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ABSTRACT Modern computing schemes require large circuit areas and large energy consumption for
neuromorphic computing applications, such as recognition, classification, and prediction. This is because
these tasks require parallel processing on large datasets. Stochastic computing (SC) is a promising alternative
to conventional binary computing schemes due to its low area cost, low processing power, and robustness to
noise. However, the large area and energy costs for random number generation with CMOS-based circuits
make SC impractical for most hardware implementations. For this reason, beyond-CMOS approaches to
random number generation have been investigated in recent years. Spintronics is one of the most promising
approaches due to the intrinsic stochasticity of the magnetic tunnel junction (MTJ). In this review article, we
provide an overview of the literature published in recent years investigating the tunable, intrinsic stochasticity
of MTJs and proposing practical methods for random number generation using spintronic hardware.

INDEX TERMS Magnetic tunnel junctions (MTJs), random number generators (RNGs), spintronic devices,
stochastic-bit generators (SBGs), stochastic computing (SC).

I. INTRODUCTION

MODERN computing schemes based on binary repre-
sentation have several challenges in future artificial

intelligence (AI) applications [1], [2]. These challenges are
mainly due to the size of the datasets and the large number
of transistors required to process the data [1]. Furthermore,
while modern computers excel at speed and precision, they
are very inefficient at tasks involving recognition, complexity,
and ambiguity [3]. This is because classical von-Neumann
architectures are not very tolerant to hardware faults, noisy
data, or any type of variations in the input data [4].

One technique that can address the shortcomings of mod-
ern conventional computing is stochastic computing (SC).
In SC, data are represented as a stream of random binary
bits, and the numeric values are the percentage of the random
bits being ‘‘1’’ [5], [6], [7], [8], [9]. For example, given
a bitstream S with N stochastic bits, the number interpreted
by that bitstream (S) is the number of ones in S divided by N .

Note that even though each element within the bitstream is
binary, the numbers interpreted in the bitstream are analog.

There are two key advantages to SC over conventional,
deterministic models. The first is that the stochastic numbers
are not dependent on position of elements in the bitstream.
This gives SC schemes a high degree of error tolerance and
noise resilience [9], [10], [11], [12], [13]. The second is that a
wide variety of arithmetic functions can be performed using
a very low number of logic gates [9], [11], [14], [15], [16].
For example, multiplication of two stochastic bitstreams can
be done using either a single AND gate for numbers with
unipolar representation (numeric range between 0 and 1),
as illustrated in Fig. 1(a), or a single XNOR gate for num-
bers with bipolar representation (numeric range between −1
and +1). Furthermore, scaled addition can be done using
a 2 × 1 multiplexer by generating an additional input bit-
stream S, which has a constant, predetermined probability at
the selector input, as illustrated in Fig. 1(b). Additional logic
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FIGURE 1. Logic gates used for efficient implementation of
(a) unipolar multiplication (AND gate) and (b) addition scaled by
a factor of S (2 × 1 MUX).

gates can be introduced for highly efficient implementation of
more complicated functions, such as high-order polynomials
[8], [9], [10], hyperbolic tangent [16], and exponentials [11],
[15], [16].

The major drawback to SC is the trade-off between
numeric resolution and computation delay. When comput-
ing on bitstreams with length N , the numeric resolution is
ideally 1/N . To increase this resolution, the bitstream length
could increase to 2N , thus making the numeric resolution
1/2N . However, this would double the number of computa-
tion cycles required to complete the task. For this reason,
SC is not a very attractive solution for tasks, which require
solving complex numeric problems with stringent accuracy
requirements. However, there are several applications in neu-
romorphic computing, where high mathematical precision is
not necessary, and SC is a very promising solution [9].

The error resilience and fault-tolerance inherent in SC
make it a strong candidate for tasks, such as recognition, fea-
ture extraction, and classification [10], [11], [12], [13], [17].
This makes SC a promising solution for applications where
approximations are used to filter noncritical information from
large datasets; therefore, SC is a strong solution for these
types of tasks.

One of the most common applications that have been pro-
posed for SC is image processing. This is because various
algorithms that are key for image processing tasks, such as
edge detection, contrast stretching, kernel density estimation,
and local image thresholding, can be efficiently performed
using SC-based methods [10], [12], [13], [15], [17]. Not
only does SC require less hardware usage than conventional
approaches for each of these algorithms, but it is also more
error tolerant. Therefore, SC-based methods can process very
noisy images without significant performance degradation.
For simple algorithms, such as edge detection, SC approaches

consume more power than conventional approaches [15].
However, for complex algorithms, such as kernel density
approximation, SC approaches consume less power [13],
[15]. Furthermore, computation delay is significantly larger
in SC than for conventional methods for several image pro-
cessing algorithms. However, there are some applications,
such as local image thresholding [12] and low-precision real-
time image processing [17], where SC approaches are faster
than conventional approaches.

The significant reduction in circuit area for computation
in SC also makes it a promising solution in artificial neural
networks [18], [19], [20], [21]. The simplified architecture
allows for SC-based methods to easily increase in size, as the
size of the datasets or the complexity of the tasks increases.
Furthermore, SC circuits provide more design flexibility in
that the trade-off between computation time and accuracy can
be varied without any hardware changes. SC can also improve
the circuit area, power consumption, and energy efficiency
in deep neural networks, since complex activation functions
and inference algorithms can be efficiently performed in
SC [22], [23], [24].

SC is also a very promising solution for applications that
process data with inherent randomness. For example, low-
density parity check (LDPC) decoders are very powerful
linear error correcting codes with decoding capabilities; how-
ever, the circuits required to implement these codes suffer
from high area consumption but with low logic utilization due
to the random location of ones in the parity-check matrix.
The most area-efficient LDPC decoders are those based on
SC [25], [26], [27], where hardware consumption is reduced
by 40% on field-programmable gate arrays (FPGAs) [25]
and 73.8% on the IEEE 802.15.3c decoder chips [27]. Fur-
thermore, SC-based LDPC decoders can reduce the number
of routing wires by 90% and improve the energy efficiency
by 11.5% [27] while maintaining similar error floors as
conventional approaches. Other examples of SC applications
are Bayesian systems and weather prediction. Stochastic cir-
cuits can build Bayesian inference systems and Bayesian
belief networks with high inference accuracy, fast speed, and
low-power consumption for object location [28], [29] and
heart disaster prediction tasks [29]. Another example is that
stochastic neural networks can predict wind speed within
1-m/s accuracy with 18% reduction in circuit area [30].

Despite the promising prospects of SC, the hardware costs
for generating stochastic bits using modern CMOS tech-
nology make the realization of SC in future technology
unfeasible. Generating stochastic bits using CMOS-based
platforms are typically done using linear feedback shift
registers (LFSRs) [31] or ring oscillator-based circuits [8].
In some cases, the circuits required for generating stochastic
bitstreams take 80% of the total circuit and 80% of the total
energy consumption [10]. This means that the total circuit
area and total energy consumption may not be reduced in
SC compared with conventional methods, when consider-
ing the hardware used for generating stochastic bits. For
this reason, alternative methods and technologies should be

174 VOLUME 8, NO. 2, DECEMBER 2022



Zink et al.: Review of MTJs for SC

considered for generating stochastic bitstreams in SC. One
promising approach is to exploit the intrinsic stochasticity of
spintronic devices for random number generation. Magnetic
tunnel junctions (MTJs) are highly influenced by thermal
fluctuations at the atomic level; therefore, a single MTJ
is highly effective at generating tunable random numbers.
By utilizing this property, the large, energy consuming cir-
cuits for CMOS-based random number generators (RNGs)
can be replaced by a single, nano-sized MTJ in SC circuits.
In this report, we investigate the prospects ofMTJs to perform
as RNGs for SC as well as MTJ-based circuits to perform
stochastic computation.

II. MAGNETIC TUNNEL JUNCTIONS
Magnetic random access memory (MRAM) has been devel-
oped for commercial purposes in recent years [32], [33], [34],
[35], [36], [37], [38]. The elementary storage component in
state-of-the-art MRAM is the MTJ, which is a two-terminal
nanomagnetic device consisting of several thin-filmmagnetic
devices, which consists of several ultrathin layers forming a
nanopillar. There are three key layers that determine the prop-
erties of theMTJ, which are the fixed layer, the tunnel barrier,
and the free layer. The fixed and the free layer are both ferro-
magnetic layers, where the magnetization has either in-plane
orientation or an out-of-plane orientation. The magnetization
of the fixed layer is pinned in a predetermined direction, and
the magnetization of the free layer, on the other hand, can
be oriented in the same direction (parallel) or in the opposite
direction (antiparallel) to the magnetization of the fixed layer.
The tunneling barrier is a thin insulating layer, typicallyMgO,
which separates the fixed and free layers. In this chapter,
we discuss the most common write mechanisms of MTJs and
how they can be used for both memory applications as well
as tunable RNGs.

A. MTJ PHYSICS
An MTJ can exist in one of two binary states, which is
determined by the magnetization direction of the free layer
(m̂f ) relative to the magnetization direction of the fixed layer
(m̂p). If m̂f is parallel to m̂p, then the MTJ is said to be in the
P-state; however, if m̂f and m̂p point in opposite directions,
then the MTJ is in the AP-state. The electrical resistance of
the MTJ (RMTJ) is larger in the AP-state than in the P-state
(RAP and RP, respectively). The difference in RAP and RP is
described by the tunneling magnetoresistance (TMR) ratio,
which is described with the following equation:

TMR =
RAP − RP

RP
∗ 100%. (1)

The reason that the orientation of m̂f is limited to AP- and
P-state directions is due to magnetic anisotropy, which
describes the preference for the magnetization of a ferromag-
netic sample to lie in a particular direction. Anisotropy is
defined as the energy per unit volume required to change the
magnetization from the lowest energy direction (easy axis)
to its highest energy direction (hard axis). A common metric

used to describe the magnetic anisotropy of an MTJs free
layer is the thermal stability factor (1), which is defined as
the ratio between the energy required for m̂f to switch states
(EB) and the thermal energy (kbT , where kb is Boltzmann’s
constant, and T is the temperature). The thermal stability
factor will determine the retention time of the MTJs free
layer (τ ), as expressed in the Néel–Arrhenius equation shown
in (2). In (2), τ0 is the inverse attempt frequency, which is
often assumed to be 1 ns [39]. The retention time represents
the expected amount of time the MTJ will retain its present
magnetization state until thermal fluctuations cause m̂f to
switch.

For modern MRAM applications, it is desired that τ >
10 years, which corresponds to 1 > 60. In the absence of
external influences on m̂f , such as an external magnetic field
or an applied voltage, EB is given by the anisotropy energy;
therefore,1 is defined using the expression in (3), where V is
the volume of the MTJ’s free layer. This equation also shows
the expression for 1 in terms of the anisotropy field (HK),
which represents the hypothetical field needed to align m̂f
along the hard-axis direction

τ = τ0 exp (1) (2)

1 =
KUV
kbT

=
HKMSV
2kbT

. (3)

B. STT AND SOT SWITCHING
The oldest method of switching MTJ states in MRAM cells
is through an external magnetic field generated by current
carrying wires. However, the dimensions of a field switching
MRAM cell cannot be scaled to sizes below 90 nm due to
the drastic increase in current required to generate fields with
decreasing wire size [40], [41]; therefore, this method of
switchingMTJ states is no longer pursued in modern MRAM
designs. Modern MRAM technologies utilize Spin-transfer
torque (STT) switching, which is a much more practical
writing method for MRAM cells than field switching. In an
STT-MRAM cell, the write and read cycles are performed
using a voltage or current applied across the MTJ (VMTJ and
IMTJ). The mechanism that allows for STT switching is the
spin filtering effect, which creates a spin-polarized current
through the MTJ [42], [43], [44]. This spin polarization gen-
erates a torque on the free layer magnetization and eventually
causes the MTJ to switch resistance states.

A major shortcoming of STT-MRAM is that the MTJs
are susceptible to dielectric breakdown after multiple write
cycles [45]. In recent years, the spin–orbit torque (SOT) effect
has been studied in order to develop MRAM cells, which
utilize SOT as the primary switching mechanism [46], [47].
Unlike STT switching, SOT switching does not require a
voltage or current to be applied directly across the MTJs
tunneling barrier. Instead, the current is passed through a non-
magnetic heavy metal (HM) with strong spin–orbit coupling
(SOC; typically Ta or W). In an SOT-MRAM cell, the MTJ
is fabricated on top of an HM-based SOT channel, so that
the MTJ’s free layer is adjacent to the SOT channel. Note
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FIGURE 2. (a) Task scheduling for synchronous probabilistic switching measurements. (b) Illustration of energy barrier during synchronous
probabilistic switching measurements. (c) Examples of switching probability distribution versus perturb voltage amplitude at various pulse widths.
(d) Illustration of the influence of thermal noise, (e) field switching plot, and (f) influence of a bias current on MTJs with low thermal stability. (a) Extracted
from [84]. (b) Extracted from [63]; plots shown in (c) were extracted from [52]. (d) and (f) Extracted from [75]; plot shown in (e) was extracted from [55].

that the SOT-MRAM cell has three terminals rather than
two, since a small voltage is still applied across the MTJ
during the read cycle. The mechanisms for SOT switching are
two SOC phenomena, which are the spin-Hall effect (SHE)
and the interfacial Rashba–Edelstein effect, both of which
initiate spin accumulation at the HM/free layer interface.
Spin-polarized electrons then diffuse into the FM layer, thus
exerting a torque on the free layer magnetization. The spin
current (JS) generated from charge current (JC) is expressed
in (4), where σ is the polarization of the spin current, θSH is
the spin-Hall angle, h̄ is Planck’s constant, and e is the charge
of an electron

EJS =
h̄
2e
θSH

(
EJCx Eσ

)
. (4)

C. TUNABLE STOCHASTICITY IN MTJs
Magnetization switching in MTJs is strongly influenced by
thermal fluctuations. This is because thermal fluctuations
cause random nucleation to occur in the magnetic layers.
These can be aided via STT or SOT effects, which lead to
one of the most promising features of MTJs, tunable stochas-
ticity. This means that, under certain conditions, the MTJ
will switch states randomly with a controlled probability.
In general, tunable stochasticity can be achieved in MTJs
either through synchronous or asynchronous methods. Note
that in either case, the switching probability can be controlled
with either STT or SOT switching (recall Section II-B).

Synchronous methods use clocked cycles of sequential
reset, perturb, and read voltage (or current) pulses, which is
illustrated in Fig. 2(a) and (b) [48], [49], [50], [51], [52], [53].
These measurements can be collected for both AP-to-P and
P-to-AP switching directions. The sign, amplitude, and

duration of the reset pulse are set to switch the MTJ to
the initial state with 100% probability. The perturb pulse
then switches the MTJ with a probability determined by the
amplitude and duration of the pulse (VP and tP, respectively).
The last step of each cycle reads the final state of theMTJwith
a voltage pulse small enough, so that it does not influence
the state of the MTJ. The switching probability (PSW) is
then determined by repeating this cycle multiple times and
finding the percentage of cycles where the MTJ switched
states. Examples of PSW distribution curves with respect to
VP at various tP values are shown in Fig. 2(c).
For STT switching, voltage required for STT to exceed the

damping torque is intrinsic critical switching voltage, or VC0.
Thermal activated switching occurs when VP ≤ 0.8 × VC0
and tP ≥ 10 ns, where thermal fluctuations cause the MTJ
to switch with a probability of PSW = 1 − exp(−tP/τ ) [48].
The main purpose of measurements collected in this regime
is to determine 1 and VC0. Equation (5) shows a modified
version of (2), which includes the influence of VP on τ . This
equation shows that VP reduces the switching energy of the
MTJ by a factor of 1−VP/VC0, thus increasing the probability
that thermal fluctuations will cause the MTJ to switch states.
The critical switching voltage (VC ) is expressed using (6) and
is defined as the voltage when τ = tP. Extrapolation from the
PSW distribution data can be used to determine VC by finding
VP when PSW = 1− exp(−1), or PSW ≈ 0.63. The values for
1 and VC0 can be calculated through by linearly fitting the
data for VC and ln(tP/τ0), where the y-intercept and slope of
the fit line are equal to VC0 and −VC0/1, respectively

τ = τ0 exp
(
1

[
1−

VP
VC0

])
(5)
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VC (tP) = VC0

(
1−

1
1

ln
(
tP
τ0

))
. (6)

The two other switching regimes are called the preces-
sional and dynamic reversal. Precessional switching occurs
when tP ≤ 1 ns, where magnetization switching is dependent
on initial thermal distribution rather than thermal agitation
[48]. In this regime, τ ∝ (V − VC0)−1 ln(π/2θ ), where θ is
the initial angle between the magnetization and the easy axis
[48], and PSW versus tP behavior is expressed using (7) and
(8). The dynamic reversal regime occurs when tP > 1 ns and
tP< 10 ns, where themechanism formagnetization switching
is a combination of both the initial thermal distribution and
thermal agitation

PSW (tP) ∝ exp
(
HKMSVol

2kbT

(
1−cos2 ∅

))
(V−VC0) sin2 ∅

(7)

∅ =
π

2
exp

(
−
ηµB

eMS tF
(J − JC0) tP

)
. (8)

Asynchronous measurements are typically obtained for
thermally unstable MTJs with1< 20, where thermal fluctu-
ations drive random switching between states, as illustrated
in Fig. 2(d) [54], [55], [56], [57], [58]. These devices typ-
ically show random fluctuations near the switching fields,
as illustrated in Fig. 2(e). The average switching rates of
these thermal fluctuations can range from 1 kHz to above
1 GHz [59], [60], [61], [62], depending on1. For these types
of measurements, time-domain data are obtained at multiple
bias voltages, examples of which are shown in Fig. 2(f).
These figures show that the percentage of time that the MTJ
spends in each state can be tuned with the bias voltage.
Therefore, the time domain data can be analyzed in terms
of the average resistance state and the average AP-state and
P-state dwell times (τAP and τP, respectively). The AP- and
P-state components of 1 can be determined from τAP and τP
using the Néel–Arrhenius equation [recall (2) and (5)].

It should be noted that both synchronous and asynchronous
switching experiments are typically used as methods of
obtaining intrinsic properties of the MTJ, such as 1 and
VC0. However, in Section III, we will discuss recent studies,
which have demonstrated that these techniques can be used
as hardware-efficient approaches of generating stochastic
bitstreams.

III. MTJs FOR SC
In recent years, several experimental and modeling stud-
ies have proposed MTJs as key components in RNGs or
stochastic-bit generators (SBGs) for SC using the methods
described in Section II-C. Some studies have even proposed
that theMTJ-based circuits can not only generate the random-
ness required to produce stochastic bitstreams, but they can
also be used to perform the necessary arithmetic functions via
stochastic methods. In Sections III-A–III-E, we will review
the various theories and experimental works that have been
performed in recent years, where MTJs have been proposed
in SC circuits.

A. TRUE RNGs THROUGH SYNCHRONOUS METHODS
General circuits for stochastic-bit generation consist of a
comparator with an RNG and an analog value connected
at the inputs. The output of the RNG should be centered
at 0.5, meaning that the probability of a bit being 1 in the
stochastic bitstream generated at the output of the comparator
will be equal to the analog value at the input of the com-
parator. As mentioned in Section I, CMOS-based RNGs are
very expensive in terms of their hardware usage and energy
consumption. Furthermore, they can only generate pseudo-
random numbers, meaning that computing the stochastic bit-
streams generated by CMOS-based RNGsmay be susceptible
to errors caused by a high degree of correlation between
the bitstreams. On the other hand, magnetization switching
in MTJs is driven by thermal fluctuations; therefore, it is
purely random. By using the synchronous method described
in Section II-C and by setting VP and tP, so that PSW = 0.5,
a single MTJ can be used as a true RNG (TRNG).

One way to ensure that PSW = 0.5 from an MTJ is through
real-time output probability tracking, which is illustrated in
Fig. 3(a) and (b) [63]. In this method, no reset pulse is needed.
Instead, VP at PSW = 0.5 for both AP-to-P and P-to-AP
switching (VP+ and VP−, respectively) is determined prior
to TRNG implementation. The resistance state of the MTJ
is continuously monitored, and the polarity of VP changes,
as the MTJ switches states. This method can be expanded
even further by introducing a feedback loop that continuously
adjusts tP− based on the number of ones in a given segment
of the bitstream, as shown in Fig. 3(c). If a string of ones is
too long or too short, tP− is adjusted. Similarly, a digitally
controlled probability locked loop (DCPLL) can be used to
fix PSW at 0.5, as shown in Fig. 3(c) and (d) [64]. In this
circuit, the switching probability of the MTJ is controlled
with a current pulse (ISW) that has a magnitude that corre-
sponds to a 50% switching probability. The output bitstream
generated is measured, and the correction logic circuit adjusts
ISW whenever PSW deviates from 0.5.

B. STOCHASTIC BIT GENERATION THROUGH
SYNCHRONOUS METHODS
By exploiting the capability of tuning PSW over the entire
0–1 range, MTJs can be used as a single device, SBGs.
This means that the comparator is not required to generate
stochastic bitstreams, and a single MTJ can behave as an
analog-to-stochastic bit converter. The most straightforward
method of achieving this is to use the synchronous approach
described in Section II-C, and then to control PSW of the
MTJ with either the perturb pulse amplitude or duration.
Fig. 4(a) shows a circuit for an analog-to-digital converter
(ADC) based on the switching probability of an MTJ [65].
In this particular study, the stochastic bitstreams generated
from the analog voltage pulses were simply used to produce a
digital output, and no stochastic computation was performed.
However, it does demonstrate that the perturb pulse can be
tuned to generate stochastic bitstreams with a controllable
probability.
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FIGURE 3. Examples of MTJ-based approaches for true random number generation including (a) and (b) conditional perturb and real-time output
probability tracking and (c) and (d) digitally controlled probability-locked loop. (a) and (b) Extracted from [63]. (c) and (d) Extracted from [64].

FIGURE 4. Examples of MTJ-based analog-to-stochastic bitstream conversion circuits using synchronous methods. (a) Extracted from [65].
(b) Extracted from [66]. (c) Extracted from [67]. (d) Extracted from [29].

Other examples of MTJ-based stochastic bitstream gen-
erators are shown in Fig. 4(b)–(d). Fig. 4(b) shows
four-transistor, one-MTJ circuit used to generate stochastic
bits by applying a current slightly below the threshold cur-
rent [66]. In this circuit, no reset pulse is required; instead,
the transistors are used to alternate current directions every
clock cycle. The switching probability is controlled through
the frequency of the clock cycle. Fig. 4(c) converts an analog
signal from an image sensor to generate stochastic bitstreams
with a probability determined by the amplitude of the input
analog signal [67]. Unlike the approach in Fig. 4(b), this
method resets the MTJ back to the original state each cycle
through the erase line. Note that this approach can correct for
variability in theMTJs by introducing a calibration blockwith
a digital counter and a probability controller, which varies
the perturb pulse duration to achieve the desired probability.
Fig. 4(d) shows an MTJ-based, tunable SBG, where the write
and reset paths are separated using multiplexers [29]. In this
circuit, the write 0 path acts as the reset path by setting the
MTJ back to the P-state with 100% probability every cycle.
The write 1 path acts as the perturb path and sets the MTJ
to the AP-state with a probability determined by the voltage
amplitude.

C. SINGLE-BIASED sMTJs FOR
ASYNCHRONOUS METHODS
Superparamagnetic MTJs (sMTJs) are a promising solution
for generating stochastic bitstreams via asynchronous meth-
ods. They have the same behavior as the MTJs described
in Fig. 2(d)–(f), except to be considered superparamagnetic;
their1 values are ideally near 0. Two options in using sMTJs
for generating stochastic bits are as follows: 1) to tune the
output probability with a current or voltage to behave as an

SBG and 2) to generate signals with a fixed probability of 0.5,
so that the sMTJ behaves as a TRNG.

The most straightforward approach for using sMTJs as a
TRNG for is to tune the output signal to an average value of
0.5 using a bias voltage or current, and then reading the MTJ
state in recurring time increments. This strategy has been
tested experimentally and demonstrated [68], [69] that the
signals generated passed all of the NIST statistical test suite
randomness quality tests [70], which are used to determine if
a random signal satisfies cryptographic quality requirements.
Furthermore, sMTJ-based TRNGs have been demonstrated
in a Bayesian inference circuit for calculating e-mail spam
probability at nearly 100% accuracy rates [68].

TRNG circuits based on sMTJs consume less energy than
current CMOS-based circuits by nearly one order of magni-
tude [68]. However, the energy consumption can be reduced
even further by implementing a precharge sense amplifier
(PCSA) circuit [71], as shown in Fig. 5(a). In this design,
there are two PCSA circuits, one to control the clocking signal
(left) and the other to control the readout (right). Fig. 5(b)
illustrates how the signals generated from the sMTJ and the
clocking signal correspond to the output signal.

In addition to asynchronous RNGs, sMTJs can also be used
as key components for probabilistic bits (p-bits). Networks of
interconnected p-bits have been proposed to perform novel
computation functions, such as invertible Boolean logic [72],
[73], integer factorization [74], solving a set of expansion
functions [75], Bayesian inference [76], and combinatorial
optimization [77]. It should be noted that the circuits in
these studies are examples of Boltzmann’s machines, which
have different algorithms than SC-based circuits. However,
the functionality of the MTJ device is very similar to those
of asynchronous SC-based approaches, so they should be
mentioned.
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FIGURE 5. (a) sMTJ TRNG with two PCSA circuits for clocking and readout. (b) Time-domain signals generated from the sMTJ, the clocking signal, node
f in the circuit shown in (a), and the final output signal. Images were extracted from [71].

FIGURE 6. (a) Illustration of the evolution of the energy barrier between the AP- and P-states during the dual-biasing process. (b) Transfer properties of
dual-biased MTJs. (c) AP- and P-state components of the effective thermal stability factors calculated from the average AP- and P-state dwell times.
(d) General schematic for dual biasing on two MTJs connected in series for bipolar random number generation. (e) Time-domain signals generated.
(f) Average dwell times for +1 and −1 pulses and average bipolar value (average state) versus bias voltage for bipolar random signals. Plots shown in
(b) and (c) were extracted from [81], and plots shown in (d)–(f) were extracted from [83].

D. DUAL-BIASED MTJs FOR ASYNCHRONOUS METHODS
A major challenge for single-biased sMTJs in asynchronous
SC circuits is that their switching rate and transfer curves are

extremely sensitive to variations in device dimensions [78].
Previous studies have proposed one method of overcoming
these effects is via a ‘‘dual-biasing’’ method where tunable
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FIGURE 7. Switching probability versus (a) perturb pulse amplitude, (b) external magnetic field, and (c) pulsewidth, all showing a linear relation for
switching probabilities around 0.5. (d) Diagram of the arithmetic functions performed for a single-MTJ SC unit with V , H, I, and W as inputs. (e) Example
of a device level implementation with I, H, and W being determined by inputs A–C, respectively. All figures were extracted from [84].

random switching signals are generated in MTJs by utilizing
the effects of two biases. These studies have demonstrated
three key features of the dual-biasing method that make it
a promising solution for overcoming the effects of device
variations. One is that it can be used to generate stochastic
switching signals in thermally stable MTJs as well as sMTJs
[79]. Second is that the average switching rate of the signals
generated can be tuned by over four orders of magnitude and
reach switching rates above 1MHz [79], [80], [81]. The third,
and most unique, feature of dual biasing is that the two biases
can control the AP- and P-state dwell times separately, which
we refer to as two degrees of tunability, and implies that
the average output and average switching rate can be tuned
independently. The adverse impact of device variations can
be eliminated through dual biasing by either using thermally
stableMTJs, which aremore robust to device variations, or by
using sMTJs and adjusting the average switching rates in
the slower MTJs.

One way to implement the dual-biasing method is via
an external magnetic field (Hbias) and a dc voltage (Vbias),
where Hbias is set to favor the P-state and Vbias is set to
favor the AP-state, as shown in Fig. 6(a). This figure also
illustrates the mechanism for generating telegraphic signals,
which is the evolution of the energy barrier between the
AP- and P-states. In the P-state, the current through MTJ
from Vbias is larger than the current in the AP-state, meaning
that the influence of the STT effect is more significant in
the P-state. There are certain combinations of magnitudes of
Vbias and Hbias, where the MTJ is never in an energetically
favorable state, thus causing the MTJ to continuously toggle
between the two states. As with single-biased sMTJs, the
transfer properties of dual-biasedMTJs are determined by the

average resistance state versus Vbias, as shown in Fig. 6(b).
The difference is that the center and the width of the transfer
curve can be controlled with Hbias for dual-biased MTJs.
Fig. 6(c) demonstrates the two degrees of tunability capability
of dual biasing, where1AP is much more dependent on Hbias
than Vbias, whereas 1P is almost entirely dependent on Vbias
and not Hbias. This method of dual biasing has been used in
the first hardware demonstration of a p-bit-based invertible
AND gate [82].
A dual-biased MTJ behaves as a single, asynchronous

stochastic unit with a tunable output probability. However,
an asynchronous, TRNG can also be built through dual bias-
ing on two MTJs connected in series [83], as shown in
Fig. 6(d). Fig. 6(e) shows that this configuration generates
signals with three logic states, meaning that the numeric
output has bipolar representation (within a [−1, +1] range)
rather than unipolar representation (within a [0, +1] range).
Note that an output probability of 50% corresponds to a
bipolar value of 0.

Fig. 6(f) shows that at sufficiently large Hbias (20 Oe
in this example), the average dwell times for +1 and −1
pulses (TH and TL , respectively) are never equal for the entire
range of Vbias values tested. This shows that there are some
slight differences in the intrinsic properties of the two MTJs.
Despite these differences, Fig. 6(f) demonstrates that the
average bipolar output, 〈y∗〉, becomes fixed at zero over the
nearly entire Vbias range. Furthermore, nearly all the datasets
passed the standardized National Institute of Standards and
Technology Statistical Test Suite (NIST STS [70]). These
sets are labeled as ‘‘Bipolar RNG’’ in Fig. 6(f). The reason
that 〈y∗〉 becomes fixed at zero over a large range of Vbias
values and sufficiently large Hbias is due to the two degrees
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TABLE 1. Overview of all designs, methods, and applications for MTJ-based SC TRNGs or SBGs discussed in this article.

of tunability feature of dual biasing [83].
Bipolar encoding in SC enables efficient processing of a

broader range of arithmetic functions, such as scaled subtrac-
tion and hyperbolic tangent function [15]. Typically, bipolar
algorithms are still encoded using binary bits, where a binary
bit ‘‘0’’ represents a bipolar bit ‘‘−1.’’ This means that bipolar
encoding reduces the numeric resolution of the stochastic
bitstreams by one half [15]. The resolution can be improved
by doubling the size of the bitstreams; however, this would
unfortunately double the computation delay. The method
described in Fig. 6(f) and (g) can eliminate the need for this
trade-off between numeric resolution and computation delay,

since bipolar numbers are represented with three bipolar bits
rather than with binary bits. Furthermore, the two degrees of
tunability feature of dual biasing make this method robust
against device variations and ensure a high quality, random
signal under the proper biasing conditions.

E. MTJ SC UNIT
In Sections III-A–III-D, we illustrated howMTJs can be used
for TRNGs or SBGs for SC. In this section, we will describe
MTJ-based circuits can also perform SC functions [84], [85].
First, we will describe an approach based on the synchronous
method described in Section II-C, where a single MTJ can
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be used to perform stochastic multiplication and addition.
In this approach, the perturb pulsewidth (W ), perturb pulse
amplitude (V ), an external magnetic field (H ), and a dc bias
current (I ) are considered to be inputs, and PSW is the output.

Fig. 7(a)–(c) shows that PSW is linear with V , I , and H ,
respectively, when PSW is around 0.5. Furthermore, these
results showed that H at PSW = 0.5 and I at PSW = 0.5 were
linear. Note that V and W were kept constant. A similar
analysis was done for V and I , where V at PSW = 0.5 was
proportional to I at PSW = 0.5, while H and W were kept
constant. This implies that for switching probabilities around
0.5, PSW is proportional to V + H + I . These figures also
show that W affects the slope of PSW with V , H , and I ,
implying that PSW is proportional to W × (V + H + I ),
in the form of a mean value, digital sequence, as illustrated
in Fig. 7(d).

Fig. 7(e) shows an example of a device level implementa-
tion of this approach with input bitstreams A–C and output
bitstream P. Both bitstreams A and B are low-pass filtered;
however, A is fed directly to the MTJ in the form of a dc bias
current, whereas B is fed to the bottom bus line in the form of
an external bias field. Bitstream C is fed to a pulse generator
and controls either the pulse amplitude or pulsewidth applied
to theMTJ for each perturb cycle. The output bitstreamwould
have a probability that is proportional to the summation of
A–C multiplied by a fixed value determined by the pulsewidth
or it is proportional C × (A + B) with an additional
fixed term included in the sum determined by the pulse
amplitude.

Alternatively, stochastic computation can be performed
within the computational random access memory (CRAM)
array [85]. In this approach, simple Boolean logic is per-
formed in the CRAM array to perform arithmetic functions
on stochastic bitstreams [recall Fig. 1(a) and (b)]. Further-
more, this approach allows for stochastic bitstreams to be
generated within the CRAM array by adding a perturb step
where the input MTJs switch probabilistically prior to each
logic step.

IV. SUMMARY
In this article, we reviewed the literature published in recent
years where practical methods for random number generation
and stochastic-bit generation via MTJ-based hardware were
examined. Table 1 provides an overview of all the designs,
methods, and applications that were discussed in this article.
We discussed how true randomness can be achieved in MTJs
via synchronous or asynchronous methods. In either method,
MTJ-based circuits can be used to generate true random num-
bers where mean value is centered around 0.5 or 0 for random
numbers with bipolar representation, or to generate stochastic
bitstreams with a tunable output.While CMOS-based circuits
for random number generation are very expensive in terms of
hardware usage and energy consumption, MTJ-based circuits
provide a low-cost, energy-efficient solution for future hard-
ware implementation in SC algorithms.
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