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   Dear Editor,

The health management of battery supply chain (SC) is vital to bat-
tery-related industry. This letter focuses on the study of health man-
agement of battery SC under disruptions. First, a discrete-time model
of  battery  SC  is  developed  based  on  the  actual  industrial  process.
Then,  a  model  predictive  control-based  change  management  (MPC-
CM) strategy is proposed to ensure stable manufacturing of batteries.
Moreover,  the  effects  of  disruption  are  also  considered  in  terms  of
the  actual  situation.  Finally,  the  validity  of  the  proposed  strategy  is
verified by a case study in Dongsheng Electronics Co., Ltd.

As an important energy storage device, the stable manufacturing of
batteries is crucial to battery-related industry, which also plays a key
role in battery SC [1]. Due to the integrality and interconnectedness
of  SC,  material  flow in  SC will  be  disrupted  by unexpected  events,
such  as  natural  disasters  [2]  and  pandemic  outbreak  [3].  Different
from  artificial  operational  risks,  disruptions  are  usually  unpre-
dictable events to SC. In addition, during the past three years, coron-
avirus  disease  2019 (COVID-19)  outbreak  has  always  been causing
small disturbances or terrible disruptions to SC. Unlike some natural
disasters,  which  can  be  partially  forecast,  COVID-19  pandemic  is
totally unpredictable.

Generally, the spread of COVID-19 disease is difficult to prevent,
which largely depends on government’s control measures. However,
disruptions  caused  by  COVID-19  are  not  always  insurmountable,
which have been widely studied in the literature. As an effective SC
management strategy, change management of SC during disruptions,
which aims to adjust operational policies, is an important manner to
improve SC resilience,  reduce SC operational  cost,  enhance corpor-
ate competitiveness and improve service levels.  Disruption severity-
based  SC  recovery  model  is  built  by  using  mathematical  modeling
method,  and recovery plan is  also discussed [4].  Further,  SC recov-
ery strategy considering product change under COVID-19 is investi-
gated, and a mixed-integer programming mathematical model is also
developed,  which  can  help  manufacturer  reduce  losses  effectively
[5].  However,  although  product  change  strategy  can  mitigate  the
effects of disruptions, it still has some limitations. For battery manu-
facturing, product change incurs extra product design time and costs.
To this end, it  is suggested that safety stock can help manufacturers
reduce  stockout  risks  [6].  It  is  pointed  out  that  the  accurate  predic-
tion of customers demands can track customer behaviour during dis-
ruptions  [7].  As  a  result,  suppliers  and  manufacturers  can  arrange
procurement and manufacturing in advance.

In  this  letter,  MPC  strategy  is  adopted,  which  has  been  success-
fully applied in the some industries [8]. MPC employs a mathemati-
cal model of a controlled system to predict its evolution as a function
of actions performed within a specific range [8]. The primary goal of
MPC strategy is to calculate the optimal inputs by optimizing a given

cost  function.  MPC-based  decision  strategy  is  effectively  used  for
inventory  management  with  uncertain  supply  and  demand,  which
dramatically reduces the redundant stock and financial costs [9]. Fur-
thermore,  MPC  policy  is  also  successfully  verified  for  multi-
medicine  inventory  management  in  a  hospital  [10].  However,  only
ordering process  is  studied,  and disruptions are  also not  considered.
As a result, it is interesting to develop an MPC-CM strategy for bat-
tery  SC  that  involves  ordering,  manufacturing  and  delivery  pro-
cesses under disruptions, which motivates this study.

Motivated by the above discussions, this letter aims to develop an
MPC-CM  strategy  for  battery  SC  subject  to  disruptions.  The  main
contributions  of  this  letter  can  be  concluded  as:  1)  Battery  SC  is
described  as  a  discrete-time  model  that  extracted  from  the  actual
industrial  processes.  2)  Ordering,  manufacturing  and  delivery  pro-
cesses are all  involved, moreover,  an MPC-CM strategy is designed
for health management of battery SC under disruption risks.

S i i ∈ N = {1,2, . . . ,
n}

Problem  formulation  and  SC  modeling: As  depicted  in Fig. 1,
the battery SC consists of n suppliers, one manufacturer and clients,
which  are  denoted  by , M and C,  respectively, 

.  The  arcs  in Fig. 1 represent  corresponding  ordering,  manufac-
turing  and  delivery  processes.  Specifically,  clients  place  orders  to
manufacturer  in  time  period k,  manufacturer  immediately  makes
responses  without  delay,  if  manufacturer’s  stock  can  not  satisfy
clients, then stockout incurs. The same manipulations are also needed
for suppliers and manufacturer. SC disruptions caused by COVID-19
usually appear first on the supply side, which will lead to decrease of
suppliers’ capacity. Generally, SC disruptions caused by COVID-19
are completely random, which undoubtedly result  in  unreliable sup-
ply. In addition, clients’ demands are also unknown to manufacturer
in advance. Therefore, it is a challenging task for SC to fulfill all the
orders at the least cost with unreliable supply and uncertain demands.
The goal of SC is to determine the optimal production planning and
inventory replenishment order  quantities  for  suppliers  and manufac-
turer during disruptions. To this end, the objective of this letter is to
design an MPC-CM strategy for SC under disruptions such that it can
reduce operational costs together with maintaining service levels.
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Fig. 1. Ordering, manufacturing and sales processes in battery supply chain.
 

Depending on the ordering and delivery relationships in Fig. 1,  as
inventory  of  each  entity  varies,  the  dynamics  of  studied  SC  can  be
described as a discrete-time model
 

x(k+1) = x(k)+ v(k+1)− s(k+1) (1)
x(k) = [x1(k), . . . , xn(k), xm(k), xp(k)]T v(k) = [v1(k), . . . ,vn(k),

vm(k),vp(k)]T s(k) = [s1(k), . . . , sn(k), sm(k), sp(k)]T x(0) =x0 v(0) =
v0 s(0) = s0 xi(k) xm(k)

vi(k)
si(k)

vm(k)
sm(k)
xp(k)

vp(k)

where , 
, , , 

 and .  and  represent the on-hand raw material
inventory  levels  of  supplier i and  manufacturer,  respectively. 
denotes  the  raw  material  quantities  that  supplier i obtains,  is
delivery quantities of raw materials from supplier i to manufacturer,

 denotes quantities of raw materials that manufacturer receives,
 represents  the quantities  of  raw materials  put  into production,
 represents the on-hand finished products inventory of manufac-

turer,  denotes  finished  products  obtained  by  manufacturer,
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sp(k) stands for delivery quantities of products from manufacturer to
clients. In which, k represents time period k.

vi(k) = ui(k−Li) vm(k) =
∑n

i=1
si(k−Ls) vp(k) = sm(k−Lp) um(k) =

∑n
i=1 umi (k) umi (k) = λium(k)∑n

i=1 λi = 1, i ∈ N

In addition, it can be deduced that the parameters employed in Fig. 1
satisfy  the  following  relationships: , 

, , ,  ,
and . Then, (1) can be rewritten as follows:
 

xi(k+1) = xi(k)+ui(k−Li)− si(k)
xm(k+1) = xm(k)+ vM(k)− sm(k)
xp(k+1) = xp(k)+ sm(k−Lp)− sp(k)

(2)

ui(k) Li
Lp

Ls umi (k)
d(k)

where  represents  raw materials  supplier i plans  to  produce. 
and  are  production  time for  supplier i and manufacturer,  respec-
tively.  is  shipment  time  from  supplier i to  manufacturer, 
represents the order manufacturer places to supplier i. Moreover, 
is the order clients place to manufacturer.

Without loss of generality, the following assumptions are needed:
1) The conversion ratio of raw material to finished product is 1:1.

Suppliers are completely substitutable with each other.
2) If disruption occurs, which will lead to the reduction of affected

suppliers’ capacity.  To  this  end,  change  control  strategy  is  needed,
i.e., emergency procurement from unaffected supplier(s) at the begin-
ning of pandemics.

As known to all, stockout is not rare in SC. If clients’ or manufac-
turer’s  demands  can  not  be  fulfilled,  stockout  will  incur,  dynamic
equations of backorders can be described as follows:
 

bi(k+1) = bi(k)+umi (k+1)− si(k+1), i ∈ N
bm(k+1) = bm(k)+up(k+1)− sm(k+1)
bp(k+1) = bp(k)+d(k+1)− sp(k+1)

(3)

bi(k)
bi(k) ≥ 0 bm(k) bp(k)

bm(k) ≥ 0 bp(k) ≥
0 si(k) =
min{xi(k−1)+ vi(k),umi (k)+bi(k−1)} sm(k) =min{xm(k−1)+ vm(k),
up(k)+bm(k−1)} sp(k) =min{xp(k−1)+ vp(k),d(k)+bp(k−1)}
i ∈ N

where  denotes  the  accumulated  stockouts  of  raw  materials  in
supplier i up  to  time  period k, ,  and  represent
accumulated  stockouts  of  raw  materials  and  finished  products  in
manufacturer utill time period k, respectively,  and 

.  More  specifically,  it  can  be  further  deduced  that 
, 

 and ,
.

b(k) = [b1(k), . . . ,bn(k),bm(k),bp(k)]T b(0) =
b0

Optimization  problem: In  this  letter,  the  main  objectives  of  SC
are twofold: 1) improve service levels; 2) the operation cost must be
lowered.  Denote  and 

, therefore, the objective function is defined as follows:
 

min
M

J = α1J1(x(k),k)+α2J2(u(k),k)+α3J3(b(k),k) (4)

M M = {x(k),u(k),b(k),k} J1
J2 J3

J1 =
∑Np

i=1 cxx(k+ i) J2 =
∑Np

i=1 cuu(k+ i) J3 =
∑Np

i=1 cbb(k+ i)
cx = [cx1 , . . . ,cxn ,cxm ,cxp ] cu = [cu1 , . . . ,cun ,cup ,cum ]

cb = [cb1 , . . . ,cbn ,cbm ,cbp ]

α1 α2 α3

where  is a set that can be expressed as , ,
 and  denote  the  terms  involved  with  inventory  storage  costs,

manufacturing  costs  and  stockout  costs,  respectively.  In  which,
,  and ,

where ,  and
 denote  unitary  storage  cost  vector,  unitary

production cost vector and unitary stockout cost vector, respectively.
Besides, ,  and  are  all  weighting  parameters,  manager  can
adjust  weighting  parameters  to  focus  on  optimizing  the  correspond-
ing objective(s).

ui(k) up(k)

Remark 1: The priority of optimization objectives is as follows: 1)
clients’ and manufacturer’s orders; 2) the stock levels of each entity;
3) production quantities, i.e.,  and . Moreover, manufactur-
ing costs include shipment costs, thus shipment costs are not consid-
ered individually.

In addition, some constraints are essential in practical SC such that
 

xi(k) ∈ [xmin
i (k), xmax

i (k)], i ∈ N
up(k) ∈ [umin

p (k),max{umax
p (k), xm(k)}]

ui(k) ∈ [umin
i (k),umax

i (k)], umi (k) ∈ [0, xi(k)], i ∈ N
xm(k) ∈ [xmin

m (k), xmax
m (k)], xp(k) ∈ [xmin

p (k), xmax
p (k)]. (5)

umin
a,mi

(k) = βiumin
mi

(k) umax
a,mi

(k) = βiumax
mi

(k) βi ∈ [0,1]

Remark 2: When disruption occurs, the actual minimum and maxi-
mum manufacturing capacity of supplier i are forced to reduce up to

 and , respectively, .

u(k) Np
Nu

Np Nu

MPC-CM  strategy: In  this  letter,  consider  system  (2)  and  opti-
mization  problem (4).  Here,  MPC strategy  is  employed  to  calculate
the optimal control inputs  periods froward based on on-hand
inventory  and  forecasted  orders,  however,  only  the  first  control
actions are adopted while the rest are discarded.  and  are pre-
diction  and  control  horizons,  respectively.  At  each  time  period,  the
calculations are repeated by using the latest information.

Np

The  optimization  problem  (4)  can  be  viewed  as  a  mixed-integer
programming (MIP)  problem.  At  each  time period,  manager  checks
on-hand inventory to identify if  on-hand inventory is enough to sat-
isfy  the  upcoming  demands  in  the  next  periods,  otherwise,  an
replenishment order must be placed. In order to describe the process
more clearly, Algorithm 1 is provided.

Algorithm 1 Order Replenishment Policy

x(k)Step 1: At the time period k, measure the inventory level ;

Np

Step  2:  Forecast  the  future  demands  for  manufacturer  and  suppli-
ers according to historical data in the next  periods by Algorithm 1
proposed in [11];

Np

Step  3:  If  on-hand  inventory  is  enough  to  guarantee  the  demands
for next  consecutive periods, there is no need to take any actions,
then wait for the next period and go to Step 1;

Step 4: Otherwise, place a replenishment order by solving (4) sub-
ject to (5), then wait for the next period and go to Step 1.

Lpd̄ d̄
Lp

(Lp +0.2)d̄

Case study: In this part, the simulation test is performed in Dong-
sheng Electronics Co., Ltd. from 1 July 2021 to 31 August 2021 by
using proposed Algorithm 1, which is committed to producing batter-
ies  and  located  in  Zhongshan,  Guangdong  province,  China.  During
the past two decades, Dongsheng has been always adopting order-up-
to (OUT) replenishment policy, i.e.,  if  stock of products is below q,
then an order is placed to bring stock to an expected level Q. Further,
the low bound q and desired level Q are fixed in OUT policy. More-
over,  the  threshold q is  usually  set  to ,  where  is  the  average
consumption of  products  in the same period last  year,  and  is  the
production lead time. To reduce the unnecessary costs, the expected
inventory level Q is set to .

α1 α2 α3

L1
L2 Ls Lp

xmax
1 (k) = 8000 xmax

2 (k) = 7500 xmax
m (k) = 5000

xmax
p (k) = 5000 umax

1 (k) = 4000 umax
2 (k) = 3000 umax

p (k) = 3000
d̄ = 2000 cx = [1,1,1,1] cu =[2,2,3] cb = [0.1,0.1,0.1,

0.2] s0 = b0 = [0,0,0,0] u0 = [0,0,0] v0 = [0,0,0,0] x0 = [900,
1250,2235,2220]

As depicted in Remark 1, the priority of optimization goals is pro-
vided, hence the corresponding coefficients ,  and  in (4) are
set  to  5,  1  and  200,  respectively.  In  the  simulation,  the  number  of
main suppliers n is set to 2 due to Dongsheng has two main suppliers.
In addition, supplier 1 and 2 are located in Yangzhou and Yueyang,
respectively. Moreover, according to the practical SC, lead times ,

,  and  are  all  fixed to  1,  all  the  lower  bounds in  constraints
(5)  are  set  as  0, , , ,

, ,  and .
Besides, , , , 

, , ,  and 
.

β1 = 0
β2

Np Nu

Np Nu

During  31  July  to  31  August  2021,  Yangzhou  had  been  in  lock-
down due to epidemic outbreak. Therefore, supplier 1 was forced to
shut  down and .  Moreover,  supplier  2 was also influenced by
pandemics,  which  capacity  coefficient  was  reduced  to  0.6.  As  a
result, Dongsheng endured heavy financial losses due to the shortage
of raw materials. At the beginning (27 July 2021) of epidemics, man-
ager should procure raw materials ahead. Therefore, the two scenar-
ios  are  considered  in  the  simulation:  1)  Suppliers  and  manufacturer
produce  and  procure  raw  materials  ahead  in  large  quantities  before
lockdown, respectively,  and  largely depend on the severity of
pandemics, which are set to 10 and 6 days before lockdown, respec-
tively.  2)  During  the  lockdown,  depending  on  the  forecast  of  epi-
demic trends by authorities, supplier 2 and manufacturer produce and
procure the right amount of raw materials. Further,  and  are set
to 5 and 1 days,  respectively.  Different  from OUT policy,  the MPC
optimization problem (4) is solved in each time period, which aims to
bring  stock  levels  to  an  expected  level.  In  addition,  the  expected
stock  levels  are  also  dynamically  adjusted  according  to  historical
demand data.

In order to demonstrate the effectiveness of the proposed MPC-CM
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strategy, the average stockout (AS), average service level (ASL) and
total cost (TC) are introduced as follows, which are key performance
indicators and presented in Table 1. 

AS L =

 62∑
k=1

sp(k)
d(k)

/62

AS =

 62∑
k=1

 2∑
i=1

bi(k)+bm(k)+bp(k)


/62.

(6)
 

Table 1.  Comparison of Key Performance Indicators by Applying MPC and
OUT Policy

Approach Average stockout Average service level Total cost

OUT 698 95.33% 16 687

MPC 153 99.01% 11 256
 
 

α1 α2
α3

Further, the definition of total cost is given as (4) with ,  and
 being 1.

Np

The real and simulated inventory evolution of suppliers and manu-
facturer  are  presented in Fig. 2.  As can be  seen in Fig. 2,  before  27
July, due to the dynamically adjusted mechanism of MPC-CM strat-
egy, lower stock levels of each entity can be obtained with the aid of
MPC-CM  strategy,  which  lead  to  lower  storage  and  manufacturing
costs.  From 27 July, i.e.,  at  the beginning of the epidemic outbreak,
manager needs to develop a contingency at once to face the possible
shortage  of  raw  materials.  Through  MPC-CM  policy,  manager  can
force the execution of Step 4 in Algorithm 1, hence the optimal emer-
gency procurement  quantities  for  the next  days can be obtained.

xm(k) xp(k)Therefore, from 27 July,  and  are higher than before due

x1(k)
x2(k)

to emergency procurement, i.e., MPC-based change control. In addi-
tion,  remains unchanged from 31 July due to lockdown policy
while  keeps a zero inventory because of the reduction of capac-
ity. Further, it can be also observed in Table. 1 that the quantities of
average  stockout  and  total  costs  are  dramatically  reduced  by  apply-
ing  MPC  policy,  meanwhile,  average  service  level  is  also  slightly
improved.  Therefore,  the  advantages  of  MPC-CM strategy are  veri-
fied.

Conclusion: In  this  letter,  MPC-CM  of  battery  SC  under  disru-
ptions  involved  ordering,  manufacturing  and  delivery  processes  has
been investigated. An MPC-CM strategy has been proposed to sched-
ule  ordering,  manufacturing  and  delivery  processes.  Then,  the  opti-
mization  problem  is  transformed  into  a  MIP  problem.  Finally,  the
health management of batteries can be ensured, and the effectiveness
of  MPC-CM  strategy  has  been  demonstrated  by  a  case  study  com-
pared  with  real  data  obtained  by  currently  implemented  strategy  in
Dongsheng. Further, data-based assisted decision-making system for
health management of batteries will also be developed.
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Fig. 2. Real and simulated inventory levels of each entity in SC.
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