  sys-
tem:
 

ẋ(t) = Q(x(t)) (1)
Q(x(t)) = Eẋ(t − τ1(t))+Ax(t)+B f (x(t))+Ch(x(t−τ2(t)))

x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn

A = (ai j) B = (bi j) C = (ci j) E = (ẽi j) ∈ Rn×n

f (·) h(·) Rn→ Rn

| fi(h̄)− fi( ˜̄h)| ≤∑n
j=1 l f

i j|h̄ j−
˜̄h j| |hi(h̄)−hi( ˜̄h)| ≤∑n

j=1 lhi j|h̄ j − ˜̄h j| h̄, ˜̄h ∈ Rn l f
i j > 0

lhi j > 0 τ1(t) τ2(t)
0 ≤ τı(t) ≤ τı τ̇ı(t) ≤ µı < 1, τı µı

ı = 1,2
ϕ(s) ∈ C([−τmax,0],Rn) τmax =max{τ1, τ2}

where ,
 is  the  state  variable  of  (1),

, ,  and  are  connection
matrices;  and :  represent  the  continuously  nonlin-
ear vector-valued functions, and satisfies 

,  for ,  where  and
 are  constants.  and  are  time-varying delays  satisfy-

ing  and  respectively,  with  and 
( ) being known constants. The initial condition of (1) is given
by , where .

Consider an intermittently coupled systems with N nodes of (1)
 

ẏi(t) = Q(yi(t))+σ(t)
[ N∑

j=1

gi jΦy j(t)+Ui(t)
]
, i ∈ NN (2)

yi(t) = (yi1(t),yi2(t), . . . ,yin(t))T ∈ Rn

Φ = diag(ϕ1,ϕ2, . . . ,ϕn)
G = (gi j)N×N

σ(t) = 1 t ∈ [t2k, t2k+1) σ(t) = 0
{tk}k∈N

t0 = 0, limk→+∞ tk = +∞ [t2k, t2k+1) [t2k+1, t2k+2)
Ui(t)

ψi(s) ∈ C([−τmax,0],Rn)

where  denotes the state of the ith
node;  is  the  inner  coupling  matrix,  and

 is the outer coupling matrix satisfying diffusion condi-
tion. , when , otherwise , where the time
sequence  is  a  strictly  increasing  sequence  and  satisfies

.  Specially,  and  are
the so-called coupling and decoupling interval, respectively.  is
the  control  input  to  be  designed  later.  The  initial  value  of  (2)  is
described as .

Ui(t)

Remark  1:  This  intermittently  coupled  model  can  be  utilized  to
describe the phenomenon that  communication obstacles occur inter-
mittently  [1]–[3]  or  an  artificial  communication  strategy  to  avoid
unnecessary  transmission.  In  addition,  it  is  assumed  that  the  con-
troller  is  active  only  when  there  are  information  changes
between  nodes,  which  also  can  be  regarded  as  the  intermittent  con-
trol scheme.

To  achieve  the  FTS  shown  in  [5],  following  event-triggered  con-
troller (ETC) is adopted as:
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Ui(t) = −Riei(t
ρ
i,2k)− ζsign(ei(t

ρ
i,2k))

t ∈ T ρi,2k = [tρi,2k, t
ρ+1
i,2k )∩ [t2k, t2k+1), k ∈ N (3)

i ∈ NN Ri = diag(ri1,ri2, . . . ,rin)
ζ > 0 sign(·) t0i,2k = t2k tρi,2k

[t2k, t2k+1)

where ,  is  the  control  gain  matrix,
 is a tunable constant,  is the sign function. , 

means the ρth event-triggering instant of the ith node on the interval
, which is determined by

 

tρ+1
i,2k = inf{t > tρi,2k | u

T
i |ẽi(t)| −σuT

i |ei(t)| > θδ−κt} (4)

ẽi(t) = −Riei(t)− ζsign(ei(t))−Ui(t) 0 < ui ∈ Rn σ > 0 θ > 0
δ > 1 κ > 0
where , , , ,

 and  are given tunable constants.
θδ−κt > 0

θ, δ

Remark  2:  Because  of ,  the  triggered  condition  (4)  can
automatically  avoid  the  Zeno  behavior.  Moreover,  due  to  the  intro-
duction  of  the  extra  parameters  and κ,  the  DETS  (4)  is  more
flexible  and  one  can  dynamically  adjust  the  triggering  intervals  as
well as the convergence rate through changing the three parameters.

Considering (1), (2), and ETC (3) obtains the error system
 

ėi(t) = Eėi(t−τ1(t))+ℜ(ei(t))−Riei(t)− ẽi(t)
+
∑N

1=1 gi jΦe j(t)− ζsign(ei(t)), t ∈ T ρi,2k
ėi(t) = Eėi(t−τ1(t))+ℜ(ei(t)), t ∈ [t2k+1, t2k+2)

(5)

ℜ(ei(t)) = Aei(t)+BF(ei(t))+CH(ei(t−τ2(t))) ei(t) = yi(t)−
x(t) F(ei(t)) = f (yi(t))− f (x(t)) H(ei(t−τ2(t))) = h(yi(t−τ2(t)))−
h(x(t−τ2(t)))

where , 
,  and 

.
L f =

(l f
i j)n×n Lh = (lhi j)n×n Ω1i = pT

i Ã + pT
i |B|L

f +qT
i , Ω2i = pT

i giiΦ+∑N
j=1, j,i pT

j |g ji|Φ−1T
n Ki, Ω3i = pT

i |C|L
h − (1−µ2)e−ξτ2 qT

i , Ω4i =

pT
i |E| − (1−µ1)ϑe−ξτ1 pT

i V(0) =
∑N

i=1
[(

pT
i −ϑpT

i diag(sign(ei(0)))×
diag (sign(ėi(0)))

)| ei(0)| +
r 0
−τ1(0)ϑeξspT

i | ėi(s)| ds +
r 0
−τ2(0) eξsqT

i | ×
ei(s)|ds

]
Ψ(k,X) = 1

ξ ln(ξX+1)−∑k−1
i=0 (1− 1

πi
)(t2i+2 − t2i+1)

Main  results: The  following  expressions  will  be  used: 
, ,  

  
, 

, .
ζ ξ η θ ℘ κ ϑ ∈ (0,1)

δ > 1 Ki ∈ Rn×n pT
i = (pi1,

pi2, . . . , pin) > 0 uT
i > 0 qT

i < 0 i ∈ NN

Theorem 1: For given positive constants , , , , , , 
and ,  if  there  exist  matrix  and  vectors 

, , , ( ) such that
 

Ω1i +Ω2i + ξ(1+ϑ)pT
i +℘σuT

i < 0 (6)
 

Ω1i −η(1−ϑ)pT
i < 0 (7)

 

Ω3i < 0, Ω4i < c0 (8)
 

pT
i −℘uT

i < 0 (9)
 

ζ̃ = ζλmin(p)−℘θ > 0 (10)
 

ξ(t2k+1 − t2k)
η(t2k+2 − t2k+1)

= πk > 1 (11)

T (V(0)) = t2k∗ +Ψ1(k∗,V(0)/ζ̃), k∗ =maxk∈N×
{k|Ψ1(k,V(0)/ζ̃) > 0} Ri
Ri = p−1

i Ki p−1
i = diag{p−1

i1 , p
−1
i2 , . . . , p

−1
in }

then, the NTCN (2) with ETC (3) can be synchronized onto (1) in the
desired  time:  where 

.  The  control  gain  can  be  designed  as
 with .

Proof: Choosing the following vector-based LKF candidate:
 

V(t) = V1(t)+V2(t)+V3(t) (12)

V2(t) =
∑N

i=1

r t
t−τ1(t)ϑeξ(s−t)pT

i |ėi(s)|ds, V1(t) =
∑N

i=1 pT
i [In−

ϑdiag(sign(ei(t)))diag(sign(ėi(t)))]|ei(t)|, V3(t) =
∑N

i=1

r t
t − τ2(t) eξ(s − t)

qT
i × |ei(s)|ds.

where  
 

V1(t)
In −ϑdiag(sgn(ei(t)))diag(sgn(ėi(t)))

ϑ ∈ (0,1)

Note  that  is  positive  definite,  known  from  the  matrix
 being  a  positive  defined  diago-

nal matrix since .
v1(t) = V̇1(t)+

∑N
i=1ϑpT

i |ėi(t)|Let , simple calculation leads to
 

v1(t) =
N∑

i=1

n∑
j=1

[
pi jsign(ei j(t))ėi j(t)+ϑpi j|ėi j(t)|

−ϑpi j(sign(ei j(t)))2|ėi j(t)|
]
=

N∑
i=1

n∑
j=1

v1i j(t). (13)

ei(t) , 0n j0 ∈ NnSince , it is concluded that there is at last one  such

ei j0 (t) , 0 ei j0 (t) , 0
ei j(t) = 0 j ∈ Nn/ j0

that . Without loss of generality, assume  and the
other  for . It obtains from (13) that
 

v1i j(t) =
{

pi j0 sign(ei j0 (t))ėi j0 (t), for j = j0
ϑpi j|ėi j(t)|, for j , j0.

(14)

j = j0Case 1: When , according to the first equation of (5), (14) can
be rewritten as follows:
 

v1i j0 (t) ≤ pi j0

[
giiϕ j0 |ei j0 (t)|+

N∑
l=1,l,i

|gil|ϕ j0 |el j0 (t)|

+

n∑
l=1

|̃e j0l||ėil(t−τ1(t))|+
n∑

l=1

n∑
o=1

|b j0l|l f
lo|eio(t)|

+

n∑
l=1

n∑
o=1

|c j0l|lhlo|eio(t−τ2(t))|+a j0 j0 |ei j0 (t)| − ζ

+

n∑
l=1,l, j0

|a j0l||eil(t)| − ri j0 |ei j0 (t)|+ |ẽi j0 (t)|
]
. (15)

j , j0 ei j(t) = 0 j , j0
ei j0 (t) , 0

Case  2:  When ,  recalling  when ,  and
 obtains from (14) that

 

v1i j(t) ≤ pi j
[
giiϕ j|ei j(t)|+

N∑
l=1,l,i

|gil|ϕ j|el j(t)|

+

n∑
l=1

|̃e jl||ėil(t−τ1(t))|+
n∑

l=1

n∑
o=1

|b jl|l f
lo|(eio(t))|

+a j j|ei j(t)|+
n∑

l=1,l, j

|a jl||eil(t)|

+

n∑
l=1

|c jl|lhlo|eil(t−τ2(t))|+ |ẽi j0 |
]

(16)

0 < ϑ < 1where  has been used.
Combining (15) with (16) leads to

 

v1(t) ≤
N∑

i=1

[
pT

i (Ã+ |B|L f +giiΦ−Ri)|ei(t)|

+

N∑
j=1, j,i

pT
i |gi j|Φ|e j(t)|+pT

i |C|L
h|ei(t−τ2(t))|

+pT
i |E||ėi(t−τ1(t)|+pT

i |ẽi j0 | − ζpT
i γi

]
(17)

Ã = (ãi j)n×n, ãi j = ai j i = j ãi j = |ai j| i , j
γi = (γi1,γi2, . . . ,γin)T γi j = 1 ei j(t) , 0 γi j = 0
i ∈ Nn, j ∈ NN

where  for  and  for ,  and
 with  if ,  otherwise ,

.
V1(t)Observed from the definition of  one has

 

0 ≤
N∑

i=1

ξ(1+ϑ)pT
i |ei(t)| − ξV1(t). (18)

t ∈ [t2k, t2k+1)
Based  on  the  DETC  (4),  (17)  and  (18),  and  conditions  (6),

(8)–(10), the following inequality holds for :
 

V̇(t) ≤ −ξV(t)− ζ̃. (19)
t ∈ [t2k+1, t2k+2)Similarly,  when ,  in  view  of  (7)  and  (8),  and  one

has
 

V̇(t) ≤ ηV1(t) ≤ ηV(t), t ∈ [t2k+1, t2k+2), k ∈ N. (20)
Following  Lemma  2  in  [7],  it  concludes  that  the  NTCN  (2)  can

achieve the FTS. ■
Remark 3:  Both  the  intermittent  coupling  and intermittent  control

are considered simultaneously in Theorem 1. Note that, the intermit-
tent  coupling  is  aperiodic.  Furthermore,  due  to  the  introduction  of
parameters ξ and η,  the  length  of  the  coupling  interval  and  decou-
pling  interval  can  be  adjusted  flexibly  as  long  as  condition  (11)
holds. These are completely different from those in [1]–[3].

Remark  4:  FTS criteria  for  the  intermittently  coupled  NTCNs are
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pT
i

qT
i

presented in Theorem 1. Compared with [8], [9], the controller (3) is
very simple and does not contain time delays, which is easy to imple-
ment in practice.  Besides,  the sufficient  criteria obtained are formu-
lated  by vector  inequalities.  Due to  introducing free  vectors  and

, less conservative results are obtained than algebraic one.
Numerical example: An example is provided to explain the effec-

tiveness of Theorem 1. The time-step size is taken as 0.001.
x(t) = (x1(t),

x2(t))T τ1(t) = 0.85+0.15sin(t) τ2(t) = 0.7−0.3sin(t) f (x(t)) =
(tanh(x1(t)), tanh(x2(t)))T h(x(t−τ2(t)))=0.5(|x1(t−τ2(t))+1|−|x1(t−

τ2(t))−1|, |x2(t−τ2(t))+1| − |x2(t−τ2(t))−1|)T E = 0.1
(

0.1 0.2
0.15 0.5

)
,

A =
(
0.7 1.5
1.5 −1

)
, B =

(
3 −0.4
−4 −2

)
, C =

(
−3.6 0.08
0.24 −3.2

)
τ1 = τ2 = τmax = 1 µ1 = 0.15 µ2 = 0.3

l f
i j = 1, lhi j = 0.5

Consider  system  (1)  with  the  following  parameters: 
, , , 

, 

, 

  .  Hence,  one  has

,  and .  Moreover, it  is  easy  to
check that .

yi(t) = (yi1(t),yi2(t))T i = 1,2, . . . ,5.Φ = diag(1,1.2)

Then,  an  intermittently  coupled  network  (2)  including  five  nodes
(1) is considered, in which the other relevant parameters are listed as

,  , and
 

G = 0.1


−3 1 0 1 1
1 −4 1 0 2
1 1 −4 2 2
0 1 1 −3 1
1 0 2 1 −4

 .
ϑ = 0.1 ζ = 0.1 ξ = 0.15 η = 0.05 θ = 0.5 δ = 5.5 κ = 2

℘ = 0.0001 [−6,6]
t ∈ [−1,0]

∏
= [4.2k,

4.2k+0.3)∪ [4.2k+1.1,4.2k+1.3)∪ [4.2k+1.8,4.2k+2.2) ∪ [4.2k +
3.2,4.2k+3.5)∪ · · · ,k ∈ N R+/

∏
pT

i qT
i uT

i
Ri

T (V(0)) = 38.0659 ei(t)

ei(t)

Choose , , , , , , ,
. The initial values of (2) are randomly chosen on ,

for .  The  coupling  intervals  are  took  as 

,  and  the  decoupling  intervals  is .
Solving (6)–(11), obtains the feasible solutions , ,  and con-
trol gain  (for space limitation, the feasible solutions are not listed
here).  According  to  Theorem  1,  the  settling  time  is  estimated  as

. The trajectory of the synchronization errors 
without  control  is  shown in Fig. 1. Fig. 2(a)  shows the  trajectory  of
the  synchronization  errors  with  control; Fig. 2(b)  shows  the
release instants and intervals of the DETS of each node.
 

6

4

2

0

−2

e i(
t),

 i 
= 

1,
 2

, ·
··

, 5

−4

−6

−8
0 2 4 6 8

Time (s)
10 12 14

Coupling signal
e11(t)
e21(t)
e31(t)

e41(t)
e51(t)
e12(t)
e22(t)

e32(t)
e42(t)
e52(t)

 
ei(t)Fig. 1. Trajectory of the synchronization errors  without control.

 

Conclusion: FTS of NTCNs with intermittent couplings has been
investigated.  The  ETC  has  been  considered  to  reduce  the  unneces-
sary  signal  transmission,  which  can  automatically  exclude  Zeno
behavior. Considering a novel LKF with some free vectors, and sev-
eral  less  conservative  sufficient  conditions  formulated  by  vector
inequalities have been obtained to ensure the FTS. The availability of
the results has been demonstrated by the numerical examples.
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Fig. 2. Synchronization  errors:  (a)  Trajectory  of  the  synchronization  errors

 and ; (b) The release instants and intervals.
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