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   Dear Editor,

This  letter  investigates  the  prescribed-time  stabilization  of  linear
singularly perturbed systems. Due to the numerical issues caused by
the  small  perturbation  parameter,  the  off-the-shelf  control  design
techniques for the prescribed-time stabilization of regular linear sys-
tems are typically not suitable here. To solve the problem, the decou-
pling  transformation  techniques  for  time-varying  singularly  per-
turbed systems are combined with linear time-varying high gain feed-
back design techniques.  A composite linear time-varying state feed-
back  controller  is  designed,  and  the  existence  of  the  time-varying
Chang  transformation  matrix  for  decoupling  the  slow  and  fast
dynamics  is  guaranteed.  As  a  result,  the  prescribed-time  stability  is
ensured.  Finally,  a  numerical  example  is  provided  to  illustrate  the
effectiveness of the results.

Recently, the finite-time stabilization problem has attracted a lot of
attention  in  control  community  due  to  its  wide  applications  [1]–[3],
such  as  spacecrafts,  mobile  robots  and  underwater  vehicles.  Noted
that,  by  finite-time  stabilization,  the  settling-time  would  grow  to
infinity when initial state grows to infinity. Thus, the fixed-time sta-
bilization problem was further studied, where the settling time is uni-
formly  bounded  and  independent  of  the  initial  condition.  Many
mature  effective  tools  such  as  homogeneous  approach  [4]  and  [5],
implicit  Lyapunov  function  approach  [6]  and  [7]  and  Lyapunov
based  approach  [8]  and  [9],  have  been  developed  for  analysing  the
finite-time  and  fixed-time  stability.  Furthermore,  considering  the
problem  that  the  true  settling  time  is  predefined  exactly,  the  pre-
scribed-time stabilization problem was investigated, where the time-
varying  high-gain  feedback  approaches  have  been  developed  as  an
effective tool for achieving the prescribed-time stabilization of linear
systems [10] and nonlinear systems [11] and [12]. However, all these
works  on  prescribed-time  control  design  focus  on  single-time-scale
systems.

In  practical,  dynamic  systems  exhibiting  two-time-scale  feature
appear in many applications [13]–[15], e.g., electrical circuits, power
systems and robot systems, and can commonly be modeled as singu-
larly perturbed systems, where the small positive parameter multiply-
ing the derivative of  the fast  state can be used to describe the time-
scale  separation  between  slow  and  fast  dynamics.  Many  valuable
results  on  the  asymptotic  or  exponential  stability  of  singularly  per-
turbed  systems  have  emerged  [16]–[18].  However,  as  far  as  we
know,  the  results  on  the  finite-time  stability  of  singularly  perturbed
systems  are  still  limited.  In  [19],  the  fixed-time  stabilization  is

achieved for  linear  singularly  perturbed  systems with  assuming that
the control matrix is of full row rank. It is worth noting that, although
the  expected  settling  time  can  be  adjusted  by  suitably  choosing  the
control  parameters  in  [19],  the  true  settling  time  can  not  be  prede-
fined exactly due to the conservatism of the theory.

In  this  letter,  the  prescribed-time  stabilization  of  linear  singularly
perturbed  systems  is  investigated  by  linear  time-varying  feedback.
Due  to  the  numerical  issue  caused  by  the  small  positive  parameter,
the  techniques  for  the  prescribed-time  stabilization  of  single  time
scale systems are not applicable here. To handle the above problem,
the decoupling transformation techniques for time-varying singularly
perturbed  system  are  combined  with  linear  time-varying  feedback
design techniques. It is noted that, to ensure the prescribed-time sta-
bility,  the time-varying control  gain would commonly go to infinity
in finite time, which would bring the difficulty of decoupling the sin-
gularly  perturbed  systems  into  slow  and  fast  dynamics.  Especially,
the  standard  model  reduction  techniques  cannot  be  directly  resorted
here.  To  handle  it,  a  time-varying  Chang  transformation  matrix  is
introduced, where the existence of such matrix is guaranteed. Corre-
spondingly,  a  composite  linear  time-varying  state  feedback  con-
troller  is  design  and  the  prescribed-time  stability  is  ensured.  The
main contributions of this letter is twofold.

1) The prescribed-time stabilization problem is handled for singu-
larly  perturbed  systems.  Compared  with  [19],  a  more  general  linear
singularly perturbed system is considered where the control matrix is
not  required to be full  row rank,  and the true convergence time can
be predefined exactly regardless of the initial condition.

.

2)  The  time-varying  Chang  transformation  is  introduced  to  sepa-
rate the linear singularly perturbed systems with linear time-varying
high gain feedback controller into slow and fast dynamics. Moreover,
the existence of such transformation matrix is guaranteed

Problem  formulation: Consider  the  following  singularly  per-
turbed system:
 { ẋ(t) = A11x(t)+A12z(t)+B1u(t)

εż(t) = A21x(t)+A22z(t)+B2u(t)
(1)

x(t) ∈ Rnx z(t) ∈ Rnz

ε > 0 u(t) ∈ Rp

Ai j, Bi, i, j = 1,2,

where ,  are the slow and fast states, respectively,
 is a small perturbation parameter,  is the control input,

matrices  are known constant matrices of appropri-
ate dimensions.

The objective is to design a linear time-varying controller
 

u = K1(t)x+K2(t)z (2)

T > 0
such that the origin of the closed-loop system (1) and (2) is T-global
finite-time stable where  is user-defined, as formalized next.

ε̄ > 0 ε ∈ (0, ε̄]

Tp : Rnx+nz → R+∪{0}
T = infT T = {Tm f ∈ R+ : Tp(x0,z0) ≤ Tm f ,∀(x0,z0) ∈ Rnx+nz }

Definition  1:  The  origin  of  system  (1)  and  (2)  is T -global  pre-
scribed-time stable if there exists  such that for any  and
any  initial  condition,  it  is  globally  asymptotically  stable  and  there
exists  a  settling-time  function  such  that

 with .
T > 0Problem  1:  Given ,  design  a  bounded  controller  (2),  so  that

the origin of system (1) and (2) is T-global prescribed-time stable.
Noted that, the true settling time can be arbitrarily and exactly pre-

defined  regardless  of  the  initial  condition  here,  which  is  different
from  finite/fixed-time  stability.  To  solve  Problem  1,  the  next  stan-
dards assumptions and one lemma are introduced.

A22Assumption 1: The matrix  is invertible.
(A0,B0) (A22,B2)

A0=A11−A12A−1
22 A21 B0=B1−A12A−1

22 B2

Assumption 2: The pairs  and  are controllable, wh-
ere , .

Assumption 1 and 2 are standard and commonly used in the singu-
larly perturbed literature [13] and [14].

Lemma  1  [10]:  Suppose  Assumption  2  holds.  Consider  the  para-
metric Lyapunov equations (PLEs)
 

AT
0 Ps +PsA0 −PsB0BT

0 Ps = −γPs (3)
 

AT
22P f +P f A22 −P f B2BT

2 P f = −γP f . (4)
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1) The PLEs (3) and (4) both have unique solutions if and only if
 

γ≥max
{

min
i=1,...,nx

{Re(λi(A0))}, min
i=1,...,nz

{Re(λi(A22))}
}

(5)

Ps(γ) =W−1
s (γ) > 0 P f (γ) =W−1

f (γ) > 0and  and  with
 

(A0 +
γ

2
Inx )Ws +Ws(A0 +

γ

2
Inx )T = B0BT

0 (6)
 

(A22 +
γ

2
Inz )W f +W f (A22 +

γ

2
Inz )

T = B2BT
2 . (7)

πs(γ) = 2tr(A0)+nxγ
π f (γ) = 2tr(A22)+n f γ δs δ f

2)  Suppose  (5)  is  satisfied  and  denote ,
.  Then, there exist  constants  and ,  which

are independent of γ, such that
 

Pi(γ)
πi(γ)

≤ dPi(γ)
dγ

≤ δiPi(γ)
πi(γ)

, i = s, f . (8)

tr(BT
0 PsB0) = πs tr(BT

2 P f B2) = π fBesides,  and .
Main  results: In  this  section,  the  prescribed-time  control  of  sys-

tem (1) is studied.
Block-diagonal  model:  Firstly,  we  introduce  the  time-varying

Chang  transformation  to  separate  the  slow  dynamics  from  the  fast
ones, which is given by
 (

xs(t)
z f (t)

)
= T−1

c (t)
(

x(t)
z(t)

)
(9)

Tc(t) =
(

Inx εH(t)
−L(t) Inz −εL(t)H(t)

)
where , and L, H satisfy
 

εL̇(t) = Λ22(t)L(t)−Λ21(t)−εL(t)Λ11(t)+εL(t)Λ12(t)L(t)
−εḢ(t) = H(t)Λ22(t)−Λ12(t)−εΛ11(t)H(t)

+εΛ12(t)L(t)H(t)+εH(t)L(t)Λ12(t) (10)
Λi j(t) = Ai j +BiK j(t) i, j = 1,2

L(t) H(t)
where , .  It  is  noted  that  the  existence
of the matrices  and  satisfying (10) will be ensured, and the
details can be seen in the proof of Theorem 1.

Remark 1: Noted that the decoupling transformation technique for
linear time-varying systems in [13] is only applied when the system
matrix  is  continuously  differentiable  and  bounded.  However,  to
achieve  the  prescribed-time  stability,  the  control  gain  would  com-
monly go to infinity in finite time. The existence of such matrices L
and H should be re-discussed, which is one of the challenges here.

With state transformation (9), It has
 (

ẋs
ż f

)
=

(
Λs 0
0 Λ f

ε

)(
xs
z f

)
(11)

Λs = As +BsKs Λ f = A f +B f K2 As = A0 −εA12A−1
22 L(A11−

A12L)−εA12A−1
22 L A f = A22 +εLA12 Bs = B0 −εA12A−1

22 LB1 B f =

B2 +εLB2 Ks = K1 −K2L

where , , 
, , , 

, . Then, the next theorem is presented.
T > 0

ε̄ > 0 ε ∈ (0, ε̄]
Theorem  1:  Given ,  suppose  Assumptions  1,  2  hold.  There

exists  such that for any ;
L(t) = A−1

22 (A21 +B2K0)+O(ε) H(t) =
Λ12Λ

−1
22 +O(ε) t ∈ [0,T )

1)  There  exist  matrices , 
 satisfying (10) for ;

2) Problem 1 is solved;
K1 = (1+K2A−1

22 B2)K0 +K2A−1
22 A21 K0 = −BT

0 Ps K2 =−B2P f

Ps P f γ(t) = eαβT−1
eαβT−eαβt γ0

α =min
{

nx
2(nx+δs) ,

nz
2(nz+δ f )

}
β =min

{ 2tr(A0)
nx
, 2tr(A22)

nz

}
γ0 ≥max

{
ϕ(A0),

ϕ(A22), β
eαβT−1

}
δs δ f

when , , ,
where  and   satisfy  PLEs  (3)  and  (4)  with ,

, , 

, and ,  are constants defined in Lemma 1.
L(t) H(t)

L = L0 +εRL H = H0 +εRH

Proof:  Firstly,  the  existence  of  and   satisfying  (10)  is
proved. Inspired by [13, Chapter 5], the form of L and H can be taken
in the series form  and , where
 

0 = Λ22L0 −Λ21, 0 = H0Λ22 −Λ12 (12)
 

εṘL = Λ22RL − L̇0 + f1(L0)+ε f2(RL,L0, ε) (13)
 

−εṘH=RHΛ22+Ḣ0 +g1(L0,H0)+εg2(RH ,RL,H0,L0, ε) (14)
f1 = −L0(Λ21 − Λ21 − Λ12L0) f2 = −RLΛ11 +RLΛ12L0+

L0Λ12RL+εRLΛ12RL g1=H0L0Λ12−(Λ11−Λ12L0)H0 g2=RH L0×
Λ12 + H0RLΛ12 − Λ11RH + Λ12RLH0 + A12L0RH + εRHRLΛ12 +

where , 
, , 

εΛ12RLRH L0 = A−1
22 (A21 +B2K0) H0 =

Λ12Λ
−1
22 RL RH

.  From  (12),  it  has  and  
.  Then, it  turns into proving the existence of ,  satisfy-

ing (13) and (14).
RL(t) = S RL(t)From (13), denote the integral equation , where

 

S RL =
1
ε

w t

0
Φ(t, τ)( f1(τ)− L̇0(τ)+ε f2(RL)(τ))dτ (15)

Φ(t, τ) εż f = Λ22z f
L = {RL : ∥RL∥ < ρ}
and  is  the  transition  matrix  of .  Denote

, where ρ would be defined later.
V f (t,z f ) = επ f (γ)zT

f P f z fChoose  the  Lyapunov-like  function .
With a similar proof of Theorem 2 in [12], it can be obtained that
 

V̇ f (t,z f ) ≤
(nz +δ f )(γ̇− βγ(α+γ)ε )

nz(α+γ)
V(t,z f ).

γ(t) γ̇(t) ≤ βγ(α+γ)From the definition of , it has . Thus,
 

V̇ f (t,z f ) ≤ (1− 1
ε

)γV f (t,z f ).

∥z f (τ)∥≤e
r t
τ

(ε−1)γ(s)
2ε ds

(
λmax(P f (γ(τ)))π f (γ(τ))
λmin(P f (γ(τ))π f (γ(t))

) 1
2 ∥z f (0)∥r γ(τ)

γ0

P f (γ0)
π f (γ) dγ ≤ P f (γ(τ)) ≤

r γ(τ)
γ0

δ f P f (γ0)
π f (γ) dγ λmax(P f (γ(τ)))

λmin(P f (γ(τ)) ≤
δ f
λmax(P f (γ0))
λmin(P f (γ0)

Then, . From (8),

.  Thus, 

. Then,
 

∥Φ(t, τ)∥≤e
r t
τ ( 1

2−
1
2ε )γ(s)ds

(
δ f λmax(P f (γ0))π f (γ(τ))
λmin(P f (γ0)π f (γ(t))

) 1
2

. (16)

By integrating (8), it can be obtained that
 

∥Ps(γ(τ))∥ ≤
δs

nx
ln

(
2tr(A0)+nxγ(τ)
2tr(A0)+nxγ0)

)
∥Ps(γ0)∥ (17)

 

∥P f (γ(τ))∥ ≤
δ f

nz
ln

(
2tr(A22)+nzγ(τ)
2tr(A0)+nzγ0)

)
∥P f (γ0)∥. (18)

RL,RL1 ,RL2 ∈ L t ∈ [0,T )
k1 k2 k3 k4 ∥S RL1 (t)−

S RL2 (t)∥ ≤ εk1∥RL1 −RL2∥ ∥S RL∥ ≤ εk2ρ+ε
2k3ρ

2 + k4

ρ ≥ 2k4 0 < ε1 <min
{

1
2k1
, 1

4k2
,
√
ρ

4k3

}
ε ≤ ε1

∥S RL1 (t)−S RL2 (t)∥ ≤ 1
2 ∥RL1 −RL2∥ ∥S RL∥ ≤ ρ S RL
L RL(t) = S RL(t)

L
0 < ε2 ≤ ε1 Rh Rh
ε ≤ ε2 L(t) = A−1

22 (A21 +B2K0)+
O(ε) H(t) = Λ12Λ

−1
22 +O(ε)

Then, from (16)−(18), it has, for any  and ,
there  exist  positive  constants , , , ,  such  that 

,  and .  Choos-
ing  and  ,  then  for  all ,

 and  .  Thus,  is  a
contraction mapping on , the integral equation  has a
unique solution in , which is the solution of (13) and bounded. Sim-
ilarly, there exits , such that (14) has solution , and  is
bounded. Thus, for , (10) has solution 

, .
L(t)

Λs = (1+O(ε))(A0 +B0K0) Λ f = (1+O(ε))(A22 +B2K2)
Vs(t, xs) = πs(γ)xT

s Psxs V f (t,z f ) =
επ f (γ)zT

f P f z f

Then,  from  (17),  (18)  and  the  definition  of  in  above,  it  has
 and . Choose

the  Lyapunov-like  functions  and  
. Then, it has

 

V̇s(t, xs) =
(nx +δs)γ̇− (1+O(ε))πs(γ)γ

πs(γ)
πs(γ)xT

s Psxs

V̇ f (t,z f ) =
ε(nz +δ f )γ̇− (1+O(ε))π f (γ)γ

π f (γ)
π f (γ)zT

f P f z f .

0 < ε̄ ≤ ε2
ε ≤ ε̄3 V̇s(t, xs) ≤ 0 V̇ f (t,zs) ≤ (1− 1

ε )γV f (t,zs)

∥xs(t)∥ ≤
√
λmax(Ps(γ0))πs(γ0)
λmin(Ps(γ0))πs(γ(t)) ∥xs(0)∥

∥z f (t)∥ ≤ e
r t
τ ( 1

2−
1
2ε )γ(s)ds

√
λmax(P f (γ0))π f (γ0)
λmin(P f (γ0))π f (γ(t)) ∥z f (0)∥

Thus,  form the definition of α  and β ,  there  exists ,  such
that,  for  any ,  and  .
Thus,  it  can  be  obtained  that ,

.  Then,  from  (9),
(17), (18) and the definition of L and H, it has,
 

lim
t→T
∥x∥ ≤ lim

t→T
∥xs∥+ ∥εHz f ∥ = 0

lim
t→T
∥z∥ ≤ lim

t→T
∥L∥∥xs∥+ (1+ε∥L∥∥H∥)∥z f ∥ = 0. (19)

∥ limt→T ∥u∥ = 0
Thus, the origin of system (1) and (2) is T-global finite-time stable.

Similarly,  it  has .  The  control  signal  will  not  go  to
infinity with bounded initial states. ■

H(t) L(t)
t ∈ [0,T )

Remark  2:  From  Theorem  1,  the  matrices  and   are  not
bounded  for .  The  prescribed-time  stabilization  of  system
(11) can not be directly equivalent to solving problem 1. Thus, (19) is

 570 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 2, FEBRUARY 2023



further proved to guarantee the prescribed-time stability property.

γ(t)

Remark  3:  Different  from  [19],  the  prescribed-time  stabilization
problem is considered, where the true settling time can be predefined
exactly  regardless  of  the  initial  condition.  Beside,  benefiting  from
linear time-varying feedback design, the additional assumptions that
the control  matrix  is  full  row rank can be removed.  It  is  also worth
noting that  numerical  problem caused by  has  been discussed in
Remark  1  of  [12]  and  an  effective  method  has  been  established  to
overcome it, thus corresponding discussion is omitted here.

ε = 0.1
Illustrative example: Consider the singularly perturbed system (1)

with  and
 

A11 =

(
2.5 −6
−2 4

)
, A12 =

(
2 3
0 −2

)
, B1 =

(
−4
1

)
A21 =

(
0.5 2
−1 1

)
, A22 =

(
−2 1
0 3

)
, B2 =

(
1
1

)
x = (x1, x2) z = (z1,z2)

A22
(A0,B0) (A22,B2)

A0 =

(
1.6667 2.6667
−1.3333 3.3333

)
B2 =

(
−1.6667
0.3333

)
T = 8 γ0 = 10 α = 0.025 β = 1

γ(t) = eαβT−1
eαβT−eαβt γ0 t ∈ [0,7.9] γ(t) = eαβT−1

eαβT−eαβT∗ γ0
t > 7.9

where ,  are  the  slow  and  fast  states,  respec-
tively. Then,  is invertible and Assumption 1 holds. Moreover, we
have that the pairs  and  are controllable, i.e., Assu-

mption 2 holds, where , .

From Theorem 1, let , , , . Similar to [12],
let ,  for ,  and ,  for

.
The  simulation  results  with  different  initial  conditions  are  pre-

sented in Figs. 1 and 2, which show that the origin of the system is T-
global  prescribed-time  stable,  and  the  control  signal  is  bounded,
regardless of the initial condition.

Conclusion: In  this  letter,  the  prescribed-time  stabilization  prob-
lem is investigated for linear singularly perturbed systems. By com-
bining  the  decoupling  transformation  techniques  and  linear  time-
varying  high  gain  feed  back  design  techniques,  a  composite  linear
time-varying  state  feedback  controller  is  designed,  so  that  the  pre-
scribed-time  stability  is  ensured.  It  would  be  interesting  to  further
consider output feedback control and address cyber attacks.
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Fig. 1. The simulation results with small initial state value.
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Fig. 2. The simulation results with large initial value.
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