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   Dear Editor,

This letter is concerned with wood crack detection which is impor-
tant to guarantee the quality of wooden products. In the wood indus-
try,  the  crack  detection  is  one  of  the  most  challenging  tasks  in  the
wood defects detection, since the detection accuracy may be reduced
due to the stains on the boards, the tiny cracks, and some cracks that
are  similar  to  the  sound  region.  To  overcome  these  challenges,  we
propose  a  data-driven  semantic  segmentation  network  based  on  U-
Net,  which  is  called  WCU-Net,  for  wood  crack  detection.  Specifi-
cally, a position attention mechanism is firstly proposed to exagger-
ate  the  wood  crack  positions,  then  the  feature  enhancement  mecha-
nism  is  designed  to  selectively  derive  more  diluted  information  of
tiny crack. Moreover, a residual block is adopted to obtain and fuse
multi-scale receptive fields for finding more crack areas that are sim-
ilar  to  the  sound  region.  The  experimental  results  show that  WCU-
Net can improve the accuracy of wood crack detection.

The crack on the wooden board is a typical defect which affects the
quality  of  wooden  products.  Thus,  the  wood  cracks  have  to  be
detected and then cut during the wooden furniture production. Gener-
ally, the wood cracks are marked by experienced workers with a flu-
orescent pen for wood cutting decision-making. The manual process
is  inefficient  and  human  subjectivity  often  leads  to  low  accuracy.
Therefore, it is important to develop an automatic wood crack detec-
tion approach for wood industry.

With the support of machine vision [1], some research works have
been  proposed  to  separate  the  wood  defects  from  background  by
growing boxes from a set of pixels in defective regions [2] or using a
local  threshold  segmentation  algorithm  [3].  However,  the  perfor-
mance of these algorithms is easily affected by the noise whose color
is  similar  to the wood defects.  On the other  hand,  machine learning
algorithms  have  been  used  to  classify  wood  defects.  The  extracted
geometric  and  intensity  features  of  wood  defects  were  used  to  con-
struct a regression tree (CART) classifier [4]. As the artificial neural
networks improve the robustness in the industrial monitoring [5], [6],
data-driven  deep  learning  approaches  have  been  designed  to  detect
wood  defects.  In  [7],  the  defects  are  firstly  located  by  using  water-
shed  algorithm  and  opening  operation,  and  then  identified  by  deep
learning  neural  network.  To  increase  efficiency,  the  Gaussian  func-
tion  and  the  complete  intersection  over  union  (CIoU)  loss  function
are adopted to improve YOLOv3 for wood defect detection [8].

Although these works have been proposed to detect wood defects,
the  crack  detection  is  still  one  of  the  most  challenging  tasks  in  the
wood defects detection. At first, in the industrial process, the wooden

boards  often  contain  stains,  and  the  captured  wood  images  vary  in
brightness  due to  illumination instability.  These dynamic conditions
make it difficult to segment wood cracks through traditional segmen-
tation  algorithms.  Secondly,  the  wooden  board  exists  lots  of  tiny
cracks that are hard for convolutional neural network to derive their
representative  features.  In  this  case,  enhancing  the  diluted  informa-
tion of tiny crack is important. Moreover, some cracks are similar to
the  sound  region  on  the  wooden  board,  which  makes  the  detection
task more challenging.

To overcome these challenges, we propose a data-driven semantic
segmentation  network  based  on  U-Net,  called  WCU-Net,  for  wood
crack detection. The main contributions of WCU-Net are as follows:
1)  We  propose  a  position  attention  mechanism  (PAM),  where  the
attention  map is  firstly  acquired  from feature  map and  then  used  to
exaggerate  the  wood  crack  positions.  2)  The  feature  enhancement
mechanism (FEM) is designed to selectively derive details based on
the  attention  map.  It  enhances  more  detailed  information  of  tiny
wood  crack  that  is  diluted  through  convolutional  operations.  3)  A
residual block with atrous convolution is adopted to obtain and fuse
multi-scale  receptive  fields.  It  can  recognize  wood  crack  through
larger receptive field, which helps find more crack areas that are sim-
ilar  to  the  sound  region.  The  experimental  results  show that  WCU-
Net can improve the accuracy of wood crack detection.

Data collection: In order to capture wood images for wood crack
detection,  a  machine vision testbed is  deployed,  as  shown in Fig. 1.
The  wooden  board  is  transported  through  a  conveyor  to  the  image
capture area. The line scan cameras installed at the bottom and top of
the  conveyor  start  scanning  the  wooden  board  for  capturing  wood
images. The obtained images are transmitted to the computer through
single  twisted  pair  Ethernet.  Then,  the  captured  images  are  pro-
cessed  to  remove  the  background  [9]  and  cropped  into  pieces  for
detection.
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Fig. 1. The framework of machine vision testbed for wood crack detection.
 

The cropped wood images are illustrated in Fig. 2. It is clear to see
that  the  wood  contains  stains,  and  the  wood  images  vary  in  bright-
ness.  They  make  the  traditional  segmentation  methods  difficult  for
wood  crack  detection.  On  the  other  hand,  the  scales  and  texture  of
wood cracks are various. In particular, the span of wood crack varies,
some  areas  in  large-scale  cracks  are  similar  to  the  non-defective
areas,  and  the  wood  contains  many  tiny  cracks,  some  of  which  are
very  close  to  the  natural  wood  texture.  These  characteristics  bring
enormous challenges to wood crack detection.
 

(a) (b) (c) (d)
 
Fig. 2. Characteristics of wood cracks in the cropped wood images.
 

WCU-Net  architecture: To  achieve  wood  crack  detection,  this
letter  proposes  a  data-driven  semantic  segmentation  network  based
on  U-Net  [10],  which  is  called  WCU-Net.  The  architecture  of  the
WCU-Net  is  illustrated  in Fig. 3 .  WCU-Net  includes  four  parts:  a
baseline network, a PAM, a FEM and a residual block. The baseline
is  constructed  as  encoder-decoder  network  structure.  The  PAM  is
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designed  to  focus  on  the  wood  crack  areas.  The  FEM enhances  the
detailed  information  that  is  diluted  in  the  high-level  feature.  The
residual block is added to acquire larger receptive field.

3×3

1)  Baseline  network:  Due  to  the  excellent  segmentation  perfor-
mance  in  different  applications  [11],  U-Net  is  used  as  the  baseline
network of the proposed WCU-Net. For the encoder part, two convo-
lution layers with a kernel size of  are used to derive features in
different scales and a max-pooling layer with a stride of 2 for down-
sampling. Each convolution layer is followed by batch normalization
(BN) and a rectified linear unit (ReLU).

To improve the performance of feature fusion, inverted block [12],
which consists of depthwise convolution and pointwise convolution,
is adopted after concatenate operation in the decoding process. In this
research, the number of channels is reduced by half through the oper-
ation  of  first  pointwise  convolution,  and  the  remained  operation  in
the  inverted  block  keeps  the  number  of  channels  same.  For  feature
up-sampling, the size of the image is restored by the transposed con-
volution gradually. Sigmoid is used in the last layer.

X ∈ RC×H×W 1×W
H×1 A ∈ RH×1 B ∈ R1×W

S ∈ RH×W

Y ∈ RC×H×W

2) Position attention mechanism: The stains on the wooden board
may hinder neural network from deriving representative information
of wood crack. To enhance the wood crack representation, we intro-
duce  a  position  attention  mechanism,  as  shown  in Fig. 4 .  The  local
feature  is  fed  into  two  convolution  layers  with 
and  filters  to  produce  two  vectors  and  ,
respectively.  Then, a matrix multiplication between A  and B  is  per-
formed, and a softmax layer is applied to acquire the position atten-
tion map .  Finally,  the feature X  is  multiplied by the map
S,  and the element-wise sum of the output and the feature X  is  per-
formed to generate the final output .

3)  Feature enhancement mechanism: Although concatenate opera-
tion in  the  U-Net  recovers  detailed local  information,  some noise  is
also  introduced  to  the  features,  which  affects  prediction  accuracy.
Moreover, the tiny crack information is more easily diluted after sev-
eral  convolutional  operations.  In  order  to  enhance  the  tiny  wood
crack areas, while eliminating the noise influence, a feature enhance-
ment  mechanism block  is  proposed,  as  shown in Fig. 5 .  Both  high-
and  low-level  features  are  fed  into  position  attention  mechanism  to
generate two position attention maps, α and β. Then, they are used to
enhance the low-level features. The enhanced output is
 

Fe = Flow +Flow ⊗β⊗U(1−α) (1)
Fe

Flow
+ ⊗

where  is the enhanced output and U denotes the upsampling oper-
ation  with  the  bilinear  interpolation.  represents  the  low-level
feature map. Symbols  and  represent element-wise sum and mul-
tiplication, respectively.

4)  The  residual  block:  The  high-level  features  in  the  U-Net  have
provided  a  large  receptive  field.  Nevertheless,  the  span  of  wood
crack  is  long  and  some  areas  in  the  wide  cracks  are  similar  to  the
sound region,  which requires  a  larger  receptive  field.  Thus,  a  resid-
ual block with atrous convolution is applied to acquire a larger recep-

1×1 3×3
3×3

tive field. The residual block is constructed by connecting 3 residual
units.  The  residual  unit  is  composed  of  two  filters  and  a 
filter. The atrous rates of  filter are set as 4.

5)  Loss  function:  Dice  coefficient  (DC)  represents  the  similarity
between  the  predicted  result  and  the  ground  truth.  Considering  the
Dice loss is not easily influenced by the class imbalance, the binary
dice  loss  is  chosen  as  the  loss  function,  which  is  expressed  as  fol-
lows:
 

LDice = 1−
2
∑N

n=1 pngn + ϵ∑N
n=1 p2

n +
∑N

n=1 g2
n + ϵ

(2)

pn gn
ϵ

where  and  denote the prediction and ground truth, respectively.
The minimum value  is used to avoid occurring zero denominators.

416×416

Experiments: We  collect  the  wood  crack  data  set  which  is  com-
posed of 729 wood crack images with manually annotated segmenta-
tions.  549  images  of  them are  randomly  selected  for  network  train-
ing and 180 images for testing. In the training process, all the images
are  resized  to .  The  number  of  epoch,  the  initial  learning
rate, and the batch size are set as 300, 5E–4 and 4, respectively. The
Cosine  Annealing  Learning  Rate  Scheduling  is  used  to  adjust  the
learning rate and Adam with a weight decay of 5E–4 is chosen as the
optimizer.  Considering  that  conditions  in  the  industrial  process  are
dynamic  and  the  orientation  of  wood  crack  is  different,  the  image
augmentations, such as random crop, random lightness, random rota-
tion  and  random  distortion,  are  randomly  implemented  during  the
training phase to guarantee the robustness of the proposed WCU-Net.

1)  Evaluation  metrics:  To  measure  the  performance  of  segmenta-
tion  models,  the  metrics,  precision  (Pr),  recall  (Re),  F1-score  (F1),
and intersection of union (IoU), are introduced for evaluation [12].

2)  Ablation  study:  An  ablation  study  is  performed  for  evaluating
various  designed  modules.  As  presented  in Table 1 ,  the  results
demonstrate that the network combined with PAM obtains higher Re,
F1-score  and  IoU  than  the  baseline  network,  indicating  that  PAM
focuses  more  on the  wood crack areas.  When fusing both  the  PAM
and FEM to the proposed network,  it  acquires much higher Re,  F1-
score  and IoU,  which proves  that  FEM derives  more  detailed  wood
crack  information.  Meanwhile,  the  integrated  residual  block  also
yields incremental improvement.
 

Table 1.  Ablation Study on Wood Crack Data Set
Settings Pr Re F1 IoU
U-Net 0.951 0.791 0.864 0.760

U-Net + PAM 0.951 0.817 0.879 0.784
U-Net + PAM + FEM 0.947 0.833 0.886 0.795

U-Net + PAM + FEM + Residual block 0.943 0.858 0.898 0.815
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Fig. 3. The architecture of WCU-Net.
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Fig. 4. The position attention mechanism.
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Fig. 5. The feature enhancement mechanism.
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3) Performance comparison: To study the performance of the pro-
posed method for wood crack detection, WCU-Net is compared with
some  previous  approaches,  including  U-Net  [10],  PSPNet  [13],
DeepLabv3+  [14],  DeepCrack  [15],  improved  U-Net  [16],  Mobile
CNN  [12].  For  fair  comparison,  all  the  methods  use  the  same  set-
tings  to  train  the  network.  The  results  of  the  methods  are  given  in
Table 2. It demonstrates that the proposed WCU-Net model achieves
a recall of 85.8% and a IoU of 81.5%, outperforming all the previous
methods.  From the  perspective  of  both  the  precision  and  recall,  the
proposed method obtained the highest F1-score of 89.8%. The results
prove the effectiveness of our proposed approach.
 

Table 2.  Results of Various Methods for Wood Crack Detection
Method Pr Re F1 IoU

U-Net [10] 0.951 0.791 0.864 0.760
PSPNet [13] 0.841 0.757 0.797 0.662

DeepLabV3+ [14] 0.938 0.832 0.882 0.788
DeepCrack [15] 0.944 0.809 0.871 0.772

Improved U-Net [16] 0.944 0.680 0.790 0.653
Mobile CNN [12] 0.944 0.825 0.880 0.786

WCU-Net 0.943 0.858 0.898 0.815
 
 

To visually compare the proposed WCU-Net with previous meth-
ods, the predictions of U-Net, DeepLabv3+, Mobile CNN and WCU-
Net  are  conducted  on  the  wood  crack  dataset. Fig. 6  presents  sam-
ples  of  predictions  with  corresponding  original  images  and  ground
truth.
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Fig. 6. Comparison of the results of the proposed WCU-Net with the three
methods on the wood crack dataset.
 

It demonstrates that our WCU-Net realizes more accurate segmen-
tation  results  compared  with  other  methods.  Particularly,  our  pro-
posed method can detect the cracks with more details, which further
indicates  that  the  PAM  can  focus  on  the  wood  crack  areas  and  the
FEM  enhances  more  detailed  wood  crack  information.  Meanwhile,
the  cracks  detected  by  the  WCU-Net  are  more  continuous.  This  is

because the adopted residual block provides a larger receptive field.
Conclusion: In  this  letter,  the  WCU-Net  is  proposed  for  wood

crack detection. Specifically, a position attention mechanism is firstly
proposed  to  exaggerate  the  wood  crack  positions,  then  the  feature
enhancement  mechanism  is  designed  to  selectively  derive  more
diluted  information  of  tiny  crack.  Moreover,  a  residual  block  is
adopted  to  obtain  and  fuse  multi-scale  receptive  fields  for  finding
more crack areas that are similar to the sound region. The experimen-
tal results show that WCU-Net can improve the detection accuracy.
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