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   Dear Editor,

A global  and local  canonical  correlation analysis  (GLCCA) based
on  data-driven  is  presented  for  underwater  positioning.  Underwater
positioning technology can help the underwater targets move prede-
termined destinations for specific tasks [1]. Since using different sen-
sor,  underwater  positioning  can  be  divided  into  three  types:  inertial
navigation,  hydroacoustic  positioning  and  geophysical  navigation.
Underwater  inertial  navigation  method  based  on  the  carried  sensors
has  short-term high  accuracy,  but  it  is  prone  to  accumulative  errors
over  time  and  requires  external  correction  [2].  Within  the  range  of
pre-deployed  hydroacoustic  arrays,  hydroacoustic  positioning
method  calculates  the  signal  extracted  from  nodes,  but  may  have
fluctuating  errors  due  to  the  complex  hydroacoustic  channels  [3].
Geophysical  positioning  method  mainly  compares  the  collected
information such as seabed terrain, underwater image, or gravity field
with  the  prior  knowledge  in  the  reference  database  [4].  Different
positioning  methods  have  their  unique  merits  as  well  as  inherent
drawbacks for different applications. How to combine multiple meth-
ods to enhance positioning performance has become the holy grail in
the field of underwater positioning.

Hydroacoustic  positioning  has  become  a  widely  used  technology
by solving the signal propagation time or phase from the hydroacous-
tic array to each mobile transponder [5]. Taking the acoustic signals
and array coordinates as inputs, the positioning problem can be trans-
formed into the problem of minimizing the sum of all  measurement
errors [6]. However, the noisy underwater acoustic signals will make
the  positioning  result  have  fluctuations  [7].  The  classical  signal  to
location mapping has the problem that the positioning accuracy is too
sensitive  to  various  uncertain  noises.  Other  useful  information
including  network  topology  can  be  deeply  excavated  to  reduce  the
impact  of  ranging noise on the positioning accuracy.  Since the geo-
metric  distance  of  mobile  transponder  relative  to  the  hydroacoustic
array remains  unchanged,  each mobile  transponder  will  periodically
receive  the  similar  acoustic  signals  caused by the  network topology
similarity  [8].  The  classical  signal  to  location  mapping  can  be
extended to the topology to signal to location mapping.

Related work: The problem of hydroacoustic positioning based on
topology to signal to location mapping can be summarized as estab-

lishing a mapping from signal space to location space, including the
priori training and positioning testing phases. For a variety of cyber-
physical  systems,  high-quality  training  datasets  were  the  basis  for
high  performance  [9].  To  adaptively  track  multiple  surface  targets,
the  acoustic  data  association  strategy  integrated  with  particle  filter
was applicable to estimate the position and velocity [10].  A canoni-
cal correlation analysis (CCA) method was used to discover internal
regularities between similar input datasets [11]. However, the nonlin-
ear  characteristics  of  underwater  acoustic  signals  caused  by  various
noises will inevitably weaken the CCA effect. Kernel canonical cor-
relation analysis (KCCA) could handle data nonlinear problems, but
did  not  consider  the  locality  association  between underwater  acous-
tic  data  [12].  Some  scholars  proposed  the  local  preserving  CCA
(LPCCA) method to introduce the locality information of associated
data  [13].  The  existing  research  does  not  deeply  discuss  the  global
and local joint correlation between similar datasets.

These motivate us to propose the GLCCA algorithm from the data-
driven perspective. The detail positioning steps are as follows. Draw-
ing on the idea of geophysical navigation, hydroacoustic positioning
firstly  establishes  the  priori  training  sets  received  from  the  hydroa-
coustic arrays communicating with the mobile hydrophone at differ-
ent  locations.  The  locations  of  mobile  transponder  during  the  priori
training  phase  can  usually  be  obtained  from  the  inertial  units.  Sec-
ondly,  the correlation between the received hydroacoustic signals in
positioning testing phase and the stored hydroacoustic signals in the
priori  training  phase  is  analyzed  that  contains  the  global  and  local
correlation  properties.  Thirdly,  the  locations  of  mobile  hydrophone
corresponding to  the  maximum correlation coefficient  is  selected as
the final positioning output, which can weaken the impact of various
uncertain  noises  on  positioning  accuracy.  The  proposed  GLCCA
algorithm is  evaluated  and  compared  with  the  related  CCA,  KCCA
and LPCCA positioning algorithms.
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Problem statement: The overall framework of proposed GLCCA
is  as  shown  in Fig. 1.  In  the  underwater  area  of  interest,  several
hydroacoustic arrays are regularly deployed in advance, while mobile
hydrophones and inertial units are installed on the underwater targets
[14].  There  are  hydroacoustic  arrays,  whose  three-dimensional
coordinates  are  calibrated  as , .
There  are  mobile  transponders , 

,  which  can  receive  the  time  of  arrival  (TOA)  signal.  When
establishing  prior  training  database,  the  received  TOA acoustic  sig-
nals  of  mobile  transponder  at  different
locations  need  to  be  stored,  where  the
parameter  indicates  the  number  of  mobile  transponders,  and  the
parameter  indicates  the  coordinate  dimension.  Considering  that
there  are  location  errors  of  mobile  hydrophone  by  the  inertial  unit
during  the  training  phase,  the  locations  can  be  modelled  as

,  and  the  horizontal  and  vertical  spacing  between  each
points is marked as .
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Fig. 1. Overall framework of proposed GLCCA algorithm.
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The  TOA  ranging  error  is  related  to  the  slant  range,  modelled  as
, where  is the slant range; obeys a uniform distri-

bution;  is the error of slant range;  is the regulator. The correla-
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tion  between  paired  variables  and  needs  to  be  reach  the
maximum value,  where  the  and  represent  two sets
of  basis  vectors.  The  correlation  coefficient  of  two  datasets  can  be
expressed as [15]
 

ρ=
wT

u Cuvwv√
wT

u CuuwuwT
v Cvvwv

(1)

Cuu = uuT ∈ Rn×n Cvv = vvT ∈ Rq×q

Cuv
Cuv = CT

vu

where  and  represent the within-
set  covariance  matrix;  represents  the  between-set  covariance
matrix with . The solution of optimization problem can be
expressed as
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The global  nonlinear  problem is  divided into multiple  local  linear
neighborhoods.  The  similarity  matrices  and 

 containing information about the data local distribution are
defined [16]. They can be expressed as
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 represent  the  average  distances  of  two  datasets.

The  optimization  problem  considering  local  characteristics  can  be
formulated as
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where,  the  symbol  represents  Hadamard  product;  the  expressions
,  and  are  both  symmetric  matrices,  whose  diagonal

element is equal to the sum  row elements of the matrices ,
, ,  After  analyzing  the  nonlinear  data  associated  with

underwater neighborhoods, we introduce the global and local proper-
ties into the correlation analysis as follows:
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The  expression  can  be  decomposed  into
 using  singular  value  decomposition,  where A

and B are the matrices composed of the left and right singular value
vectors; K is the number of eigenvalues;  is the diagonal
matrix  composed  of  singular  values  greater  than  0.  The  proposed
GLCCA algorithm can be further transformed into
 
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The updated projection matrices can be expressed as 
and . The set of observations recorded  in the prior
phase into the projection transformations  under  and 
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[13].  The  received  TOA  set  is  converted  into
the  projection  transformation  under  matrix .  The
weighted  Euclidean  distance  is  calculated  between  and ,
where ,  is  the  eigenvalue;

 is  the  component  after  the  transformation of  the  hydroa-
coustic array;  is the  component. The estimated coordinates 
of mobile transponder can be calculated after performing a weighted
average of the coordinates of  neighbor points.
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Experiments: We use  MATLAB R2017b software  to  verify  pro-
posed GLCCA algorithm. The underwater area is set as 600 m × 600 m
× 60 m. The UASN is mainly composed of one mobile transponder
and four hydroacoustic arrays, marked as . The calibrated coor-
dinates  of four hydroacoustic arrays are set as [0, 0, −58.5] m, [0,
600, −55.6] m, [600, 0, −56.2] m and [600, 600, −53.4] m consider-
ing the ups and downs of water bottom. The acoustic communication
radius is set as 1000 m. The ranging error is a random number related
to  the  slant  range .  When  the  ranging  error  coefficient  is  set  as
{1.25%}, the ranging error distribution intervals are 
under the regulator  of {0.25%}. The spacing  is set as 5 m, 10 m,
15  m,  and  20  m  in  priori  training  phase,  while  the  corresponding
sampled  training  points  are 14641, 3721, 1681 and  961.  300  sam-
plings  are used to evaluate the positioning accuracy. The parame-
ter  is set as 3. We set the inertial location errors  as an increased
value over time from 0 to 5.5 m. The proposed GLCCA is compared
with CCA [11], KCCA [12], and LPCCA [13] algorithms. We evalu-
ate the positioning performance from the aspects of slant range error,
different spacing of prior training, with or without accumulative loca-
tion errors.

dH

89.67% 91% 95.33% 97.33%

When  the  spacing  is  set  as  10m,  the  average  errors  of  CCA,
KCCA, LPCCA and GLCCA algorithms are 3.27 m, 2.65 m, 2.54 m
and 2.46 m, and the proportion of different algorithms with error less
than  4m is , ,  and ,  as  shown  in Fig. 2.
Because  the  CCA  algorithm  can  only  deal  with  linear  datasets,  the
accuracy  of  positioning  performance  is  poor.  Compared  with  the
CCA  algorithm,  the  KCCA  algorithm  uses  the  kernel  functions  to
map  low-dimensional  data  for  the  uniform  nonlinear  mapping.  The
LPCCA algorithm considers the local distribution characteristics and
achieves  the  solution  of  the  nonlinear  problem  by  the  local  linear
method. The proposed GLCCA algorithm has high positioning accu-
racy  after  considering  the  global  and  local  correlations.  Since  the
spacing increases from 5 m, 10 m, 15 m to 20 m, the CCA average
error  increases  from 2.42  m,  3.33  m,  4.43  m to  6.02  m,  the  KCCA
average error increases from 1.78 m, 2.70 m, 3.88 m to 5.70 m, the
LPCCA  average  error  increases  from  1.50  m,  2.67  m,  3.81  m  to
5.31  m,  while  the  GLCCA  average  error  increases  from  1.47  m,
2.43 m, 3.73 m to 4.80 m, as shown in Fig. 3. As the sampling spac-
ing  in  the  prior  training  phase  increases,  the  average  errors  of  four
algorithms increase  as  well.  The main  reason is  that  the  increase  of
the spacing means that fewer points need to be sampled in the prior
training  phase,  so  that  the  probability  of  being  able  to  accurately
match  the  exact  position  in  the  positioning  testing  phase  becomes
lower. No matter how the spacing changes, the positioning accuracy
of proposed GLCCA algorithm presents better than other three algo-
rithms.

∆v
dH

Fig. 4 shows  the  different  algorithm  errors  with  or  without  accu-
mulative errors. The inertial location errors  are set as an increase-
ment value from 0 to 5.5 m and the spacing  is set as 10 m. Com-
pared  with Fig. 2,  the  average  positioning  errors  of  CCA,  KCCA,
LPCCA  and  GLCCA  algorithms  increase  from  2.46  m,  1.80  m,
1.47  m,  1.42  m  to  3.05  m,  2.51  m,  2.32  m,  2.29  m,  respectively.
Comparing with no accumulative errors of inertial locations, the cor-
responding  maximum  positioning  errors  of  CCA,  KCCA,  LPCCA
and GLCCA algorithms are increased from 3.88 m to 5.32 m, 3.80 m
to  5.37  m,  2.53  m  to  5.10  m,  2.48  m  to  5.05  m  with  accumulative
errors of inertial locations. The results indicate that the accumulative
errors  in  the  training  phase  can  increase  the  positioning  errors  and
their divergence trend. Since the accumulative location errors of sam-
pled training points can aggravate the degree of nonlinearity between
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datasets, the proposed GLCCA algorithm combines local and global
properties to achieve more stable positioning performance.

Conclusions: The proposed GLCCA algorithm analyzes the global
and local  spatiotemporal  nonlinear  correlation between two datasets
extracted from the prior training and positioning testing phases. The
proposed  GLCCA  introduces  the  network  topology  and  form  an
extended  topology  to  signal  to  location  mapping  model.  Since  the
spacing  increases  from  5  m  to  20  m,  the  average  errors  of  CCA,
KCCA, LPCCA and GLCCA algorithms are increased from 2.42 m
to 6.02 m, 1.78 m to 5.7 m, 1.5 m to 5.31 m, 1.47 m to 4.8 m, respec-
tively.  After  introducing  the  accumulative  location  errors,  the  aver-
age  positioning  errors  of  CCA,  KCCA,  LPCCA  and  GLCCA  algo-
rithms  are  increased  by  0.59  m,  0.71  m,  0.85  m,  0.87  m.  The  pro-

posed  GLCCA  algorithm  can  weaken  the  sensitivity  of  uncertain
noises on solution process and have a higher positioning accuracy.
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Fig. 2. Positioning error statistics of different algorithm under a blue route.
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Fig. 4. Different algorithm errors with or without accumulative errors.
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