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   Dear Editor,

This letter is concerned with the energy-aware multiple sensor co-
scheduling  for  bearing-only  target  tracking  in  the  underwater  wire-
less sensor networks (UWSNs). Considering the traditional methods
facing with the problems of strong environment dependence and lack
flexibility,  a  novel  sensor  scheduling  algorithm  based  on  the  deep
reinforcement learning is  proposed.  Firstly,  the sensors’ co-schedul-
ing  strategy  in  UWSNs  is  formulated  as  Markov  decision  process
(MDP).  Then,  a  dueling  double  deep  Q  network  (D3QN)  is  devel-
oped to solve the MDP in a scalable and model free manner. Besides,
the prioritized experience replay (PER) method is utilized to acceler-
ate network convergence. Finally, the effectiveness and superiority of
the proposed algorithm are confirmed by experimental results.

With  the  advantages  of  self-organization  structure,  low  cost  and
strong concealment, UWSNs show a promising ability in underwater
target passive tracking [1]. However, the battery-powered sensors in
the  UWSNs  are  hardly  to  be  recharged  in  the  depths  of  the  ocean,
severely limiting the lifetime of UWSNs. Therefore, it is essential to
study  an  energy-efficient  sensor  co-scheduling  strategy  to  make  a
tradeoff between tracking accuracy and energy consumption. In [2], a
wake-up/sleep  and  valid  measurement  selecting  method  was  pro-
posed to increase the energy efficiency of the sensors in UWSNs. In
[3],  an  adaptive  sensor  scheduling  scheme  was  introduced,  and
energy can be saved by changing the sampling intervals according to
tracking accuracy threshold at each time step. In [4], a novel under-
water passive tracking framework in UWSNs based on dynamic clus-
tering was proposed, scheduling the sensors by selecting cluster head
and  cluster  members  adaptively  based  on  dynamic  programming
(DP)  method.  Although  the  above  studies  have  already  made  good
progress,  the  proposed methods  greatly  depend on environment  and
prior  information,  and  lack  flexibility  in  complex  and  dynamic
underwater environments.

Compared  with  the  traditional  method,  deep  reinforcement  learn-
ing (DRL) has no need for  exactly prior  knowledge of  environment
and has a strong ability to adapt the dynamic changes of the environ-
ment [5], which makes it more suitable for underwater environment.
Besides,  as  demonstrated  in  [6],  the  DRL  techniques  can  be  effec-
tively deployed in UWSNs.

Motivated by the above discussions, in this letter, we aim to obtain
an  energy-efficient  sensor  scheduling  policy  for  underwater  passive
tracking  in  UWSNs.  To  this  end,  following  the  underwater  passive
tracking  framework  in  [4]  and  considering  the  characteristics  of
underwater  passive  tracking  in  UWSNs,  we  formulate  the  sensors’
co-scheduling  protocol  as  MDP.  Then,  the  D3QN  algorithm  with
PER is applied to obtain better learning performance. The main con-
tributions  of  this  letter  are  stated  as  follows:  1)  The  sensor  co-
scheduling  strategy  in  UWSNs  is  formulated  as  MDP.  2)  A  mock
data  method  is  introduced  to  construct  the  reward  function  in  the
DRL environment to avoid the abuse of ground truth of target. 3) The
D3QN algorithm with PER is introduced to solve the MDP to find a
suitable schedule policy in a scalable and model-free manner.
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Problem  statement: 1)  Underwater  passive  tracking  framework:
In this letter, the target motion model is assumed as constant velocity
model  (CVM)  [7].  Referring  to  the  underwater  passive  tracking
framework in  [4],  there  are  cluster  members  (CM) and a  cluster
head to construct  a  dynamic cluster  to  participate  in  tracking at
time k.  Fig. 1  shows the basic  idea of  this  framework.  Furthermore,
assuming  the  sensors  in  the  UWSNs have  the  same communication
range  and the same sensing range  Moreover, we define that all
activated sensors  make up the  candidate  cluster  member  set  and
the candidate cluster head set  at time k.  and  satisfy the fol-
lowing conditions:
 

Ek = {Pi|Ii > IP_th,Ei ≥ EP_th}
Fk = {P j|I j > IFC_th,Ej ≥ EFC_th} (1)

IP_th IFC_th
EP

th EFC
th

where  and  are acoustic intensity thresholds of candidate
cluster  members  and  cluster  heads  respectively.  and   are
energy  thresholds  of  candidate  cluster  members  and  cluster  heads
respectively.
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Fig. 1. The passive target tracking framework based on dynamic cluster.
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2) Energy-efficient sensors’ co-scheduling protocol: The objective
of  the  co-scheduling  in  the  above  framework  is  to  choose  the  suit-
able  cluster  members  from  the  set by  cluster  heads  to  make  an
optimal tradeoff between tracking accuracy and energy consumption.

The above objective is equivalent to maximize the objective func-
tion as follows:
 

J = argmax
P∗k∈Ek ,|P∗k |=N∗k

ψ(P∗k)

ψ(P∗k) = λφutility(P∗k) + (1−λ)φcost(P∗k) (2)
P∗k N∗k

λ

φutility(·)

where  is  the sub set  composed of  cluster members which are
chosen  at  time k,   is  the  joint  factor  which  is  used  to  balance  the
energy consumption and tracking accuracy, and  is  the util-
ity function representing the tracking performance, which is given by
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J∗k
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here  is the fisher information matrix according to the positions of
members  in  [4].   is  the  cost  function  representing  the
energy consumption, which is given by
 

φcost(P∗k) =
N∗k∑
i=1

Einitial
i,k −Ep

i,k

Einitial
i,k

, P
∗

k ∈ Ek (4)

Einitial
i,k i-th

Ep
i,k i-th

where is the initial energy of the  cluster member at time k,
and  is the energy consumption of the  cluster member.

Proposed methods: In this section, we shall introduce the detail of
the proposed method from two aspects:

< S ,A,R >
< S ,A,R >

1)  Formulation  of  MDP:  Equation  (4)  can  be  formulated  as  an
MDP,  which  is  defined  by  a  tuple .  Each  element

 is defined as follows:
Sa) State space : From the discussion above, the state of the MDP

at time k is given by
 

S k = {ψ(P∗k)|P∗k ∈ Ek} (5)
S kwhere the state is directly related to the objection function at time

k, giving faster convergence for the algorithm [8].
A Nk!

N∗k !(Nk−N∗k )!

Ek

b)  Action  space :  The  action  space  corresponding  to 
different ways of choosing the suitable cluster  member from the set

 at time k. Therefore, we obtain
 

Ak = {a1
k , . . .a

N∗k
k }. (6)

R
rc

k rs.
c) Reward function : The reward function includes the following

two  items:  the  current  reward  and  the  settlement  reward  The
current reward at time k is
 

rc
k=λϕutility(P∗k)+(1−λ)ϕcost(P∗k), P∗k ∈ Ek (7)

which is utilized to maximize cumulative rewards.
rs

Td d̄i

The  settlement  reward  is  the  huge  reward  representing  each
training  result  which  can  be  reflected  by  tracking  performance  and
system  energy  efficiency.  However,  the  most  of  tracking  perfor-
mance  evaluation  methods  assume  exact  knowledge  of  the  ground
truth,  which  is  hard  to  be  obtained  in  the  practical  underwater  pas-
sive  tracking.  To  solve  this  problem,  we  introduce  the  mock  data
method [9], which can evaluate the tracking performance by measur-
ing  the  deviation  between mock data  generated  by  the  estimate  and
the  real  measurement.  Therefore,  assuming that  the  time of  a  track-
ing is , the tracking performance  of each training can be repre-
sented by
 

d̄i =

∑Td
k=1 dk

x(mx
k ,m
∗
k)

Td
(8)

m∗k mk dk
xwhere  is the mock data and  is the real measurement,  is the

Mahalanobis distance between the mock data and real measurement.
The settlement reward is given by
 

rs = [(dgoal − d̄i)× κ]+ [(Egoal −Ei
c)×µ], i = 1,2, . . .Ne (9)

Ne dgoal Egoal

κ µ

where  is  the  number  of  training,  and   are  the  goal  of
tracking  accuracy  and  energy  consumption  respectively,  which  are
determined by the task requirements.  and  are  weighting factors,
which are set for the tradeoff between the tracking performance and
system energy consumption.

Finally, the reward function is expressed as
 

R =
{

rk
c, k < Td

rs, k = Td .
(10)

Q(sk,ak)
2) Solution by D3QN: In DRL, the key point of solving MDP is to

obtain the expected return by maximizing state-action value 
which  is  approximated  by  the  deep  Q  network.  For  better  learning
performance, we introduce the D3QN to solve the above MDP.

D3QN is  composed  of  current  network  and  target  network  which
are deep Q networks with different parameters but the same structure,
Here, current network and target network are composed of one input

θ
θ′

layer, two 128-layer full connection (FC) layers and one output layer.
The parameter of current network is  while the parameter of target
network  is .  D3QN  solves  the  MDP  by  updating  the  current  net-
work with loss function. The current network of D3QN at time k ,  is
composed  of  value  function  and  advantage  function,  which  is
expressed as
 

Qk(sk,ak;θk, p,q) = Vk(sk,ak;θ,q)

+ (A(sk,ak;θ, p)− 1
NA

∑
a∗k

A(sk,a∗k;θ, p)) (11)

a∗k Vk(·)
A(·) NA

p q

where  is all actions that can be taken at time k,   is the value
function,  is the advantage function,  is the number of actions,

 and   are  network  parameters  of  value  function  and  advantage
function respectively.

To  further  improve  the  sampling  efficiency  and  convergence
speed, PER is employed to update the network parameter [10]. Then,
the loss function is given by
 

L(θ) =
1

Nm

Nm∑
j=1

[(R+γmax
a′k

Qk(sk+1,a′k |θ′, p,q)−Q(sk,ak |θ, p,q)]2ω j

(12)
sk+1 a′k

sk+1 ω j

where is  the  state  at  time k+1,  and  is  the  action taken under
the .  is the weight of priority sample, which is given by
 

ω j =
1

(Nr ·ϑ j)βmaxωl
(13)

Nr βwhere  is the capacity of the replay buffer, and  is the impact fac-
tor gradually increasing to 1.

In  summary,  the  proposed  D3QN-PER  based  sensor  scheduling
method is shown in Fig. 2.
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Fig. 2. The D3QN-PER based sensor scheduling method.
 

Experiments: A  numerical  example  is  provided  to  evaluate  the
performance of the proposed method in the underwater passive track-
ing scenario compared with some existing sensor schedule methods.

We consider the following existing methods:
1) The sensor schedule method based on DP in [4].
2)The  sensor  schedule  method  based  on  genetic  algorithm  (GA),

which utilizes the GA method to solve the schedule problem in (6).

30
N∗k |Ek | = 10, λ

The initial settings of UWSNs and target are the same as those in
[4]. The total observation time of system is  s. The number of clus-
ter member  is set as 3 and  meanwhile, the joint factor 
of  the  objection  function  is  set  as  0.6.  Overall,  the  simulation  envi-
ronment is shown in Fig. 3. The D3QN parameter setting is shown in
Table 1,  which  is  set  by  the  rule  in  [5].  The  training  process  of  the
proposed  method  is  shown  in Fig. 4 .  The  GA  method  is  imple-
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mented by the GA tools in Python [11].
Our  experiment  uses  an  AMD  Core  5800X  CPU  @  3.80  GHz,

NVIDIA GeForce  RTX3080  GPU,  and  Windows  1064  bit.  We  use
Python 3.8 and Pytorch 1.11.0 to realize the proposed method.

To  access  the  target  passive  tracking  accuracy,  the  root  mean
square  error  (RMSE)  is  adopted  to  evaluate  the  performance  of  our
algorithm. The RMSE data of these compared methods in 100 Monte
Carlo  tests  is  shown  in Fig. 5 .  Furthermore,  to  evaluate  the  energy
consumption, we record the energy consumption in Fig. 5.

As  shown  in Fig. 4 ,  After  around  the  130th  episode,  the  reward
keeps  stable  high  scores,  which  illustrates  the  convergence  of  the
proposed  algorithm.  In Fig. 5 ,  the  RMSE  result  illustrates  that  the
tracking accuracy of D3QN-PER based method is better than that of

DP based method and GA based method. Besides, Fig. 5 also shows
that  the  D3QN-PER  based  method  has  lower  energy  consumption
compared  with  other  methods.  It  is  seen  from Fig. 5  that  the  pro-
posed method performs better than the methods compared.

Conclusions: This  letter  has  proposed  a  new  DRL-based  sensor
schedule  method  for  underwater  passive  tracking  in  UWSNs.  The
schedule problem is formulated as MDP and a mock data method is
introduced  to  construct  the  reward  function  to  avoid  the  abuse  of
ground  truth  of  target.  Furthermore,  the  D3QN-PER  algorithm  is
introduced to  solve the MDP to find a  suitable  schedule  policy in  a
scalable and model-free manner.  Finally,  the simulation results con-
firm the effectiveness and the superiority of the proposed method.
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Table 1.  D3QN Parameter Setting
Parameter Value

κ/µWeighting factor 1500/2000
dgoal/Egoal 0.8/0.23

NmMinibatch 128

NrReplay buffer capacity 105

NeTraining episode 200

fuNetwork update frequency 30

βPER parameter 0.4
Learning rate 0.000 25

γDiscount factor 0.93
Activation function ReLU

εExploration probability 0.017
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Fig. 3. The simulation environment.
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Fig. 4. The training process.
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Fig. 5. RMSE and energy consumption.
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