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   Dear Editor,

R2

Lithium-ion  (Li-ion)  battery  has  become  a  promising  source  to
supply  and  absorb  energy/power  for  many  energy-transportation
applications.  However,  Li-ion  battery  capacity  would  inevitably
degrade  over  time,  making  its  related  ageing  prediction  necessary.
This  letter  presents  effective  battery  calendar  ageing  trajectory  pre-
diction  by  deriving  a  knowledge-guided  data-driven  model  with
transfer  concept.  More  specifically,  this  data-driven  model  is  based
on the support vector regression (SVR) technology. To ensure highly-
accurate prognostics of battery calendar ageing trajectory under wit-
nessed  conditions,  a  knowledge-guided  kernel  is  first  developed  by
coupling  the  mechanism  and  empirical  knowledge  elements  of  bat-
tery  storage  temperature,  state-of-charge  (SoC),  and  time.  To  im-
prove  model’s  generalization  ability  under  unwitnessed  conditions,
the knowledge-guided data-driven model is then equipped with trans-
fer  concept  by  adding  a  classical  Gaussian  kernel  for  all  inputs.  A
well-rounded real battery ageing dataset under eight different storage
conditions  is  collected  to  evaluate  the  performance  of  developed
model.  Results  illustrate  that  this  knowledge-guided  battery  ageing
trajectory  prediction  model  presents  satisfactory  accuracy  for  wit-
nessed  conditions  with  over  0.98.  After  using  only  20% starting
capacity point to tune its transfer part, it can also generalize well for
unwitnessed  conditions  with R2  over  0.97,  further  heavily  reducing
the required ageing experimental time and cost.

Related work: Significant studies have been devoted to achieving
reasonable battery calendar ageing trajectory prognostics recently [1].
They  result  in  the  three  main  types  of  models:  physics-based,  semi
empirical-based, and data driven-based ones.

Physics-based models use the complicated partial differential equa-
tions (PDEs) to consider battery electrochemical mechanisms, which
are  able  to  accurately  describe  battery  ageing  dynamics  [2].  How-
ever,  due  to  the  involved  complex  PDEs,  they  are  generally  time-
consuming  and  difficult  to  be  parametrized,  making  this  type  of
model become difficult to be adopted in real-time applications.

Semi  empirical-based  models  present  the  advantages  of  simple
structure  and  being  compact  to  be  parametrized,  which  have  been
widely  utilized  in  real  battery  calendar  ageing  trajectory  prediction
applications.  These  models  generally  belong  to  the  open-loop  type,
further presenting poor generalization for unwitnessed storage cases.

With  the  rapid  development  of  artificial  intelligence  and data  sci-
ence,  data-driven models have been also widely utilized to the field
of battery ageing trajectory predictions. As summarized in the related
reviews [3], [4], on the one hand, after developing proper data-driven
models based on various machine learning technologies, satisfactory
battery  ageing  trajectory  prediction  results  can  be  achieved  for  the

cases that are similar to the training cases (witnessed conditions). On
the  other  hand,  their  generalization  ability  and  the  costs  of  related
experimental  ageing  tests  to  generate  necessary  training  data  have
much  room  for  improvement.  This  study  focuses  on  making  such
important improvements.

Problem statement: Data-driven method has become a promising
tool in the battery ageing prediction area owing to its merits of being
flexible  and  strong  nonlinear  fitting  capability.  General  data-driven
models require test data present a similar nature as the training data.
However, the nature of real battery ageing data can be different from
that of training cases, leading to that the data-driven models owning
accurate results in training conditions are also difficult in presenting
high performance under unwitnessed conditions. This phenomenon is
named as the conceptual drift issue in data-science, which is a chall-
enge and limited attention has  been paid  to  battery  ageing prognos-
tics [3]. In addition, to generate suitable data for model training, bat-
tery  ageing  experiment  is  required  but  usually  laborious  and  time-
consuming (several  months  to  years).  In  this  context,  it  is  challeng-
ing but still  vital to develop an efficient data-driven model which is
trained by the easily-collected data and is able to perform good gen-
eralization ability under different storage conditions [4].

Calendar  ageing  experiments  and  dataset: To  generate  proper
battery  ageing  data  for  model  development  and  performance  explo-
ration,  battery  calendar  ageing  experiments  under  various  storage
cases  are  carried  out  in  a  real  battery  ageing  platform,  as  shown  in
Fig. 1. To be specific, the platform contains three main parts: a New-
are  BTS-8000 battery  charger  to  charge  or  discharge  batteries  for
maintaining their storage SoCs, a thermal chamber to maintain battery
storage  temperatures,  and  a  PC  to  collect  and  process  ageing  data.
Here, the tested NCM622 battery presents a nominal capacity of 50 Ah.

In  this  study,  eight  different  cases  (two  storage  temperature  and
four storage SoC levels) covering the most storage conditions of this
type of battery are explored with the detailed information illustrated
in Table 1 .  Here,  the  SoC levels  include  20%,  50%,  70% and 95%,
while the temperature levels include 25℃ and 45℃. The correspond-
ing  battery  calendar  ageing  data  for  each  storage  case  are  all  col-
lected by using thirteen capacity check-ups that occur once every 720
hours [h]. In the check-up process of each battery cell,  the tempera-
ture chamber would be first set to 2℃.  A constant-current-constant-
voltage  (CCCV)  pattern  is  then  performed  to  fully  charge  cell  until
the charging current in the constant-voltage (CV) stage decreases to
C/20.  After  2  hours  resting  period,  a  constant-current  (CC)  pattern
with  1/3C is  then utilized to  fully  discharge  cell  to  the  cut-off  volt-
age of 2.75 V. Afterwards,  the reference capacity will  be calculated
by using classical Coulomb counting approach.

Following the designed ageing experiments, eight battery capacity
ageing series covering 8640 storage hours [h] are collected. Without
the  loss  of  generality,  battery  state-of-health  (SoH)  is  utilized  in  all
cases  of  this  study  to  reflect  battery  ageing  status  through  dividing
battery  actual  capacity  value  by  its  rated  capacity  value,  as  recom-
mended by [1]. In real applications, higher storage SoCs and temper-
atures  are  easy  to  increase  the  growth  of  solid  electrolyte  interface
(SEI)  film  on  the  anode  of  Li-ion  batteries,  further  causing  battery
capacity to degrade faster [5]. It thus becomes meaningful to develop
a suitable model that can be just trained by using partial accelerated
ageing  data  under  high  SoCs  and  temperatures  (i.e.,  Cases  5−8  in
Table 1),  while the developed model is capable of generalizing well
and conveniently to other unwitnessed storage conditions (i.e., Cases
1−4 in Table 1). One significant benefit of doing this is that the cor-
responding experimental time and costs of generating data for model
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Fig. 1. Battery calendar ageing experiment platform.
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training will be heavily reduced.

D = {xd ,yd}Nd=1 N
xd yd d

Φ

Proposed knowledge-guided data-driven model: To achieve the
abovementioned  tasks,  the  proposed  model  is  an  improved  SVR
equipping  battery  ageing  knowledge  information  and  transfer  con-
cept. In theory, SVR is a kernel-based machine learning tool present-
ing  good  capability  to  handle  the  local  minimum  and  overfitting
issues.  Supposing a  dataset ,  stands  for  the  sample
number, while  and  are the th input vector and corresponding
output, respectively. SVR can capture the relations between input and
output by a nonlinear mapping  as
 

S VR (x) = ω ·Φ (x)+ c (1)
x ω c
{ξd}Nd=1

{
ξ∗d

}N

d=1

where  is the input,  and  are its weight and bias. Then, the slack
variables  and  can be formulated by
 

minR (ω,c, ξ) =
1
2
∥ω∥2 +P

∑N

d
ξd + ξ

∗
d (2)

 

s.t.


yd −ω ·Φ (x)− c ≤ ε+ ξd
ω ·Φ (x)+ c− yd ≤ ε+ ξ∗d
ξd , ξ

∗
d ≥ 0

(3)

P ε(ε > 0)where  denotes  a  penalty  factor,  represents  a  maximum
error allowed by prediction. After introducing the Lagrangian multi-
pliers and kernel functions, it can be further transformed as
 

maxR
(
α∗d ,αd

)
= − 1

2

N∑
d,e

(
α∗d −αd

) (
α∗e −αe

)
Φ (xd)Φ (xe)

−
N∑
d

αd (yd +ε)+
∑N

d
α∗d (yd −ε) (4)

with
 

s.t.


N∑
d

(
α∗d −αd

)
= 0

0 ≤ αd , α
∗
d ≤ P, d = 1, . . . ,N

(5)

αd α∗dwhere  and   are  Lagrangian  multipliers.  Then,  the  SVR-based
nonlinear mapping could be derived by the Mercer’s theorem as
 

S VR (x) =
N∑
d

(αd −α∗d)K (xd , x)+ c (6)

K (xd , x) = Φ (xd)Φ (x)where  is  the  kernel  function,  which  must  be
carefully designed to meet requirements of different applications.

Cap (t)
∆t f ut Tsto

S oCsto
Cap(t+∆t f ut)

Data-driven  model  structure: Based  upon  SVR,  a  data-driven
model is designed to predict future battery calendar ageing trajectory.
Fig. 2 details the structure of this data-driven model, which contains
a  knowledge-guided  kernel  part  and  a  transfer  part.  Four  items
including  battery  capacity  at  the  current  time  ( ),  future  stor-
age  time  period  ( ),  storage  temperature  ( )  and  storage  SoC
( ) are inputs of this model, while battery capacity at the future
time point ( ) is the output.

Temperature  effect  knowledge: In  real  battery  applications,
Arrhenius  law [6]  is  usually  adopted  to  describe  the  effects  of  tem-
perature  on  the  side  reaction  of  battery  in  an  exponential  form,  as
illustrated by
 

fB (T ) = aB · exp(−EA/RT ) (7)
aB R EA

T
where  is a weight parameter.  is the ideal gas constant.  is the
activation energy of side reactions.  is the ambient temperature.

kT st(xT , x′T )
Tsto

To  make  use  of  the  mechanism  knowledge  within  the  Arrhenius
equation,  the component  related to battery storage tem-
perature  is created by using the similar exponential form as
 

kT st
(
xT , x′T

)
= σT st · exp

(
− 1

lT st
∥ 1

xT
− 1

x′T
∥
)

(8)

σT st lT stwhere  and  are  related hyper-parameters.  According to  this
component, the effects related to the difference between various stor-

xT x′Tage temperature cases  and  are explained in an isotropic form.
In  this  context,  temperature  impact  knowledge  is  successfully  cou-
pled into the knowledge-guided kernel function.

kS oC(xS oC , x′S oC)

SoC  effect  knowledge: Next,  a  proper  component  is  created  to
take  the  knowledge  of  the  storage  SoC  effect  into  account.  In  real
battery storage applications, a higher storage SoC will generally lead
to  a  larger  degradation  rate  of  calendar  ageing.  According  to  the
related  research  [4],  the  effects  of  storage  SoC  on  battery  ageing
present  a  linear  relation.  That  is,  the  knowledge  of  the  storage  SoC
effect could be described through a linear equation. In this context, to
effectively involve this empirical knowledge of SoC effect, the com-
ponent  related  to  battery  storage  SoC  within  the
knowledge-guided kernel is created by using a linear form as
 

kS oC
(
xS oC , x′S oC

)
= σS oC · xT

S oC x′S oC + cS oC (9)
σS oC cS oCwhere  and  are related hyper-parameters. In theory, a ker-

nel  with  a  linear  form belongs  to  none stationary kernel,  which can
reduce the corresponding computational effort [7].

tz t z

k∆t(x∆t, x′∆t) ∆t f ut

Time effect knowledge: On the basis of battery ageing knowledge,
the  effect  of  time  on  battery  degradation  is  described  by  a  power
function as  (here  is storage time,  is power factor). In this con-
text, to consider time effect knowledge into the kernel, a related com-
ponent  related to  is derived as
 

k∆t(x∆t, x′∆t) =
(
xT
∆t x
′
∆t

)z
. (10)

Cap (t)

Coupled knowledge-guided kernel: After formulating the compo-
nents  for  temperature,  SoC,  and  time  based  on  the  mechanism  and
empirical knowledge of battery calendar ageing, a knowledge-guided
kernel  can  then  be  designed.  To  also  capture  the  battery  capacity
term  in Fig. 2, a classical Gaussian kernel is adopted. In the-
ory, the matrix of kernel within SVR needs to be positive semidefi-
nite, while the positive semidefinite components can be either added
or  multiplied  to  generate  effective  kernel  function  for  different  real
applications  [7].  For  the  derived  components,  the  solution  to  multi-
ply them is adopted in this study to consider the correlation of both
storage  temperature  and  SoC  terms  as  well.  In  this  context,  a  cou-
pled battery knowledge-guided kernel is finally created with the fol-
lowing specific form:
 

kknow
(
x, x′

)
= a · exp

(
b · ∥xCap − x′Cap∥

2) · (xT
∆t x
′
∆t

)z

· exp
(
c · ∥ 1

xT
− 1

x′T
∥
)
·
(
d · xT

S oC x′S oC + e
)

(11)

a,b,c,d,e, z x
x =

(
xCap, x∆t, xT , xS oC

)
xCap =Cap (t) x∆t = ∆t f ut xT = Tsto

xS oC = S oCsto

where  and  are its related hyper-parameters,  represents
input vector as . According to the data-driven
model  structure  in Fig. 2,  , , ,

.
After developing the coupled knowledge-guided kernel, the related

SVR-based model can be trained by using a partial  accelerated age-
ing dataset under high storage temperatures or SoCs that are easy to
be collected. Then, it can be adopted directly for future calendar age-
ing trajectory prediction under the witnessed conditions that are simi-
lar as the training cases. For unwitnessed conditions where the stor-
age temperature and SoC are different from training cases, to ensure
good  generalization  of  the  developed  data-driven  model,  a  transfer
part is involved.

Kernel for transfer part: To equip transfer concept into the SVR-
based model for unwitnessed conditions, a transfer kernel is derived
based on the Gaussian function as
 

ktransfer
(
x, x′

)
= λ · exp

−∥x− x′∥2

2σ2

 (12)

λ σ
kknow

(
x, x′

)
kknow

(
x, x′

)
ktransfer

(
x, x′

)
where  and  are its hyper-parameters. For battery capacity trajec-
tory  prediction  of  the  witnessed  case,  only  will  be
trained.  For  the  prediction  of  the  unwitnessed case,  the  well-trained

 is fixed, while the  will  be tuned by using

 

Table 1.  Battery Ageing Matrix for Different Storage SoCs and Temperatures

SoC\Temperature 25℃ 45℃
20% Case 1 Case 2
50% Case 3 Case 4
70% Case 5 Case 6
95% Case 7 Case 8
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Fig. 2. Derived data-driven model structure.
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only partial starting capacity data of the unwitnessed case as
 

kS VR
(
x, x′

)
=

{
kknow

(
x, x′

)
, for witnessed case

kknow
(
x, x′

)
+ ktransfer

(
x, x′

)
, for unwitnessed case.

(13)

Results  and  discussion: To  evaluate  the  performance  of  derived
model  in  battery calendar  ageing trajectory predictions,  case studies
for both witnessed (same conditions as the training series) and unwit-
nessed  conditions  are  carried  out  by  using  Matlab2022  with  a  2.4
GHz Intel 4 CPU.

a = 0.0006, b = 0.7326, c = −0.7628, d = 0.0007, e = 0.0011, z = 0.46.

R2

Case study for various temperatures: In this case study, acceler-
ated  ageing  data  including  capacity  points  before 5000  hours  of
Cases 6–8 are utilized to train the data-driven model. Then the corre-
sponding  extrapolated  prediction  results  after 5000  hours  of  these
witnessed cases are shown in Fig. 3. The local increased battery SoH
point  is  mainly  caused  by “capacity  regeneration” and  shifted  mea-
surement  [8].  After  using  biogeography-based  optimization  (BBO)
algorithm to  minimize  the  prediction  error,  the  optimized  results  of
hyperparameters  within  the  knowledge-guided  kernel  function  are:

It  can  be  noted  that  the  predicted  trajectories  from  the  proposed
model  well  match  most  real  points  of  all  these  three  cases  with 
value over 0.98, indicating good ageing trajectory prediction perfor-
mance for witnessed cases.

R2

After using the related starting capacity data before 2000 hours to
respectively  tune  the  transfer  part  for  all  five  unwitnessed  cases
(Cases  1−5),  their  corresponding  battery  future  capacity  trajectory
prediction results  are shown in Fig. 4.  It  can be seen that  the devel-
oped model can also present good performance for such unwitnessed
cases  as  all  these  five  predicted  trajectories  can  well  match  the  real
points in general with  value over 0.97.

R2

Comparisons  with  benchmarks: To  further  investigate  the
derived  data-driven  model’s  performance,  another  three  classical
models are utilized as the benchmarks for comparisons. Specifically,
Benchmark  1  is  an  SVR  model  with  the  developed  knowledge-
guided kernel but without transfer concept, Benchmark 2 is an SVR
model with just Gaussian-based kernel, while Benchmark 3 is a clas-
sical  radial  basis  function  (RBF)-based  neural  network.  All  models
are trained and validated by following the same process of the above
case study (capacity points before 5000 hours of Cases 6–8 are used
for model training). Then Case 1 is used for model performance eval-
uation as it presents the worst results. Without the loss of generality,
typical performance indicators including mean absolute error (MAE),
root  mean square  error  (RMSE),  and  are  utilized  to  quantify  the
prediction results, as illustrated in Table 2.

R2

R2

Quantitatively,  the  proposed  model  with  both  battery  knowledge-
guided  kernel  and  transfer  concept  achieves  the  best  results  among
four models, whose  is 2.1% better than that of Benchmark 1. This
implies  the  effectiveness  of  transfer  part  to  improve  prediction  per-
formance  for  unwitnessed  conditions.  In  contrast,  without  battery
knowledge-guided  kernel,  both  Benchmarks  2  and  3  present  worse
prediction  performance  with  of  0.90  (7.2% decrease)  and  0.89
(8.2% decrease), respectively. In light of this, the data-driven model
coupling battery ageing knowledge can effectively improve the per-
formance of battery calendar ageing trajectory prediction.

Conclusions: This paper presents a battery calendar ageing trajec-
tory  prediction  strategy  based  on  the  knowledge-guided  data-driven

model  with  transfer  concept.  Illustrative  results  show  that  the  pro-
posed knowledge-guided data-driven model can provide accurate cal-
endar  ageing  trajectory  predictions  for  both  witnessed  and  unwit-
nessed  conditions.  Due  to  the  superiorities  of  being  flexible,  our
future  work  plans  to  continue  performing  calendar  ageing  experi-
ments  to  generate  long-term  battery  ageing  data  from  other  battery
types and varied temperature cases, while extending this knowledge-
guided  data-driven  model  with  suitable  feature  terms  for  more  bat-
tery ageing prognostic applications.
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Fig. 3. Future  ageing  trajectory  prediction  results  for  witnessed  cases:  (a)
Case 6; (b) Case 7; (c) Case 8.
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Fig. 4. Future  ageing  trajectory  prediction  results  for  unwitnessed  cases:  (a)
Case 1; (b) Case 2; (c) Case 3; (d) Case 4; (e) Case 5.
 

 

Table 2.  Comparison Results Under the Unwitnessed Condition
MAE RMSE R2

Proposed model 0.132 0.058 0.97
Benchmark 1 0.196 0.083 0.95
Benchmark 2 0.293 0.129 0.90
Benchmark 3 0.301 0.132 0.89
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