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   Dear Editor,

This  letter  investigates  the  target  enclosing  control  problem  of
multi-agent  systems.  A  signed  graph-based  control  strategy  is  pre-
sented,  where  the  agents  are  steered  to  enclose  the  dynamic  target
from both  sides  as  they  move.  This  is  inspired  by  the  phenomenon
that  signed  networks  exhibit  bipartite  clustering  if  the  underlying
graph  is  structurally  balanced,  so  that  the  agents  may  naturally
enclose  the  zero  point  from opposite  sides  (+  and  −)  if  proper  con-
trollers are applied. By adopting a distributed observer to estimate the
information  of  dynamic  target,  a  consensus-based  enclosing  control
scheme  is  designed.  Furthermore,  a  complete  Laplacian  matrix
(CLM)-based  Lyapunov  analysis  method  is  introduced  to  prove  the
control stability, which provides simpler theoretical validation for the
stability analysis of average consensus than the conventional method
based on state transition matrix. Finally, some numerical simulations
are shown to verify the effectiveness of the proposed control scheme.

Networked  agents  use  to  require  convergence  of  their  states  as  a
part  of  their  cooperation,  namely,  a  consensus  reached  under  prop-
erly configured interaction topology and control coefficients [1]–[3].
Numerous  significant  publications  have  created  various  collective
behavior from extending the consensus algorithm by specifying dif-
ferent placement rules (formation [4]) or information sources (track-
ing  [5],  containment  [6]),  which  applies  to  diverse  vehicle  group
tasks  [7]–[9].  The  analyses  of  consensus-based  system enjoy  plenty
mathematical  tools  since  the  behavior  can  be  simply  expressed  by
convergence  of  states,  while  some  increasingly  demanded  multi-
agent  behavior  with  divergence  involved,  including  area  coverage
and target enclosing, have not yet been formulated in uniform defini-
tions.  Fortunately,  target  enclosing can be easily exemplified by the
scenario  of  enclosed  target(s)  being  closed  off  on  opposite  sides  by
the agents for diverse purpose like protection, seizure or attack [10].
In  that  sense,  several  analogous  behavior  such  as  surrounding  [11],
fencing [12] introduced in many past works fall  within the scope of
“enclosing problems” but expressed in different terms. This also evi-
dences  the  great  value  of  target  enclosing  in  military  surveillance,
rescue operation, protection and exploration.

Various  ways  are  found to  define  the  target  enclosing  problem in
literature. Kobayashi et al. [10] describe it as a sub-task of target cap-
turing. Chen et al.  [11] formulate the problem with leaders (targets)
contained in the convex hull of followers, and specially introduce the
concept  of  symmetric  enclosing  (“balanced  surrounding”)  for  final
configuration  of  symmetry  (in  the  form  of  regular-polytope-shaped
deployment  of  the  followers  whose  center  overlaps  with  the

leaders’). Target enclosing problems are mainly solved by achieving
dynamic formations (with tunable surrounding density depending on
the knowledge of targets’ collective motion [11]) or specified deploy-
ment in regular shapes (such as the circular/rectangular arrangement
[13]) around the target(s). In the final analysis, the agents should be
finally deployed on the opposite sides of the target(s) for enclosing.

Different from existing research, this letter comes up with a novel
dynamic  target  enclosing  control  scheme  where  the  agents  are  con-
nected by signed networks. Agents may understand neighbors’ infor-
mation from signed edges in opposite ways, so that their states could
eventually diverge in sign (+ and −) to perform enclosing of the zero
point  (the  origin).  Specifically,  if  the  signed  network  is  structurally
balanced,  symmetric  enclosing  would  take  place  when  applying
bipartite consensus laws [14]–[17]. Inspired by this idea, we develop
enclosing control rules in a “consensus” fashion. In our rules, the sta-
tionary is replaced by traveling target whose data is processed in the
signed network, so that the agents will symmetrically move between
the two sides of the enclosed target at last. The contributions of this
letter include: 1) A novel signed graph-based dynamic target enclos-
ing  control  scheme  is  proposed.  The  consensus-based  control  algo-
rithm is designed utilizing the natural bipartite clustering phenomena
in  structurally  balanced  networks  to  create  divergence  of  agents
around a target.  This strategy extends the methodology for dynamic
target enclosing problems, and can be generalized to numerous appli-
cations  by  bringing  formation  control  or  coordinate  transformation
into  the  algorithm.  2)  This  article  has  also  designed  an  efficient
approach  to  stability  proof  of  consensus-based  algorithms  by  con-
structing  a  CLM  −  the  Laplacian  matrix  of  a  normalized  complete
graph  that  shares  the  same  node  partition  as  that  of  the  original
signed networks. With the help of several properties of CLM, target
enclosing among networked agents can be conveniently validated in
theory, which is simpler than the conventional method based on state
transition matrix.
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1 ,α

T
2 , . . . ,α

T
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Notations: The diagonal matrix is defined as 
 and   or  

 denotes a column vector.
Preliminary and problem formulation: In this part, we will first

introduce some relevant basics of graph for network connection and
useful lemmas. Then, the target enclosing problem is formulated.

G = {V,E}

V = {ν1, ν2, . . . , νn}
E ⊆ V×V ai j A = [ai j] ∈ Rn×n

L = H−A H ∈ Rn×n

H = diag{h1,h2, . . . ,hn}, hi =
∑n

j=1 |ai j|
G

V1,V2 V1∪V2 =V
V1∩V2 = ∅ ai j ≥ 0 νi, ν j

ai j ≤ 0 νi ν j
W = (w1,w2, . . . ,wn)T ∈

Rn×1 wi = 1 νi ∈ V1 wi = −1
νi ∈ V2

In this  letter,  an undirected signed graph  is  adopted to
denote  the  communication  topology  among  the  multi-agent  system,
where the set of agents is ,  and the set of links is

.  The  value  of  matrix  represents  the
information  exchange  between  the  agent i  and  agent j .  Then,  the
Laplacian  matrix L  is  defined  as ,  where  is  the
weighted  degree  matrix  and .
Without loss of generality, a signed graph  is structurally balanced
if  there  exists  a  bipartition  of  the  nodes  with 
and ,  such that  when  are in the same sub-
group,  and  when   and   are  in  different  subgroups.  Thus,
for  a  structurally  balanced  graph,  denote 

 as  a  signature  matrix,  where  if   and   if
.

W
LW = (WT L)T = 0n×1

Lemma  1:  Consider  a  connected  undirected  graph  with n  nodes
whose Laplacian matrix L has a single zero eigenvalue and the corre-
sponding eigenvector is .  In other words, L  is semi-positive defi-
nite, and .

LW = colni
[∑n

j=1

∣∣∣ai j
∣∣∣wi −

∑n
j=1 ai jw j

]
|ai j| = wiw jai j colni

[∑n
j=1

∣∣∣ai j
∣∣∣wi −

∑n
j=1 ai jw j

]
= colni[∑n

j=1 ai jw2
i w j −

∑n
j=1 ai jw j

]
= 0n×1

Proof:  We  can  obtain  that ,
one  gets ,  then  

. ■

C ∈ Rn×n

C ≜ nIn −WWT In

To provide simpler theoretical validation for the stability analysis,
a special  Laplacian matrix  (called CLM) which shares the
same node partition as that of the original signed networks is defined,
where ,  and  is  a  identity  matrix.  Obviously,
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CW = nW−WWTW = nW− colni [nwi] = 0n×1 .

Ḡ G
Lemma 2: If C, L are the CLM and Laplacian matrix of a normal-

ized complete graph  and connected graph , respectively. The fol-
lowing propositions hold.

ClL = LCl = nlL ∀l ∈ N;1) , for 
(L+WWT ) (L+WWT )C = LC2)  is positive definite, and .

WT L = 01×n
CL = (nI−WWT )L = nL = LC ClL =Cl−1CL =

nlL = LCl

QLQT = diag{0, J2, . . . , Jm} ≜ Λ Jk k = 2,3, . . . ,m

Q = colmk [qT
k ] k = 1,2, . . . ,m q1 =

1√
n
W

qk ∈ Rdim(Jk)×n k > 1 QL = QL(QT Q) = ΛQ
qT

k L = JkqT
k qT

k = J−1
k qT

k L qT
1W =

√
n

k > 1 qT
kW =J−1

k qT
k (LW) = coldim(Jk)[0] QW =

colnk[qT
kW] =[

√
n,0, . . . ,0]T

n ≜ Q1
n

Proof:  According  to  the  Lemma  1,  noting  that ,  one
gets .  Therefore, 

,  and  the  proof  of  the  first  proposition  is  achieved.  Based
on  the  Lemma  1,  there  has  an  orthogonal  matrix Q  so  that

,  where  ( )  is  a  Jor-
dan  block  with  respect  to  a  positive  eigenvalue  of L .  Then  we  can
write ,  ( ),  where ,  and

 for  .  Since ,  then
,  and .  It  follows  that ,  and  for

, ,  which conduces to 
. Thus,

 

Q(L+WWT )QT = Λ+Q1
n(Q1

n)T = diag{n, J2, . . . , Jm}
(L+WWT )

(L+WWT ) (L+
WWT )C = LC+W(CW)T = LC

which indicates that all the eigenvalues of  are positive.
That  means  is  positive  definite.  Furthermore, 

,  then  the  proof  of  the  second
proposition is achieved. ■

ẋi(t) = ui(t), i ∈ I, xi ui

I = (1,2, . . . ,n)

x0
ς̇ = Aξς, x0 =Cξς,

Aξ ∈ Rm×m Cξ ∈ Rp×m, p ≤ m

Considering a first-order multi-agent system, whose model dynam-
ics can be described as  where  and  denote the
position  and  control  input  of  agent i ,  respectively.  The  index  set  is

.  To  describe  the  target  enclosing  problem  of  the
multi-agent  system,  we  first  define  the  position  of  moving  target  is

, which is generated by an external reference system with provided
system information:  where ς is the state of exter-
nal  reference  system,  and   are  the  sys-
tem  matrix  and  output  matrix,  respectively.  In  this  letter,  only  the
position of target is accessible to informed agents.

ui

limt→∞ |xi − sgn(ai j)x j + (sgn(ai j)−1)x0| = 0

Definition  1  (Target  enclosing  problem):  The  control  law  is
applied  to  achieve  target  enclosing,  if  the  states  of  multi-agent  sys-
tems finally satisfy .

ai j > 0
(xi(t)→ x j(t)) t→∞

ai j < 0
x0 (xi(t)− x0(t))→

−(x j(t)− x0(t)) t→∞

For i and j-th agents which in the same sub-graph, i.e., , one
sees their convergence  as ,  while for two agent
in  different  sub-graph,  i.e., ,  then  they  will  finally  be  evenly
located  on  the  two  sides  of  the  target ,  that  is, 

 as . In other words, the agents will be deployed
to  enclose  the  moving  target  and  keep  it  as  their  geometry  center.
According to the Definition 1, the enclosing error is defined as
 

ei =

n∑
j=1

|ai j|(xi − sgn(ai j)x j + (sgn(ai j)−1)x0). (1)

The main objective is to design the target enclosing control proto-
col for agents.

Main results: This  part  provides solutions to the target  enclosing
problems.  The  controller  is  produced  by  constructing  a  distributed
observer  to  estimate  the  state  of  target  for  each  agent.  The  target
information  is  generated  by  the  external  reference  system,  and  the
following assumptions are made throughout this part.

Aξ Cξ

Γ = diag{Γ1,Γ2, . . . ,Γn} ∈ Rn×n

Γi > 0 Γi = 0

∃i, Γi > 0

Assumption  1:  The  system  matrix  and  output  matrix  are
available  for  each  agent.  The  target  can  be  regarded  as  a  virtual
leader for the multi-agent system, and we define the communication
matrix between agents and target is , if
agent i can measure the target’s information, , otherwise .
At  least,  one  agent  can  measure  the  information  of  target,  that  is

.

ς̂i
x̂i0

eςi = −
∑n

j=1

∣∣∣ai j
∣∣∣(ς̂i − ς̂ j)−Γi(ς̂i −ς)

In  order  to  realize  the  distributed  observation  of  moving  target
among the topology network, the estimation information of the agent
to external reference system is defined as , and the observed value
of  the  target  is .  Furthermore,  the  distributed  observation  errors
can be defined as . The distributed
observer is further constructed as
 

˙̂ςi = Aξ ς̂i+kςeςi, x̂i0 =Cξ ς̂i
kς > 0

ς̃i = ς̂i −ς
ς̃ = colni [ςi] ∈ Rn×1 ς̃

where  is the observation gain. Define the distributed observa-
tion  error  of  agent i  is  ,  and  it’s  compact  form  is

, then the derivative form of  is
 

˙̃ς = (In ⊗Aξ − kς(L̄⊗ Im))ς̃, L̄ = L+Γ. (2)
kς > 0 ς̃(t)→ 0 t→∞

(x̂i0(t)− x0(t))→ 0 t→∞
Lemma 3: If , the observation error  as . That

is,  as .
(In ⊗Aξ − kς(L̄⊗ Im))

x̂i0 =Cξ ς̂i ˙̂xi0 =Cξ(Aξ ς̂i+
kςeς)

Although  that  coefficient  matrix  is  negative
definite, the proof of Lemma 3 can be obtained by analyzing the sta-
bility of observation error system (2). Therefore, the observed value
of  target’s  position  and  velocity  are  and  

, respectively. Then, the enclosing error of (1) is modified to
 

êi =

n∑
j=1

|ai j|(xi − sgn(ai j)x j + (sgn(ai j)−1)x̂i0). (3)

Then, the control input is designed as
 

ui = −kêi + ˙̂xi0 = −kêi +Cξ(Aξ ς̂i+kςeςi) (4)
k > 0where  is the controller gain.

Theorem 1: By adopting the control input (4), if the Assumption 1
and Lemma 3 are hold, the target enclosing of multi-agent systems is
achieved.

ρi j = (xi − sgn(ai j)x j + (sgn(ai j)−1)x̂i0)
ui

ρi j(t)→ 0 t→∞ z1i =
∑n

j=1 ρi j
Z1 = colni [z1i],X = colni [xi] X0 = coln[x̂i0] E = colni [êi]

Proof: Define  as the enclo-
sing error for agent i, then the control goal is to provide protocol  to
achieve  as  .  Thus,  let ,  and  define

,  and . Then,
 

Z1 = colni

 n∑
j=1

((xi − x̂i0)− sgn(ai j)(x j − x̂i0)

 =C(X−X0). (5)

êi ui E = L(X−X0)
U = −kE+ Ẋ0 Z1

And  the  compact  form  of  and   are   and
. The derivative from of  is

 

Ż1 =C(U − Ẋ0) = −kCE. (6)

V1 =
1
2 ZT

1 (L+WWT )Z1
V1 ≥ 0

Consider  a  candidate  Lyapunov function 
where . According to Lemma 2 and (6), the derivative form of
Lyapunov function along t leads to
 

V̇1 = ZT
1 (L+WWT )Ż1 = −kZT

1 (L+WWT )CE

= −kZT
1 LT CL(X−X0) = −k(LZ1)T (LZ1) ≤ 0. (7)

V1(∞) ≤ V1(0) <∞
V1 Z1 , 0 V1

limt→∞Z1→ 0 Z1 =C(X−X0) = n(X−X0)−
WWT (X−X0)→ 0 (X−X0) =1

nWWT (X−X0)
xi − x̂i0 =

1
n
∑n

j=1 wiw j(x j − x̂i0) wi = w jsgn(ai j)
xi − sgn(ai j)x j + (sgn(ai j)−1)x̂i0 = 0

(x̂i0(t)− x0(t))→ 0 t→∞ (xi(t)− sgn(ai j)
x j(t)+ (sgn(ai j)−1)x0(t))→ 0

This  implies ,  which  guarantees  the  bounded-
ness  of .  As  long  as ,  the  Lyapunov  function  keeps
decreasing and . That is, 

 and  .  Thus,  for i-th
agent, . And based on ,
then  holds.  When  Lemma  3
holds, ,  as .  Therefore, 

.  According  to  the  Definition  1,  the
proof of Theorem 1 is complete. ■

W = colni [wi] = [1,1,−1,−1]T

x0
Γ = diag{1,0,0,0}

Numerical  example: In  this  part,  some  simulation  results  are
given  to  verify  the  effectiveness  of  the  proposed  control  scheme.
Fig. 1(a)  shows  the  topology  among  the  agents,  and  the  symbol
matrix .  Moreover,  consider  that  only
1st agent can measure/receive the state information  of target, thus
the weight matrix is . The system and output matri-
ces of external reference system are
 

Aξ =
[

0 0.5π
−0.5π 0

]
, Cξ =

[
1 0
0 1

]
ς(0) = [5,5]T ς̂i(0) = [0,0]T , ∀i ∈ I

kς = 10, k = 0.5.

x1(0) = [−1,1]T , x2(0) = [3,3]T , x3(0) = [−4,−4]T ,
x4(0) = [2,2]T . pi j

ei =
∑n

j=1 |ai j|(xi−sgn(ai j)x j + (sgn(ai j)−1)x̂i0 − pi jηi j) xi =

where  the  initial  values  and  .
The  parameters  of  distributed  observer  and  controller  are

 In this simulation, the target enclosing problem is
considered  in  the  two-dimensional  space  (x-y).  The  initial  value  of
agents’ state are: 

 At first, by adding the formation offset  of agent i
and j ,  whose  in  the  same  sub-graph,  the  target  enclosing  error  is

,  where 
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[xix, xiy]T x0 =[x0x, x0y]T ηi j = [ηxi j,ηyi j]T pi j,  and  .  is  the  formation
offset weight which satisfies
 

pi j = 0.5(sgn(ai j)+1) =
{

1, if ai j > 0
0, if ai j ≤ 0.

(xix − x jx) = ηxi j
(xix + x jx) =

2x0x ηi j
ηxi j = −ηx ji

It  follows that,  for i  and j-th agents which in the same sub-graph,
their x -axis  states  deviation  finally  approach  to ,
while  for  the two agents  in different  sub-graph,  that  is, 

.  The  formation  interval  between  agent i  and  j  is  shown  in
Fig. 1(b), where . The simulation result is shown in Fig. 2.
Eventually, each agent moves in different circle, and their formation
surrounds the target.
 

−15

−10

10

−5

20

0

5

5

150

10

Time (s)
x-axis

y-
ax

is

10

15

−5
5−10 0

x1(t)
x2(t)
x3(t)

x4(t)
x0(t)
t = 3 s t = 18 s

t = 13 s
t = 8 s

 
Fig. 2. The  positions  of  agents  and  target  in  three-dimensions  (circular
motion).
 

Conclusion: This  letter  investigates  the  target  enclosing  control
problem of multi-agent systems, different from the existing methods
in literature, a novel distributed signed graph-based control scheme is
proposed.  The  dynamic  target  enclosing  control  is  completed  by
designing an distributed observer for the moving center of the signed
network to achieve enclosing tracking around the target. Moreover, a
CLM,  the  Laplacian  matrix  of  a  normalized  complete  graph  which
shares the same node partition as that of the original signed networks,
is constructed to prove the closed-loop stability of system. In future
work, we may focus on the extension of the proposed signed graph-
based  to  the  target(s)  enclosing  problem  in  real-world  applications,
such as protection, seizure or attack for military operations.
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Fig. 1. The interactions among the agents. (a) The topology among the agents;
(b) The formation of agents.
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