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   Dear Editor,

This  letter  establishes  several  criteria  for  fixed-time  stability  and
predefined-time stability  of  impulsive  systems.  First,  sufficient  con-
ditions for fixed-time stability of impulsive systems are presented to
treat the destabilizing impulses and hybrid impulses involving multi-
ple jump maps by fixed-time control without linear feedback regula-
tion. It determines the robustness of nonlinear systems against impul-
sive disturbance which has destabilizing and hybrid effect to dynam-
ics.  Then,  the  predefined-time  stability  of  impulsive  systems  is
ensured under the requirement that the hybrid impulses have stabiliz-
ing accumulative effect.  Finally,  the validity of  theoretical  results  is
verified  by  the  allocation  of  mobile  agents  on  a  segment  via  fixed-
time control with impulsive regulation.

Stability analysis is the effect way to discover not only the dynam-
ics of  nonlinear systems but,  increasingly,  the insightful  mechanism
of  many  practical  systems  in  engineering,  physics,  and  social  sci-
ences.  Consequently,  various  stability  properties  have  been  carried
out  for  the  analysis  of  nonlinear  systems.  Exponential  stability  and
asymptotic stability describe that the states of nonlinear systems con-
verge  to  the  equilibrium  point  as  time  goes  to  infinity  and  can  be
achieved  by  conventional  feedback  controller.  Different  from expo-
nential  stability  and  asymptotic  stability,  finite-time  stability  deter-
mines the states to reach the equilibrium point in certain settling time
and  shows  great  advantages  of  convergence  rate  and  robustness
against disturbance [1]. However, the settling time of finite-time sta-
ble systems depends on the initial value and probably increases as the
norm of initial value grows. Then, the fixed-time stability (FXS) was
developed to estimate the upper bound of settling time which is inde-
pendent  of  initial  value.  For  instance,  several  necessary  and  suffi-
cient  conditions  for  FXS  of  continuous  systems  were  presented  in
terms of Lyapunov functions in [2].  Then, the estimation of settling
time of fixed-time stable systems was enhanced to derive a new non-
conservative  upper  bound  and  a  new  predefined-time  convergent
algorithm in [3]. The settling time of predefined-time stable systems
is set a priori as a parameter of the system, which is more desirable in
practical  systems [4].  Therefore,  the  predefined-time stability  (PTS)
of  nonlinear  systems  has  derived  plenty  of  valuable  works  (see
[5]–[7] and references therein). But, the PTS of impulsive systems is
rarely considered in existing works.

Impulsive system is a kind of hybrid systems which can be classi-
fied into two categories: impulsive systems with stabilizing impulses
and destabilizing impulses. The stabilizing impulses contribute to the
stability  of  systems  and  act  as  the  controller  in  the  stabilization  of
systems.  For  instance,  the  impulses  were  shown  to  accelerate  the
convergence rate of finite-time stable systems in [8]. In [9], the fixed-
time  stabilization  of  impulsive  systems  was  achieved  by  fixed-time
controller under the requirement that the impulses have stabilizing or

inactive  accumulative  effect.  On  the  other  hand,  the  destabilizing
impulses  model  the  sudden  changes  at  certain  time  and  are  usually
regarded  as  disturbance  in  practical  systems.  In  [10],  the  impulsive
systems  with  destabilizing  impulsive  were  stabilized  by  finite-time
controller with the restricted range of admissible initial values, that is
local  finite-time  stability.  Then,  FXS  of  impulsive  systems  with
destabilizing  impulses  was  achieved  by  fixed-time  controller  with
linear  feedback term which regulates  destabilizing impulses  in  [11].
However,  the  fixed-time  controller  have  both  fractional  power  and
power larger than one, so it ought to be powerful enough to regulate
the destabilizing impulses. But how to determine the FXS and PTS of
impulsive  systems  without  the  linear  feedback  regulation  remains
unsolved due to the difficulty of bridging the non-Lipschitz continu-
ous dynamics and the destabilizing effect or hybrid effect caused by
impulses, which is the primary concern of this letter.

.

Thus motivated, this letter focuses on the FXS and PTS of impul-
sive systems. The novelty lies in three aspects: 1) New FXS result for
impulsive systems with destabilizing impulses is established under a
generalized dwell-time condition without the linear feedback regula-
tion; 2) The FXS results are extended to the case of hybrid impulses
with  multiple  jump  maps  to  show  the  robustness  against  impulsive
disturbance; 3) Sufficient conditions for PTS are given to ensure the
stability of impulsive systems with hybrid impulses. It shows that the
PTS  of  nonlinear  systems  can  be  ascertained  by  fixed-time  control
with  impulsive  regulation,  which  is  also  verified  by  the  predefined-
time allocation of mobile agents

Problem formulation: Consider the following impulsive system:
 

ẋ(t) = f (x(t)), t ∈ R≥0 \T
x(t) = gk(x(t−)), t ∈ T
x(0) = x0 ∈ Rn

(1)

x(t) = [x1(t), x2(t), . . . , xn(t)]T f : Rn→ Rn gk : Rn→ Rn

k ∈ N+ T = {tk}k∈N+ {tk}
gk(0) = 0 k ∈ N+

{tk} 0 = t0 < t1 < t2 < · · · < tk < · · · tk → +∞
k→ +∞

N(t, s)
(s, t]

τa > 0
N0 ≥ 0 F−[τa,N0] F+[τa,N0]

{tk}

where , , ,
,  and  (  for  short).  Assume that  the  impulsive

strength  function  satisfies , ,  and  the  impulse  time
sequence  satisfies   and  as

 to  prevent  the  occurrence  of  accumulation  points.  In  addi-
tion,  we  assume that f  satisfies  suitable  conditions  such  that  system
(1)  admits  unique  right-continuous  solution  in  forward  time. 
denotes the number of impulsive times in . Here, we define sev-
eral  sets  of  impulse  time  sequences  for  later  use.  For  and

,  and   denote  the  classes  of  impulse
sequences  satisfying
 

N(t, s) ≤ t− s
τa
+N0, N(t, s) ≥ t− s

τa
−N0

τa N0
ξ > 0 Fξ {tk}

h ∈ L h(0) > 1

where  and  are the average impulsive interval and the elasticity
number.  For ,  denotes  the  class  of  impulse  sequences 
satisfying that there exists a function  with  such that
 

ξN(t, s)− (t− s) ≤ lnh(t− s) (2)
L R≥0 R≥0

t→ +∞ h(t) = eµ−λt
µ = ξN0 λ = 1− ξ/τa > 0

h(t) = (t+1)eµ−λt t > 1
λ h(t) = (1+ 1

λ )eµ−λt 0 <t ≤ 1
λ

N(t, s) ≤ 1
ξ ln(t− s+1)+t−s

τa
+N0

t− s
P

α : R≥0→ R≥0 α(0) = 0 α(x) > 0 x > 0

where  denotes the class of continuous functions from  to 
which  strictly  decrease  to  0  as .  Taking  with

 and  ,  the  dwell-time  condition  (2)  degener-
ates into the classical average impulsive interval condition. If we take

 for   and   for  ,  the
dwell-time condition (2) leads to  for
large . It is considerably weaker than the classical average impul-
sive  interval  condition.  denotes  the  class  of  continuous  functions

 which satisfy  and  for .
Definition 1: The origin of system (1) is said to be

x0 ∈ Rn

0 ≤ T <∞ x(t, x0) = 0 t ≥ T T (x0) =
inf{T ≥ 0 : x(t, x0) = 0, t ≥ T }

•  Finite-time  stable,  if  it  is  Lyapunov  stable  and  for  any 
there  exists  such  that  for  . 

 is  called  the  settling-time  function  of
system (1);

F
supx0∈Rn T (x0) < +∞ {tk} ∈ F

• Fixed-time stable over the class ,  if  it  is finite-time stable and
 for any ;

F• Predefined-time stable over the class , if it is fixed-time stable
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Tc > 0 supx0∈Rn T (x0) ≤ Tc {tk} ∈ Fand for  any predefined ,  for  any .
V : Rn→ R+
φ,ϕk ∈ P k ∈ N+

Definition 2: Function  is said to be a Lyapunov func-
tion  for  system  (1)  with , ,  if  it  is  locally  Lipschitz
continuous, radially unbounded, and satisfies that

V(gk(x)) ≤ ϕk(V(x)) x ∈ Rn k ∈ N+1) , for all , ;
D+V[x(t)] ≤ −φ(V(x(t))) D+V[x(t)]2) ,  where  is  the  upper  right-

hand Dini derivative along system (1) [8].
Main results: In this section, several criteria for FXS and PTS of

impulsive  systems  with  destabilizing  impulses  and  hybrid  impulses
are established as follows.

φ, ϕk ∈ P k ∈ N+
Theorem 1: Suppose that V is a Lyapunov function for system (1)

with , . If there exists a positive constant ξ such that
 

Υ =
w supx∈Rn V(x)

0

ds
φ(s)

< +∞,
w ϕk(a)

a

ds
φ(s)

≤ ξ, ∀a > 0

Fξ
h−1(e−Υ)

then system (1) is fixed-time stable over the class . Moreover, the
settling time is bounded by .

V : Rn→ R+ K∞
ω1, ω2 ω1(|x|) ≤ V(x) ≤ ω2(|x|)

T ≥ 0 V(x(t)) = 0 x(t) = 0 t ≥ T
x(t) ≡ 0

x0 , 0

Proof:  According to  Theorem 48 of  [12],  system (1)  is  Lyapunov
stable.  Since  is  radially  unbounded,  there  exist -
functions  such  that .  If  there  exists

 such  that ,  for   due  to  the  fact  that
 is  the equilibrium point.  Without loss of generality,  assume

that . Since V is a Lyapunov function, it yields that
 {

D+y(t) ≤ −φ(y(t)), t ∈ R≥0 \T (3)
y(t) ≤ ϕk(y(t−)), k ∈ T (4)

y(t) = V(x(t)) t ∈ [tk, tk+1)where . For , it follows from (3) that:
 

Fϵ (y(t))−Fϵ (y(tk)) ≤ −(t− tk)

Fϵ (y) =
r y
ϵ

ds
φ(s) ϵ

Fξ
where  and  is a positive constant. Combining (4) and
the property of impulse sequence in class , it obtains that
 

Fϵ (y(t)) ≤ Fϵ (y(tk))−Fϵ (y(t−k ))+Fϵ (y(t−k ))− (t− tk)

=
w y(tk)

ϵ

ds
φ(s)
−

w y(t−k )

ϵ

ds
φ(s)
+Fϵ (y(t−k ))− (t− tk)

=
w y(tk)

y(t−k )

ds
φ(s)
+Fϵ (y(t−k ))− (t− tk)

=
w V(gk(x(t−k )))

y(t−k )

ds
φ(s)
+Fϵ (y(t−k ))− (t− tk)

≤
w ϕk(V(x(t−k )))

y(t−k )

ds
φ(s)
+Fϵ (y(t−k ))− (t− tk)

=
w ϕk(y(t−k ))

y(t−k )

ds
φ(s)
+Fϵ (y(t−k ))− (t− tk)

≤ ξ+Fϵ (y(t−k ))− (t− tk)

≤ ξ+Fϵ (y(tk−1))−F(y(t−k−1))

+Fϵ (y(t−k−1))− (t− tk−1)

≤ 2ξ+Fϵ (y(t−k−1))− (t− tk−1) ≤ · · ·
≤ Fϵ (V(x0))+ ξN(t,0)− t
≤ Fϵ (V(x0))+ lnh(t)

t ∈ [tk, tk+1) t ≥ 0for . Therefore, for ,
 

V(x(t)) ≤max{0,F−1
ϵ (Fϵ (V(x0))+ lnh(t))}.

φ ∈ P Fϵ F−1
ϵ

h ∈ L F−1
ϵ (Fϵ (V(x0))+ lnh(t))

−∞ t→ +∞ T (x0) = h−1[−exp(
r V(x0)
ϵ

ds
φ(s) )]

x(t) = 0 t ≥ T (x0)

Since ,  and   is  continuous  and  strictly  increasing.
Combining ,  is  strictly  decreasing  to

 as . Therefore, there exists 
such that  for  and
 

sup
x0∈Rn

T (x0) ≤ sup
x0∈Rn

h−1
[
−exp

(w V(x0)

0

ds
φ(s)

)]
= h−1

(
e−Υ

)
Fξwhich indicates the FXS of system (1) over the class . ■

Remark 1: In [2], the FXS of autonomous systems was established
by  Lyapunov  function  with  condition  as  the  first  inequality  of
Theorem  1.  Then,  the  settling  time  estimation  of  fixed-time  stable
systems was enhanced in [3].  In this  work,  the second inequality of
Theorem  1  measures  the  jump  maps  of  impulses  in  systems  and
bridges the non-Lipschitz continuous dynamics and impulsive effect.
It indicates that the fixed-time stable systems is robust against impul-
sive  disturbance.  In  [9]  and  [11],  FXS  of  impulsive  systems  was

developed, but either the impulses were measured to have stabilizing
effect  or  the  destabilizing  impulses  were  regulated  by  linear  feed-
back control together with fixed-time control. In contrast, Theorem 1
can  handle  both  stabilizing  impulses  and  destabilizing  impulses
which  can  be  regulated  without  linear  feedback  as  the  following
corollary.

φ(s) = (psα +qs β)δ ϕk(s) = ed s k ∈ N+
p,q,α,β,δ,d > 0 0 < αδ < 1 < βδ

τa d/τa <min{pδ,qδ}
F−[τa,N0]

Υ+ξN0
1−ξ/τa

ξ = d/min{pδ,qδ} Υ = Γ(mα)Γ(mβ)
pδΓ(δ)(β−α)(

p
q )mα

mα = 1−αδ
β−α mβ =

βδ−1
β−α

Corollary  1:  Suppose  that  there  exists  a  Lyapunov  function V  for
system  (1)  with  and  , ,  where

,  and .  If  there exists  a positive con-
stant  such  that ,  then  system  (1)  is  fixed-time
stable  over  the  class .  Moreover,  the  settling  time  is
bounded  by ,  where , ,

, and .
Proof:  The  proof  is  straightforward  based  on  Theorem  1  and  the

settling time estimation in [3] so as to be omitted. ■

V(x) = xT x

xT f (x) ≤ φ(xT x) gT
k (x)gk(x) ≤ ϕk(xT x) ϕk

Remark 2:  It  should  be  pointed out  that  the  existing results  about
FXS of nonlinear systems without impulses such as [13] and [14] can
be extended to the impulsive case by the second inequality of Theo-
rem 1. In addition, the criteria for FXS of impulsive systems are pre-
sented in terms of Lyapunov function. By choosing appropriate Lya-
punov function, the sufficient conditions of nonlinear functions f and
g for FXS of systems (1) can be obtained. For example, if we choose
the Lyapunov function  which is frequently used in recent
literature  such  as  [9]  and  [13],  the  FXS  conditions  are  given  by

 and   where  φ  and   are
defined in Corollary 1. It shows the applicability of Theorem 1.

τa, τ
′
a > 0 N0, N′0 ≥ 0 F [τa,N0, τ

′
a,N

′
0]

T TD∪TS = T
TD∩TS = ∅ TD ∈ F−[τa,N0] TS ∈ F+[τ′a,N

′
0] TD

TS

Next, sufficient conditions for FXS and PTS of impulsive systems
are presented where the impulses are measured to have hybrid effect
to dynamics. For  and ,  denotes
the  class  of  impulse  sequences  satisfying  ,

, ,  and ,  where  and
 denote the sets composed of impulse times of stabilizing impulses

and destabilizing impulses, respectively.

φ(s) = (psα +qs β)δ ϕk(s) = edk s p,q,
α,β,δ > 0 0 < αδ < 1 < βδ dk ≤ d dk > 1 dk ≤ −d′ dk < 1
d,d′ > 0 k ∈ N+ τa, τ

′
a

d
τa min{pδ,qδ} −

d′
τ′a max{pδ,qδ} < 1

F [τa,N0, τ
′
a,N

′
0]

Theorem  2:  Suppose  that  there  exist  a  Lyapunov  function V  for
system  (1)  with  and  ,  where 

, ,  for  and  for ,
, .  If  there  exist  positive  constants  such  that

,  then  system  (1)  is  fixed-time stable
over the class .

φ(s) = (psα +qsβ)δ ϕk(s) = edk s

Proof: The proof is similar to that of Theorem 1 and thus is given
by  sketching  the  outline  focusing  on  the  different  parts.  Since

 and , it yields that
 w ϕk(a)

a

ds
φ(s)

≤ ξk, ∀a > 0, k ∈ N+

ξk =
d

min{pδ,qδ} tk ∈ TD ξk = − d′
max{pδ,qδ} tk ∈ TS

t ∈ [tk, tk+1)
where  for   and   for  .
Then, it follows from (3) and (4) that for :
 

Fϵ (y(t)) ≤ Fϵ (V(x0))+
k∑

i=1

ξi − t

=
w V(x0)

ϵ

ds
φ(s)
+

dND(t,0)
min{pδ,qδ}

− d′NS (t,0)
max{pδ,qδ}

− t

≤
w supx∈Rn V(x)

0

ds
φ(s)
+

dN0

min{pδ,qδ}
+

d′N′0
max{pδ,qδ}

+
( d
τa min{pδ,qδ}

− d′

τ′a max{pδ,qδ}
−1

)
t

ND(t, s) NS (t, s)
(s, t] t→ +∞

V(x(t))→−∞ Fϵ
F−1
ϵ

F [τa,N0, τ
′
a,N

′
0]

T (x0) ≤ Υ+Λc Υ =
Γ(mα)Γ(mβ)
pδΓ(δ)(β−α) ( p

q )mα mα = 1−αδ
β−α mβ =

βδ−1
β−α

Λ =
dN0

min{pδ,qδ} +
d′N′0

max{pδ,qδ} c = 1+ d′
τ′a max{pδ,qδ} −

d
τa min{pδ,qδ}

where  and  denote the numbers of impulsive times of
destabilizing  and  stabilizing  impulses  in  interval .  As ,

 based  on  the  continuity  and  monotonicity  of  and
.  Thus,  system  (1)  is  fixed-time  stable  over  the  class

 and  subsequently  the  settling  time  is  estimated  by
 where  , , ,

, and . ■
Tc > 0Theorem 3: Let  be any predefined constant and suppose that

WEI AND LI: FIXED-TIME AND PREDEFINED-TIME STABILITY OF IMPULSIVE SYSTEMS 1087 



τa, τ
′
a

d
τa
−

d′
τ′a
+ Θ

T 2
c
≤ 0

F [τa,N0, τ
′
a,N

′
0] Θ = e(1−αδ)(dN0+d′N′0)

pδ(1−αδ)2 + e(βδ−1)(dN0+d′N′0)

qδ(βδ−1)2

there  exist  a  Lyapunov  function V  for  system  (1)  as  defined  in
Theorem  2.  If  there  exist  positive  constants  such  that 

,  then  system (1)  is  predefined-time stable  over  the  class

, where .
x0 , 0

λ = − d
τa
+ d′
τ′a
> 0 V(x0) ≤ 1 V(x0) >

V(x(t))
V(x(t))

Proof:  Without  loss  of  generality,  we  also  assume  that .
Denote . If , skip to Step 2. If 1, the
proof  is  partitioned  into  two  steps:  approaches  1  in  fixed
time;  approaches 0 from 1 in fixed time.

t0 = 0 q̄ = qδ β̄ = βδStep 1: Let , ,  and . From the definition of Lya-
punov function, consider the following comparison system:
 

D+y(t) = −q̄yβ̄(t), t ∈ R≥t0 \ (TS ∪TD) (5)

y(t) = edy(t−), t ∈ TD (6)

y(t) = e−d′y(t−), t ∈ TS (7)
y(t0) = y0 ≜ V(x0)

0 ≤ V(x(t)) ≤ y(t) t ≥ t0

t ∈ [t0, t1)

with  initial  condition .  According  to  the  compari-
son principle, it obtains that  for . Then, it will
show that the solution of system (5)−(7) approaches 1 in fixed time.
For , it follows from (5) that:
 

y1−β̄(t) = y1−β̄(t0)+ q̄(β̄−1)(t− t0). (8)
t ∈ [tk, tk+1) k ∈ N+Then, it will show that for , ,

 

y1−β̄(t) = y1−β̄(t0)e(1−β̄)(dND(t,t0)−d′NS (t,t0)) + q̄(β̄−1)

×
{
(t− tk)+

k∑
i=1

(ti − ti−1)e(1−β̄)(dND(t,ti−1)−d′NS (t,ti−1))
}

(9)

∑0
i=1(·) = 0 k = 0

k = 0,1, . . . ,m−1
t ∈ [tm, tm+1)

where . From (8), the assertion (9) is true for . Sup-
pose  that  the  assertion  (9)  is  true  for ,  then  it  fol-
lows from (5)−(7) that for :
 

y1−β̄(t) = y1−β̄(t−m)ed∗(1−β̄) + q̄(β̄−1)(t− tm)

= y1−β̄(t0)e(1−β̄)(dND(t−m,t0)−d′NS (t−m,t0)+d∗)

+ q̄(β̄−1)
{
(t− tm)+

m∑
i=1

(ti − ti−1)

× e(1−β̄)(dND(t−m,ti−1)−d′NS (t−m,ti−1)+d∗)
}

= y1−β̄(t0)e(1−β̄)(dND(t,t0)−d′NS (t,t0))

+ q̄(β̄−1)
{
(t− tm)+

m∑
i=1

(ti − ti−1)

× e(1−β̄)(dND(t,ti−1)−d′NS (t,ti−1))
}

d∗ = d tm ∈ TD d∗ = −d′ tm ∈ TS
k = m k ∈ N

where  if   and  if  .  Thus,  the assertion
(9) is true for  and for .  Then, it  can be derived from (9)
that
 

y1−β̄(t) = y1−β̄(t0)e(1−β̄)(dND(t,t0)−d′NS (t,t0))

+ q̄(β̄−1)
k∑

i=1

w ti

ti−1
e(1−β̄)(dND(t,s)−d′NS (t,s))ds

+ q̄(β̄−1)
w t

tk
e(1−β̄)(dND(t,s)−d′NS (t,s))ds

≥ 1
σ1

y1−β̄(t0)e−λ(1−β̄)(t−t0)

+
1
σ1

q̄(β̄−1)
w t−t0

0
e−λ(1−β̄)sds

=
1
σ1

(
y1−β̄(t0)+

q̄
λ

)
e−λ(1−β̄)(t−t0) − σ1q̄

λ
(10)

t ∈ [tk, tk+1) σ1 = e(dN0+d′N′0)(β̄−1)

T1 =
1

λ(β̄−1) ln(1+ λσ1
q̄ ) y1−β̄(T1) ≥ 1

V(x(t))

for  where  .  Therefore,  there  exists
 such  that ,  which  indicates  that

 approaches 1 in fixed time.
t0 = T1 p̄ = pδ ᾱ = αδStep  2:  Let , ,  and .  Consider  the  following

comparison system: 


D+y(t) = −p̄yᾱ(t), t ∈ R≥t0 \ (TS ∪TD)

y(t) = edy(t−), t ∈ TD

y(t) = e−d′y(t−), t ∈ TS

(11)

y(t0) = y0 ≤ 1with . Similar to (10), it can be derived that
 

y1−ᾱ(t) = y1−ᾱ(t0)e(1−ᾱ)(dND(t,t0)−d′NS (t,t0))

− p̄(1− ᾱ)
k∑

i=1

w ti

ti−1
e(1−ᾱ)(dND(t,s)−d′NS (t,s))ds

− p̄(1− ᾱ)
w t

tk
e(1−ᾱ)(dND(t,s)−d′NS (t,s))ds

= e(1−ᾱ)(dND(t,t0)−d′NS (t,t0)) max
{
0,y1−ᾱ(t0)

− p̄(1− ᾱ)
w t

t0
e(1−ᾱ)(−dND(s,t0)+d′NS (s,t0))ds

}
≤ e(1−ᾱ)(dND(t,t0)−d′NS (t,t0)) max

{
0,1

−σ2 p̄(1− ᾱ)
w t−t0

0
eλ(1−ᾱ)(s−t0)ds

}
= e(1−ᾱ)(dND(t,t0)−d′NS (t,t0))

×max
{
0,1− p̄

λσ2

[
eλ(1−ᾱ)(t−t0) −1

]}
(12)

σ2 = e(dN0+d′N′0)(1−ᾱ) T2 =
1

λ(1−ᾱ)
ln(1+ λσ2

p̄ ) y(T1 +T2) = 0 V(x(t))
where .  Therefore,  there  exists 

 such  that ,  which  indicates  that 
approaches 0 in fixed time.

T ∗ = T1 +T2
x0 x(t) = 0 t ≥ T ∗

ln(1+a) ≤
√

a a ≥ 0 T ∗ ≤
√
Θ/λ ≤ Tc
F [τa,N0, τ

′
a,N

′
0]

Finally, combining the radial unboundedness of V, it concludes that
there  exists  a  constant ,  which  is  independent  of  initial
condition ,  such  that  for  .  Due  to  the  fact  that

 for , it follows that . Thus, sys-
tem (1) is predefined-time stable over the class . ■

Remark 3: In [3], the predefined-time controllers were designed for
first-order and second-order systems. Then, the Lyapunov-like char-
acterization was proposed for PTS of autonomous system in [5]. But
most of existing results for PTS are invalid for impulsive systems. In
contrast, the inequality of Theorem 3 indicates that the PTS of impul-
sive systems with hybrid impulses involving multiple jump maps can
be  ascertained  if  the  hybrid  impulses  have  stabilizing  accumulative
effect, and subsequently the systems with impulsive disturbance can
be  stabilized  in  predefined-time  sense  by  fixed-time  controller  with
impulsive regulation. See the next section for details.

Predefined-time  allocation  of  mobile  agents: In  order  to  show
the applicability of established results, an allocation algorithm based
on  fixed-time  control  with  impulsive  regulation  is  designed  for  the
predefined-time  allocation  of  mobile  agents.  Consider  the  equidis-
tant  allocation  of n  mobile  agents  on  a  segment.  The  3D  model  of
each agent is expressed by the following integrator system:
 

ẋ = u, ẏ = v, ż = w (13)
x= [x1, . . . , xn]T y= [y1, . . . ,yn]T z= [z1, . . . ,zn]T u = [u1, . . . ,

un]T v = [v1, . . . ,vn]T w = [w1, . . . ,wn]T πi = (xi,yi,zi)
ζi = (ui,vi,wi)

(x0,y0,z0) (xn+1,

yn+1,zn+1) π∗i = π0 +
i

n+1
(πn+1 −π0)

ζi = Φ( 1
2 (πi−1 −πi)+ 1

2 (πi+1 −πi))
Φ(s) = sign(s)(κ1|s|µ1 + κ2|s|µ2 ) κ1, κ2 > 0 0 ≤ µ1 < 1 < µ2 <∞

πi(t) = edπi(t−)+ (1− ed)π∗ t ∈ TD ⊂ F−[τa,N0] d, τa > 0
N0 ≥ 0

πi(t) = e−d′πi(t−)+ (1− e−d′ )π∗ t ∈ TS ⊂

where , , , 
, , ,  is  the  posi-

tion  of i th  agent  and  is  the  allocation  algorithm  to
drive  agents  to  the  segment  with  endpoints  and  

.  The  equilibrium  point  for i th  agent  is 
. To achieve the allocation on the segment in fixed time, the

allocation algorithm is designed by  
where , , .
According  to  Section  4  of  [2]  or  Theorem  1  of  [15],  each  mobile
agent  is  allocated  equidistantly  in  fixed  time  as  shown  in Fig. 1(a).
However,  the  mobile  agents  are  usually  subject  to  external  distur-
bance  in  real  word.  Here,  we  consider  the  impulsive  disturbance

 for   where  ,
. Then, the conditions for fixed-time allocation established in [2]

and [15] fails. Fig. 1(b) illustrates the trajectories of agents which do
not move towards the segment. To achieve the fixed-time allocation
and  further  predefined-time  allocation,  the  impulsive  regulation  is
added into the system by  for 
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F+[τ′a,N
′
0] d′, τ′a > 0 N′0 ≥ 0 where  , .  Then,  the  dynamics  of  mobile

agents can be expressed by
 

η̇(t) = Φ(η(t)), t ∈ R≥0 \ (TS∪TD)

η(t) = edη(t−), t ∈ TD
η(t) = e−d′η(t−), t ∈ TS

(14)

η = [(Ax+bx)T ,(Ay+by)T ,
(Az+bz)T ]T bx = [0.5x0,0, . . . ,0,0.5xn+1]T 0.5yn+1]T by =[0.5y0,
0, . . . ,0,0.5yn+1]T bz = [0.5x0,0, . . . ,0,0.5zn+1]T

with  appropriate  initial  condition,  where 
, , , 

, , and
 

A =


−1 0.5 0 · · · 0
0.5 −1 0.5 · · · 0
...

...

0 0 · · · 0.5 −1

 .

d
τa
− d′
τ′a
+ Θ

T 2
c
≤ 0

Tc = 40

According to Theorem 3, the predefined-time allocation of mobile
agents can be achieved, if . Fig. 1(c) shows the trajec-
tories  of  agents  which  are  allocated  on  the  segment,  and Fig. 2
presents the trajectories versus time where the settling time of alloca-
tion is less than the predefined time .
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Fig. 2. Trajectories versus time of mobile agents.
 

Conclusion: In this letter, the FXS and PTS of impulsive systems
have been investigated.  It  shows that  the FXS of impulsive systems
can be achieved by fixed-time control without linear feedback regula-
tion.  And the  fixed-time stable  nonlinear  systems are  robust  against
destabilizing  impulses  and  hybrid  impulses.  The  PTS  of  impulsive
systems  can  also  be  ensured  by  fixed-time  control  with  impulsive
regulation,  which  is  verified  by  the  predefined-time  allocation  of
mobile agents.  In the future,  the FXS and PTS of impulsive nonlin-
ear systems with delayed impulses will be studied.
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Fig. 1. Trajectories  of  mobile  agents.  (a)  Agents  without  impulsive  distur-
bance under fixed-time control ( , , , and ); (b) Age-
nts with impulsive disturbance under fixed-time control ( , ,  and

); (c) Agents with impulsive disturbance under fixed-time control with
impulsive regulation ( , , and ).
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