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ABSTRACT A binarized neural network (BNN) accelerator based on a processing-in-memory (PIM)/
computing-in-memory (CIM) architecture using ultralow-voltage retention static random access memory
(ULVR-SRAM) is proposed for the energy minimum-point (EMP) operation. The BNN accelerator (BNA)
macro is designed to perform stable inference operations at EMP and substantive power-gating (PG) using
ULVR at an ultralow voltage (<EMP), which can be applied to fully connected layers (FCLs) with arbitrary
shapes and sizes. The EMP operation of the BNA macro, which is enabled by applying the ULVR-SRAM to
the macro, can dramatically improve the energy efficiency (TOPS/W) and significantly enlarge the number of
parallelized multiply–accumulate (MAC) operations. In addition, the ULVR mode of the BNA macro, which
also benefits from the usage of ULVR-SRAM, is effective at reducing the standby power. The proposed
BNA macro can show a high energy efficiency of 65 TOPS/W for FCLs. This BNA macro concept using the
ULVR-SRAM can be expanded to convolution layers, where the EMP operation is also expected to enhance
the energy efficiency of convolution layers.

INDEX TERMS Binarized neural network (BNN) accelerator, computing-in-memory (CIM), energy
minimum-point (EMP) operation, power-gating (PG), processing-in-memory (PIM), static random access
memory (SRAM).

I. INTRODUCTION

IN FUTURE smart society, artificial intelligence (AI)
technology becomes more important not just for cloud

computing systems but for mobile-edge computing devices.
In particular, the demands for the mobile-edge AI technology
would be further expanded. This is because the usage of a
cloud-based AI system for mobile-edge applications causes
unwanted not sufficiently short latency for data-processing
owing to communication between them, and also the mobile-
edge devices would be frequently used in situations uncon-
nected to the cloud-based AI system. The mobile-edge AI
technology can broaden a range of AI applications owing to
the portability.

For these mobile-edge applications, energy-efficient low-
power design of AI systems is indispensable. Neural network
(NN) accelerators are promising for implementing mobile-
edge AI systems [1]. Performances of NN accelerators,
such as their processing performance (TOPS) and energy

efficiency (TOPS/W), can be improved from the point of view
of their hardware and/or architecture.

On the hardware of NN accelerators, a system organization
based on the processing-in-memory (PIM) methodology has
attracted considerable attention [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11]. This new type of computing paradigm is also
called computing-in-memory (CIM) and can trace history
back to a memory-based architecture named as ‘‘functional
memory’’ [12]. Hardware implementation of NNs has been
an important target for functional memory since that time.
In this article, the term PIM is mainly used.

PIM/CIM can be broadly defined as a computing
hardware/architecture that performs data processing inside
the memory subsystem. In this type of hardware for NN
accelerators, the multiply–accumulate (MAC) unit is placed
in/near memory arrays, and the data retrieved from the mem-
ory array are directly processed without transferring them
through a bus. Therefore, the PIM-type hardware is effective
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at improving the energy efficiency. In addition, the PIM
structure can effectively parallelize the MAC operations in
NNs without the constraint originating in bus usages.

The architecture implementing NNs is also important for
processing and energy performances of NN accelerators.
Binarized NNs (BNNs) are a promising architecture [5], [6],
[7], [8], [9], [10], [11], which uses single-bit activations
and also restricts each weight in the network to a single
bit. The BNN architecture results in significant reduction in
the memory capacity for the weight data. In addition, the
binary weight data can be read out fast with lower power
consumption. The low memory capacity is also beneficial to
suppress the standby power.

The BNN architecture can simplify the MAC operations
at each neuron node, where the MAC operations can be
replaced by the XNOR and population count (PPC) opera-
tions, respectively. This contributes to significant reduction
in the power consumption and circuit area of the MAC unit.
The simple MAC unit is also preferable to parallelization of
the MAC operations. The above-described features on the
binary activations and weight data are highly promising for
improving the energy efficiency of NN accelerators. Note that
the BNN architecture has many types of variations, some of
which can achieve relatively high accuracy despite the binary
activations and weight data, such as XNOR-net [13], [14].
The PIM-type NN accelerators would be a suitable hard-

ware for implementing the BNN architectures. Hereafter,
BNN accelerators are referred to as BNAs. In general, the
energy efficiency of NN accelerators can be enhanced by
reducing the driving voltage [7], [8], [9], [10]. In par-
ticular, the energy minimum-point (EMP) operation hav-
ing the maximum energy efficiency is promising [15].
In BNAs, owing to the simplified MAC circuits, the energy
performance of the on-chip memory strongly affects their
energy efficiency. Thus, for PIM-type BNAs, the EMP oper-
ation of the memory becomes an important challenge. More-
over, for mobile-edge applications, the implementation of
power-gating (PG) is also demanded. Most of the area of
PIM-type BNAs is occupied by their memory array, and thus
the standby power generated by data retention needs to be
diminished. Therefore, both the EMP and PG operations of
on-chip memory have a great impact on implementation of
PIM-type BNAs, although to achieve both the requirements
is not easy for any on-chip memory.

It is worthy to note that the EMP operation is also effective
at achieving a high degree of parallelization of theMAC oper-
ation. The processing performance (TOPS) can be enhanced
by parallelization of the MAC operation. The allowable num-
ber of parallelized MAC operations is restricted by the total
power consumption of the simultaneously executed MAC
operations. The EMP operation can dramatically lower the
active power required for the MAC operation, enlarging
(maximizing) the number of parallelized MAC operations.

NN accelerators can use a fixed or reconfigurable net-
work structure, which also becomes an important factor
for their power and energy performances. Since the main

target of mobile-edge AI applications is considered to be
for image/biological cognition and the related field, fixed-
structure networks that are beneficial for lower power/energy
consumption can be applied to NN accelerators. From work-
load (that may be extended into multiple ones) for the appli-
cations, the required network structure can be predetermined
using simulation, which can be implemented as a fixed
network structure. This methodology without the usage of
redundant reconfigurable network structures is effective for
low-power energy-efficient NN accelerators. When weight
data can be updated and the network structure can have some
margin, there is some degree of freedom of the substantive
network structure even for the fixed-structure network. The
fixed-structure network approach is promising for mobile-
edge NN accelerators, which also allows PIM-type NN accel-
erators to be configured with multiple small-scale macros.

In this article, a PIM-type BNA macro using ultralow-
voltage retention static random access memory (ULVR-
SRAM) is proposed for the EMP and PG operations, and
its design and performance are demonstrated. The ULVR-
SRAM is a new type of SRAM having both the EMP and PG
operation abilities. The BNA macro is simply configured by
adding a MAC unit to an ULVR-SRAM array designed with
careful consideration of statistical variation in the constituent
devices. Fully connected layers (FCLs) with arbitrary shapes
and sizes can be configured using the multiple BNA macros
with tiny additional peripherals. The impact of the EMP
operation on energy efficiency and the substantive PG exe-
cution using the ULVRmode on the standby power reduction
are analyzed from postlayout large-scale simulations. Perfor-
mances of FCLs configured with the multiple BNA macros
are discussed. The concept of the ULVR-SRAM-based BNA
macro can also be applied to convolution layers.

The important and fascinating results of our work are as
follows: the EMP operation of the proposed PIM-type BNA
macro, which is enabled by applying the ULVR-SRAM to
the macro, can dramatically improve the energy efficiency
(TOPS/W) and significantly enlarge the number of paral-
lelized MAC operations. In addition, the ULVR mode of the
BNA macro, which also benefits from the usage of ULVR-
SRAM, is effective at reducing the standby power. From these
features, the proposed macro is promising for mobile-edge
BNAs.

II. RELATED WORK
In this section, related work on several types of memo-
ries used for PIM-type NN accelerators is briefly reviewed.
For PIM-type NN accelerators, there are several variations
that can be roughly classified by the type of on-chip
memory used in them. SRAMs (that often have modi-
fied structures suitable to NN accelerator architectures) and
emerging nonvolatile memories (NVMs), such as resistive-
switching random access memory (ReRAM), phase-change
random access memory (PRAM), and magnetoresistive ran-
dom access memory (MRAM), have been investigated for
PIM-type NN accelerators [3], [4], [5], [6], [7], [8], [9], [10].
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NVMs are highly effective at reducing the standby power
of PIM-type NN accelerators. Their smaller cell sizes are
also beneficial. Nevertheless, higher energies required for
the write operation would restrict their applications. Namely,
these NVMs are suitable for NN accelerators for exclusive
use of inference. Also, the EMP operation might be difficult
(which could be caused by the peripheral circuits) [16]. Fur-
thermore, the embedded technology of NVMs costs a lot.

SRAMs are useful to implement PIM-typeNN accelerators
owing to the sophisticated design methodology, accumulated
design technologies, and excellent compatibility to CMOS
logic circuits/processes, although the area overhead is not so
small. Recently, SRAM-based PIM-type NN accelerators are
commercially available. In general, the energy efficiency of
SRAM-based PIM-type NN accelerators can be enhanced by
reducing the driving voltage. Nevertheless, the conventional
6T cells are difficult to reduce it to the EMP voltage that gives
the maximum energy efficiency. This is because the 6T cells
cannot ensure sufficient noise margins at such lower voltages.
Therefore, specially designed cells such as isolated read port
cells and Schmitt trigger (ST) cells [17], [18] can be applied
to EMP operation NN accelerators. However, their volatile
nature prohibits implementation of PG to NN accelerators for
standby power reduction.

Recently, fully CMOS-based ULVR-SRAM has been pro-
posed [19], [20], which can have three operating modes,
i.e., the retention mode at an ultralow voltage VUL such
as 0.2 V (hereafter, referred to as the ULVR mode), the
SRAM-operating mode at the EMP voltage VEMP (referred
to as the SRAMEMP mode), and the normal SRAM-operating
mode at the ordinary supply voltage VDD (referred to as the
SRAMNormmode). TheULVR-SRAMcell is configuredwith
ST-based dual-mode inverters, which is designed so as to have
strong noise immunity for the ULVRmode. During theULVR
mode, the dual-mode inverters in the cell act as an ST inverter
having rectangular-shaped transfer characteristics with wide
hysteresis, and thus the ULVR-SRAM cell can stably retain
data even at VUL (=∼0.2 V). Since the ULVR mode can
effectively reduce the standby power [20], substantive PG
using the ULVR mode can be achieved. This ST mode of the
dual-mode inverters can also be applied to the stable energy-
efficient SRAMEMP operation. Namely, the ST mode enables
the cell to ensure sufficient noise margins for the SRAM
operations even at VEMP. The SRAMNorm operation can be
performed using the normal inverter mode of the dual-mode
inverters. High-performance SRAM operations comparable
to the conventional 6T-SRAM operations can be achieved at
the ordinary supply voltage VDD (VUL < VEMP < VDD)
[20]. Therefore, ULVR-SRAM is promising for PIM-type
NN accelerators. The SRAMEMP mode is highly beneficial
not just to enhance energy efficiency but also to enlarge par-
allelized MAC operations. The ULVR mode can effectively
reduce the standby power through substantive PG operation.

In our previous paper [20], the ULVR-SRAM cell
was designed to achieve the two-mode operations of the
SRAMNorm and ULVR modes, particularly to achieve

FIGURE 1. (a) Circuit configuration of the ULVR-SRAM cell with
power and control switches. (b) Block diagram of the
ULVR-SRAM subarray.

efficient standby power reduction during the ULVR mode.
Thus, this cell used the header and footer power switches
(HFPSs). The HFPS configuration can easily introduce the
automatic body bias control during the ULVR mode, which
can enhance leakage power reduction. However, using this
cell architecture, to achieve the three-mode (SRAMNorm,
SRAMEMP, and ULVR) operations causes difficulty in hard-
ware implementation that required many power rails with
complex power switch control (the details are shown in Sec-
tion B of the supplementary material). In this article, the
ULVR-SRAM cell is redesigned so as easily to achieve the
EMP operation. The power switch configuration is changed
from HFPSs to header power switches (HPSs), and automatic
body bias control is not used. Design of this new type of
ULVR-SRAM with three-mode operations and performance
of the proposed EMP-BNA macro using it are demonstrated.

III. PROPOSED BNA MACRO
A. ULTRALOW-VOLTAGE RETENTION SRAM
Fig. 1(a) shows the circuit configuration of the ULVR-
SRAM cell that consists of the dual-mode inverters with
the pMOS feedback transistors (FBTs) [20]. The storage
nodes are denoted by Q and Q′ in the figure. The power
switch organization is also shown in the figure. The virtual
supply voltage (VVDD) is supplied using the HPSs (PScell1 ,
PScell2 , and PScell3 ) with three power rails of VDDH (=1.2 V),
VDDM (=0.4 V), and VDDL (=0.2 V). During the SRAMNorm,
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SRAMEMP, and ULVR modes, VVDD is set to VDDH, VDDM,
and VDDL, respectively. The bias VFB of the FBTs is con-
trolled by the control switches (CSs) CScell1 and CScell2 . VFB is
set to VFBM (=0.4 V) for the SRAMEMP mode and to VFBL
(=0.2 V) for both the SRAMNorm and ULVR modes [20].
As (VVDD, VFB) = (VDDH, VFBL), the dual-mode inverters
in the cell operate with the normal inverter mode, and thus
the SRAMNorm operation can be achieved. For the conditions
of (VVDD, VFB) = (VDDM, VFBM) and (VDDL, VFBL), the
dual-mode inverters act as ST inverters. Thus, even at lower
voltages of VVDD = VDDM (=VEMP) and VDDL (=VUL),
the cell can perform stable SRAMEMP and ULVR operations
owing to the strong noise immunity for the ST mode. The
SRAMEMP mode can exhibit the highest energy efficiency.
Also, the ULVR mode can be used as substantive PG and
effectively diminish the standby power. Note that hardware
implementation only for the two-mode operations with the
SRAMEMP andULVRmodes (without the SRAMNorm mode)
can be achieved by directly connecting the VFB terminal of
the FBTs to the VVDD rail. Also note that although general
ST cells have nMOS FBTs, the pMOS FBTs of the ULVR-
SRAM cell are more beneficial for reducing the cell area
and enhancing the noise margins at lower voltages [20].
Thus, even for exclusive use of two-mode operations with
the SRAMEMP and ULVR modes, the ULVR-SRAM cell is
advantageous compared with general ST cells.

Fig. 1(b) shows the block diagram of the ULVR-SRAM
subarray used for the proposed BNA macro. The macro is
configured with four memory subarrays and peripheral cir-
cuits. The memory capacity of the macro is 8.25 kB, which
is organized for 256 × 256 b weight data and 256 × 8 b bias
data. The bit-width for the readout is 264 b, i.e., 256 b weight
and 8 b bias data can be simultaneously read out.

The rails of VV cell
DD ,VV

PC
DD, and VV peri

DD are separately
arranged for the cell array, the precharge circuits, and the
other peripherals, respectively, to individually analyze the
power characteristics of these circuit blocks. The VV PC

DD rails
are also used for voltage control of the bit lines (BLs) during
the ULVRmode. Note that in practical implementation of the
macro, these rails can be appropriately merged.

These virtual supply voltages are controlled using the
power switches PSβα (β = cell, PC, peri; α = 1–3 for
β = cell, PC; α = 1, 2 for β = peri), as shown in the figure.
Using PScell1 –PScell3 , one of the supply voltages VDDH, VDDM,
and VDDL is selected for VV cell

DD . The same means is used for
VV PC

DD. VV
peri
DD is supplied from VDDH or VDDM using PSperi1

and PSperi2 (i.e., VDDL is not used for the peripherals except
the precharge circuits). VFB is controlled using CScell1 and
CScell2 with the power rails VDDM and VDDL. The body bias
connections of these PSs and CSs are shown by the dotted
lines in Fig. 1(b). These connections can effectively suppress
back-flow currents from the VDDH to the VDDM/VDDL rail
during the shutoff phases of these PSs. Note that although the
body bias effect lowers the threshold voltages of PScell2 , PSPC2 ,
and CScell1 during the ULVR mode, the unwanted leakage

TABLE 1. Operating conditions.

current flows are negligible owing to the small difference
between VVDD (VDDL) and VDDM.

Table 1 shows the bias conditions of the PSs and CSs for all
the operation modes. The modes SB1 and SB2 represent the
standby states without and with clock-gating, respectively,
where the BL rails are precharged (clock-driven) to VV PC

DD
and floating, respectively. The BLs during the ULVRmode is
charged to 0.2 V, which can effectively suppress leakage cur-
rents through the pass transistors during theULVRmode [20].
Other notes forVVDD control are described in Section E of the
supplementary material.

B. BNA MACRO USING ULVR-SRAM
Fig. 2(a) shows a network structure having FCLs that can be
configured with the proposed BNA macros. Let n and m to
be the numbers of neuron nodes in each layer and of layers,
respectively. x(j−1)i and x(j)i (i = 1, . . . , n, j = 0, . . . ,m)
represent the elements of input and output vectors for the
jth layer, respectively, and w(j)

ii′ (i, i
′
= 1, . . . , n) and b(j)i

(i = 1, . . . , n) are the weight and bias data for the jth layer,
respectively. The elements of the input and output vectors for
each layer and the weights have single-bit binary value, and
the bias data are integer. The MAC operations can be carried
out through the n-to-1 connections in the network, such as the
red, blue, and green lines shown in Fig. 2(a).

In this article, an ULVR-SRAM-based PIM-type BNA
macro that can achieve the three-mode operations based on
the SRAMNorm, SRAMEMP, and ULVRmodes of the ULVR-
SRAM is demonstrated. Fig. 2(b) shows the block diagram of
the BNA macro that consists of the ULVR-SRAM array and
a MAC unit with the output generation circuits (activation
(ACTV) circuit and output latch). The ULVR-SRAM array
has the memory capacity of 8.25 kB for weight and bias
data, as noted above. The MAC unit is simply configured
with XNOR gates and an adder tree PPC circuit [7], [8], [9],
[10], [11]. The ACTV circuit is a simple adder (with the
carry-out port) for MAC results and bias data. The macro can
simultaneously read 256 b weight data stored in it and operate
MAC calculations for these weight data and a 256 b input
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FIGURE 2. (a) Structure of an FCL network. (b) Block diagram of
the BNA macro. CScell

α and PSPC
α are not shown in this figure.

The region enclosed by the dashed lines represents the circuit
block where VVperiDD is supplied.

vector. Namely, a single FCL with n′ = 256 (n′ represents the
number of neuron nodes in a single macro) can be configured
using a single macro. The elements (x(j−1)1 , . . ., and x(j−1)n′ )
of an input vector are XNORed with the weights (w(j)

u1, . . .,
and w(j)

un′ ) for a single neuron node (for x(j)u ) and then the
population of ‘‘1’’ in the results is counted using the PPC
circuit. At this stage, the MAC result is integer. After adding
8 b bias data (that are also stored in the memory array of
the macro) to the integer MAC result in the ACTV circuit,
the activation (firing) is judged by the most significant bit
(MSB) of the final result, i.e., the neuron is activated when
there exists the carry flag. The activation result returns to a
single-bit binary value.

The XNOR, PPC, and ACTV circuits share the PSs and
VV peri

DD rail for the peripheral circuits of the ULVR-SRAM
array, as shown in Fig. 2(b). Based on the operating modes of
the ULVR-SRAM, the BNAmacro can perform the inference
operations at VDD and VEMP (hereafter, referred to as the
INFERNorm and INFEREMP modes, respectively) and the

TABLE 2. Design of the ULVR-SRAM cell.

ULVR operation at VUL. These operating states are controlled
by the PSs and CSs, as shown in Table 1. Note that the
BNAmacro is used for the inference operationwith updatable
weight data.

An FCL with arbitrary neuron numbers can be imple-
mented by the multiple BNA macros with additional periph-
erals (adders and output latch), as described in Section V
(also see Section G in the supplementary material). These
additional peripherals circuits can be synthesized computa-
tionally so as to adapt its network structure. Note that in
general, the logic blocks synthesized using standard cells
would perform the EMP operation (except SRAM circuits).
However, design refinement could be required for the various
timing conditions and resulting operating frequency depend-
ing on the scale of the network (particularly, adjustment of
the drivability of buffers becomes important). Also note that
it can be considered to use reconfigurable hardware for the
additional peripherals. Generally, reconfigurable peripherals
require the large area and power overhead due to their redun-
dant configuration. Therefore, in this article, the multiple
BNA macros with custom-synthesized additional peripherals
are supposed for implementation of FCLs with arbitrary neu-
ron number.

The BNA macro concept can be expanded to convolution
layers. Namely, convolution layers can also be configured
with ULVR-SRAM-based macros having memory capacity
adopted to the size and number of kernels and appropriately
modified MAC units for kernels, which can introduce the
EMP operation to convolution layers.

IV. DESIGN AND PERFORMANCES OF BNA MACRO
A. ULVR-SRAM DESIGN
In Sections IV and V, the operations in the SRAMM mode
(M = EMP, Norm) are denoted by READM, WRITEM, and
SBM, in which SBM represents the standby retention (HOLD)
mode. Note that the cell operations of the SRAMNorm and
SRAMEMP modes are based on the normal inverter mode at
VVDD = VDDH (=1.2 V) and the ST mode at VVDD = VDDM
(=0.4 V), respectively.
In this study, the low-power devices of the 65-nm silicon

on thin buried oxide (SOTB) technology were used [21].
A methodology described in [20] was used for the ULVR-
SRAM cell design. Namely, the cell was designed so as to
ensure sufficient noise margins for the EMP-operating mode
and also the ULVRmode (see Section C in the supplementary
material).

Table 2 shows the design result for the ULVR-SRAM
cell with the HPS configuration. Note that this design result
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FIGURE 3. CDF of the QSNM distributions for the ULVR-SRAM
and 6T-SRAM cells in the ULVR and READEMP modes. The solid
and dotted curves with the filled and open circles represent the
operating temperatures of 25 ◦C and 85 ◦C, respectively. The
dashed line represents the 6σ failure probability. The number of
trials for each Monte Carlo simulation is 100 000.

differs from the design for the ULVR-SRAM cell with the
HFPS configuration [20]. The HPS configuration cell has a
larger driver size (WDRV) than the HFPS-configuration cell,
resulting in sufficiently high noise margins comparable to the
HFPS-configuration cell.

The ULVR-SRAM cell was laid out based on the logic
design rule [since the SRAM design rule was unavailable
for our used process design kit (PDK)]. From the size of
the PDK-provided 6T cell (designed with the SRAM design
rule), the area overhead for the ULVR-SRAM cell can be esti-
mated. For the 6T cell, the logic design rule causes 2.4 times
larger layout than the SRAM design rule. For the logic design
rule, the ULVR-SRAM cell has 1.8 times larger layout than
the 6T cell. Thus, the ULVR-SRAM cell layout using the
logic design rule is 4.2 times larger than the 6T cell layout
using the SRAM design rule. Nevertheless, assuming that
the SRAM design rule is used for the ULVR-SRAM cell, its
layout can be estimated to be ∼1.8 times larger than that of
the 6T cell using the SRAM design rule.

Using the Monte Carlo simulations, the cell design was
verified from noise immunity under the random local vari-
ation in the constituent devices. The details of the Monte
Carlo simulations were described in [20]. Fig. 3 shows the
cumulative distribution function (CDF) for the quasi-static
noise margin (QSNM) distribution of the cell during the
ULVR and READEMP modes at 25 ◦C. The results for a
conventional 6T cell are also shown in this figure as a
reference (the 6T cell was designed by reference to [22]).
The data (filled circles) were fit by the superposition (solid
curves) of several Gaussians. The CDF tails for the ULVR-
SRAM cell can satisfy the 6σ failure probability for both the
READEMP and ULVR modes. On the other hand, the 6T cell
cannot satisfy this criterion for both the READEMP andULVR
modes. Note that the ULVR-SRAM cell can also satisfy the
6σ failure probability criterion for both the READEMP and
ULVR modes even at 85 ◦C, as shown by the open circles
with the dotted fitting curves in the figure.

FIGURE 4. CDF of the VVDD-noise-induced DNM distributions for
the ULVR-SRAM and 6T-SRAM cells. The dashed line represents
the 6σ failure probability. The number of trials for each Monte
Carlo simulation is 100 000.

FIGURE 5. Layout of the ULVR-SRAM-based PIM-type BNA
macro.

The noise immunity for VVDD rail was also analyzed from
dynamic noise margins (DNMs) using the Monte Carlo sim-
ulations with careful consideration of local variation in the
constituent devices. Fig. 4 shows the CDF for the DNMs of
the ULVR-SRAM cell during the ULVR mode, where the
noise pulse widths tN of 10 ns, 100 ns, and 1 µs are examined.
The cell sufficiently satisfies the 6σ failure probability even
for longer pulse widths. In the figure, the CDF of the 6T cell
is also shown. The 6T cell cannot ensure sufficient DNMs for
the 0.2 V retention mode (i.e., the 6T cell cannot satisfy the
6σ failure probability). The ULVR-SRAM cell also has high
immunity for power rail noises.

B. MACRO DESIGN
The PIM-type BNA macro was designed using the above-
described ULVR-SRAM cell (see Table 2). Fig. 5 shows the
layout of the designed BNA macro. The memory decoder,
XNOR, PPC, and ACTV circuits were computationally syn-
thesized and laid out. These circuits were configured with
high threshold voltage (HVT) devices, while the clock drivers
and the FFs for the address latch were configured with low
threshold voltage (LVT) devices. The MAC unit was con-
figured with XNOR gates and an adder-tree-type PPC circuit,
and the ACTV unit is organized using an adder circuit. The
simple latch-style sense amplifiers and the other peripherals
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(write driver, precharge driver, and selector) for the memory
array were custom-designed using HVT devices. Note that
the delay circuit for the sense amplifiers was designed to
ensure secure sensing operations at 1.2 and 0.4 V.

The threshold voltages of the HVT devices are slightly
higher than those of the LVT devices (∼0.05 and ∼0.1 V
higher for the nMOS and pMOS devices, respectively), and
thus the HVT devices allow to perform the near-threshold
voltage (NTV) operation for logic circuits synthesized using
the standard cells without anymodification. TheHVTdevices
were effective at reducing the power consumption of the
peripherals, resulting in enhancing the energy efficiency of
the BNA macro. When the LVT devices were used for the
peripherals, the highest energy efficiency of the macro was
58 TOPS/W. Using the HVT devices for the peripherals, the
energy efficiency can be improved to 65 TOPS/W, as dis-
cussed later. The designs of the power switches are described
in the supplementary material (see Section D).

The computationally synthesized XNOR, PPC, and ACTV
circuits occupy 12% of the total area of the macro, i.e., the
area overhead from the ULVR-SRAM array is only 12%. The
maximum operating frequency of 620 MHz can be achieved
at 1.2 V. The main limiting factor is the memory decoder
synthesized computationally. Note that the designed cell has
the ability to operate with higher than 1 GHz at 1.2 V. The
macro can successfully operate with 32 MHz even at 0.4 V,
as shown later.

A PIM-type BNA macro using a 6T-cell array (hereafter,
referred to as a BNA6T macro) was also designed for compar-
ison. The BNA6T macro was simply organized by replacing
the ULVR-SRAM cells with the 6T cells without changing
the array area for simplicity. The peripherals of the cell array
and the XNOR, PPC, and ACTV circuits for the BNA macro
were diverted for the BNA6T macro (where the circuits for
VDDM and VFB were omitted). The low-voltage retention
(LVR) mode at VDDL = 0.65 V [17] was used for the BNA6T
macro instead of the ULVR mode, since the 6T cell cannot
achieve sufficient noise immunity at 0.2 V, as described
above.

C. POWER AND ENERGY PERFORMANCES
The standby power of the BNA macro was analyzed. The
SBM

1 , SBM
2 (M=Norm, EMP), and ULVRmodes are applied

to the cell array and the SBM
1 , SBM

2 , and shutdown (SD)
modes to the peripherals. The conditions of (cell array,
peripheral) = (SBM

1 , SBM
1 ), (SBM

2 , SBM
2 ), (SBM

2 , SD), and
(ULVR, SD) are examined (the details for these modes are
shown in Table 1). The average power for the clock cycle
at the maximum frequency (discussed later) and the leakage
power for the steady-state are analyzed for the SBM

1 and
SBM

2 modes, respectively. For the following power/energy
analyses, the cell array stores data so that 50% of the Q nodes
are in the H level and the others in the L level.

Fig. 6 shows the standby power of the BNA macro for
the various states described above. The results of the BNA6T

FIGURE 6. Standby power of the proposed BNA and BNA6T
macros.

macro are also shown in the figure. By introducing clock-
gating from the (SBNorm

1 , SBNorm
1 ) state, both the macros at

the (SBNorm
2 , SBNorm

2 ) state can effectively reduce the standby
power by ∼90%. The standby power during the (SBNorm

2 ,
SBNorm

2 ) mode can be attributed to the leakage currents of
the constituent transistors. In the (SBNorm

2 , SBNorm
2 ) state,

the standby power of the BNA macro can be reduced than
that of the BNA6T macro, owing to the effect of the stack-
ing driver transistors of the cell. At the (SBEMP

2 , SBEMP
2 )

state, the BNA macro can reduce the standby power by 53%
from the (SBNorm

2 , SBNorm
2 ) state. The standby power can

be further reduced by shutting down the XNOR/PPC/ACTV
circuits with the peripheral circuits of the cell array. Using
the ULVR mode for the cell array, the BNA macro can
reduce the standby power by 84% and 65% from its (SBNorm

2 ,
SBNorm

2 ) and (SBEMP
2 , SBEMP

2 ) states, respectively. Thus, the
substantive PG using the ULVR mode can be achieved. Note
that the break-even time (BET) is estimated to several µs or
less (0.82–2.9 µs), which can allow fine-grained substantive
PG [20] using the ULVR mode. The details are shown in the
supplementary material (see Section F). The BNA6T macro
reduces the standby power by only 65% from the (SBNorm

2 ,
SBNorm

2 ) state using the LVR mode. Considering the replace-
ment of the 6T-SRAM array with the ULVR-SRAM array, the
BNA macro enables it to reduce the standby power by 93%,
as shown in the figure.

Fig. 7 shows themaximumoperating frequency fm, average
active power Pavg, and cycle energy Ecyc of the BNA macro
for the inference mode as a function of VDDM, in which
fm is for the slowest process corner variation condition and
Ecyc and Pavg are for the typical process corner variation
condition (the details of the corner variations are described
in Section C of the supplementary material). In the BNA
macro, the cycle duration of an inference operation is defined
for serially executed weight read, XNOR, PPC, and ACTV
operations. Ecyc and Pavg are averaged over several tens of
cycles of the inference operation. For the XNOR operations,
randomly generated weight data are used for simplicity.
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FIGURE 7. Average active power Pavg, operating frequency fm,
cycle energy Ecyc, and energy efficiency η as a function
of VDDM.

Ecyc is minimized at VDDM = 0.4 V, i.e., VEMP = 0.4 V.
At this minimum point, Pavg is largely reduced by 1/99 in
comparison to the case of VDDM = 1.2 V, while fm is
degraded only by 1/19. This feature is highly effective at par-
allelizing MAC processing, as shown later. The energy effi-
ciency η (TOPS/W) of the BNA macro is also shown in Fig.
7. η varies depending on VDDM and reaches a peak at 0.4 V
(=VEMP), resulting in an energy efficiency of 65 TOPS/W.
This value is seven times higher than that of the normal
voltage (1.2 V) case.

V. PERFORMANCE FOR PARALLELIZED
MAC OPERATIONS
In general, the allowable number of parallelized MAC oper-
ations for NN accelerators is restricted by their total power
consumption. The INFEREMP operation of the proposed
BNAmacro can drastically reduce the active power, as shown
in Section IV, and thus the INFEREMP operation allows the
macro to enlarge the degree of MAC parallelization. The
parallelization can be achieved by simultaneously process-
ing MAC operations for multiple n-to-1 connections. For
instance, the MAC processes shown by the red, blue, and
green lines in Fig. 2(a) are simultaneously carried out. Here-
after, this type of parallelization is referred to as in-layer
parallelization (ILP).

Fig. 8 shows a macro-based implementation structure of
a single FCL using the multiple BNA macros. In the fig-
ure, the layer with 1024 neuron nodes consisting of 4 ×
4 macros is shown as an example. The weight matrix [w(j)

ii′ ]
and the bias vector [b(j)i ] are divided so as to adapt to the
memory capacity of the macros and these divided matrices
and vectors are divisionally stored in every macro. The input
vector x(j−1) = t [x(j−1)1 · · · x(j−1)n ] is also divided to X (j−1)

u .
These are divisionally inputted to the corresponding macros.
In this configuration, the constituent macros can output their
MAC results before activation [also see Fig. 2(b)], and these
outputs are summed up using the additional adders, as shown
in the figure. Then, each activation can be obtained by the
MSB of the corresponding sum (which is given by the carry
of the additional adder). Thus, essentially, the macro-based

FIGURE 8. Macro-based implementation structure of a single
FCL with 1024 neuron nodes. Also see Section G in the
supplementary material for the notations.

implementation can be achieved by the multiple BNAmacros
and additional adders. Section G in the supplementary mate-
rial describes the detailed organization method. Hereafter,
an FCL configured with N × N macros is considered.
As clearly shown in Fig. 8, the macro-based implemen-

tation structure can also have parallelized MAC processes
for a single neuron node (see the MAC processing along the
v-direction in Fig. 8). This type of parallelization is referred
to as in-node parallelization (INP). The above-described ILP
corresponds to theMAC processing along the u-direction. Let
NILP and NINP to be the numbers of ILP and INP operations,
respectively. The total numberNP of parallelizedMACopera-
tions is given byNP = NINP×NILP. Note that the BNAmacro
having the single MAC unit can achieve the parallelization of
(NILP, NINP) = (N , N ), as shown in Fig. 8. Namely, in this
case, the maximum value of NP is N 2. For NINP > N or
NILP > N , the macro needs to have multiple MAC units.
Nevertheless, the BNA macro requires no multiport cell for
the parallelization. Since weight data stored in the cell array
are sequentially read out, adding multiple BLs and modifying
the connections enable the single-port cells to multiplex the
readout operations. Other notes for the macro-based BNA
implementation are described in Section H of the supplemen-
tary material.

Fig. 9(a) shows the computation sequence of a single layer
in the FCLs shown in Fig. 2(a), which can be configured
with the multiple BNA macros, as shown in Fig. 8. Assume
that the number of neuron nodes in each layer is n (>n′).
When the constituent macros are operated one by one with-
out any parallelization of the MAC operations, the MAC
operations for an n-to-1 connection are divided into the
N -part processes, which are carried out in series (along the
v-direction in Fig. 8). Namely, for everymacro arranged along
the v-direction, divided weight and bias data are read out, and
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FIGURE 9. (a) Computation sequence of a single layer in an FCL
network. (b) Computation sequence of the FCL network.

then the MAC operation is carried out with the divided input
vectors using the XNOR and PPC operations. TheMAC results
of all the macros arranged along the v-direction are summed
up. The MSB of the summed result gives the output (activa-
tion) for the n-to-1 connection. The outputs for 256 nodes can
be obtained from a single column of macros arranged in the v-
direction. By executing sequentially these operations for the
other macro columns, the outputs for all the neuron nodes can
be obtained. The output vector is latched as the input vector
for the next layer. Let T0 to be the cycle time for the operations
generating an output vector. The INP and ILPMAC processes
can shorten T0, which are executed for the macros arranged
along the v- and u-directions, respectively. T0 can be roughly
reduced by a factor of ∼1/(NINP × NILP).

Fig. 9(b) shows the computation sequence of the FCL
network consisting of m n-node layers, where the layer pro-
cess shown in Fig. 9(a) is simply represented by the thick
horizontal line. The above-described output vector generation
operation is carried out from the first to the mth layer in
series. The jth layer can serially process input vectors x(j−1)α =
t [x(j−1)α1 · · · x(j−1)αn ] (α = 1, . . . , k) for every T0. Hereafter, the
number of input vectors is denoted by k , and the symbols of
physical quantities for the macro are represented by adding
prime. Also, assume that n and n′ can be expressed as a power
of two for simplicity (e.g., n = 210 and n′ = 28).
The above-described cycle time T0 and the total time Ttot

for completing the operations for all the input vectors are
given by

T0 =
N 2n′/NP + nCO

f
=
Nn/ (NINPNILP)+ nCO

f
(1)

Ttot = (k+m−1)T0=
(k+m−1) [Nn/ (NINPNILP)+ nCO]

f
(2)

FIGURE 10. TOPSMP
FCL, P

MP
FCL, and ηMP

FCL as a function of m for the
FCL networks with n = 1024.

respectively, where f is the operating frequency, and nCO is
the cycle overhead factor caused other than the MAC oper-
ation such as output latch (in this article, nCO = 2 is used).
N can be written as N = n/n′. The processing performance
TOPSFCL (Tera operations per second) of the FCL network
can be written as

TOPSFCL =
2n2mk

(k + m− 1)T0
. (3)

Assuming that NILP ≥ N and NINP ≥ N , the average power
PFCL of the entire network is given by

PFCL =
mkNINPNILPP′avg + mN

2 (m− 1)P′L
k + m− 1

(4)

where P′avg and P′L is the average active power and standby
(leakage) power of the BNA macro, respectively. PFCL for
the other conditions for NILP and NINP are described in the
supplementary material (see Section I). The maximum pro-
cessing performance TOPSMP

FCL and the corresponding power
PMP
FCL are given by

TOPSMP
FCL =

2n2m
T0

(5)

PMP
FCL = mNINPNILPP′avg. (6)

In this situation, all the layers operate simultaneously. There-
fore, TOPSMP

FCL is given by the single-layer performance
TOPS1L (=2n2/T0) multiplied by the number m of lay-
ers. PMP

FCL is also given by the single-layer power P1L
(=NINPNILPP′avg) multiplied by m. Note that (5) and (6) can
also be obtained from (3) and (4). In Fig. 9(b), the region
where all the layers operate simultaneously is given by elim-
inating the pipeline prolog and epilog stages. Substantially,
this can be achieved by taking the limit of k → ∞ in (3)
and (4). In the situation for the maximum processing perfor-
mance, the energy efficiency ηMP

FCL (TOPS/W) is given by

ηMP
FCL =

2n2

NINPNILPP′avgT0
=

2n2f
(Nn+ NINPNILPnCO)P′avg

. (7)

Fig. 10 shows TOPSMP
FCL, P

MP
FCL, and η

MP
FCL as a function of

m for the FCLs (n = 1024), in which (NINP, NILP) = (1,
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TABLE 3. Performance comparison for state-of-the-art BNAs.

1), (4, 4), and (4, 32) that correspond to NP = 1, 16, and
128, respectively, are examined. The black curves in the
figure represent the INFERNorm mode [at 1.2 V with f =
620 MHz (= fm at 1.2 V)] with NP = 1, and the others
represent the INFEREMP mode [at 0.4 V with f = 32 MHz
(=fm at 0.4 V)] with NP = 1, 16, and 128. The network
can be configured with 16 × m BNA macros. TOPSMP

FCL,
PMP
FCL, and η

MP
FCL were calculated using the analysis results

of the single macro shown in Fig. 7. When NP = 1, the
INFEREMP mode causes ∼1/20 degradation of TOPSMP

FCL in
comparison to the INFERNorm mode. Nevertheless, it can
largely reduce PMP

FCL by ∼1/50. These results reflect the fea-
tures of the EMP operation for the BNA macro described in
Section IV. For the INFEREMP mode with NP = 1, ηMP

FCL
is reduced to 29 TOPS/W from 65 TOPS/W of the single
macro. This is because the condition of NP = 1 causes
unwanted leakage power of the waiting macros with the
longer Ttot. However, the ηMP

FCL value is higher than that of the
INFERNorm mode.
Using the INFEREMP mode, TOPSMP

FCL can be enhanced
by enlarging NP, while the resulting increase in PMP

FCL can
be satisfactorily suppressed. For instance, the INFEREMP

operation with NP = 16 shows almost the same TOPSMP
FCL

value as the INFERNorm operation with NP = 1, whereas
PMP
FCL for the INFEREMP mode can be suppressed to ∼1/7

in comparison to the INFERNorm mode. When NP = 16, all
the macros operate simultaneously. As a result, ηMP

FCL reaches
the maximum value. This value is equal to that for the single
macro (65 TOPS/W). When NP is enlarged to NP = 128, the
INFEREMP operation results in ∼six times higher TOPSMP

FCL
with the almost equivalent PMP

FCL value in comparison to the
INFERNorm operation withNP = 1. In this case, ηMP

FCL slightly
decreases from the maximum value, since the effect of nCO
stands out for larger NP [see (7)].

Table 3 shows performances of our proposed EMP opera-
tion BNAs and other state-of-the-art BNAs [7], [8], [9], [10].
In the table, our proposed BNAs are referred to as EMP-
BNAs to distinguish from the others. For EMP-BNAs,
an FCL network [configured with 32 macros (n = 1024,
m = 2)] with NP = 1, 16, and 128 and the sin-
gle macro using the 8.25-kB ULVR-SRAM array are
examined.

Except the FinFET-based accelerator, only the EMP-BNAs
can lower the operating voltage to the EMP (also see Fig. 7).
This operating voltage is comparable to that of the FinFET-
based BNA. Although, in general, the average active power
Pavg of the FCL networks is higher than that of the convo-
lutional NNs (CNNs), the EMP-BNA with NP = 1 has a
low Pavg value at the same level as the CNN-type BNAs.
Nevertheless, the processing performance TOPS of EMP-
BNA with NP = 1 remains at a not-so-high value. The
TOPS values of the EMP-BNAs can be greatly improved with
increasing NP. A high TOPS value (comparable to the value
of the FinFET-based BNA) can be obtained for NP = 128.
Although Pavg is enlarged owing to the increase in NP, the
Pavg value for NP = 128 is suppressed to a relatively low
level as an FCL network. Generally, the energy efficiency
(TOPS/W) of the FCL networks tends to be lower than that
of the convolution layers. The EMP-BNAs can achieve the
relatively high energy efficiencies despite the FCL structure.

The FCL networks would be an example in point to analyze
the performance of the EMP-BNA macro, since the energy
efficiency is always lower than that of CNNs. The application
of the ULVR-SRAM-based BNAmacros for convolution lay-
ers is discussed in the supplementary material (see Section J),
where the potential ability for improving the energy effi-
ciency of convolution layers using the EMP operation is
shown.

VI. CONCLUSION
A PIM-type BNA macro using ULVR-SRAM is proposed,
and the impact of the EMP operation and the ability of the
substantive PG using the ULVR mode are demonstrated. The
BNA macro is designed so as to achieve stable inference
operations at EMP (0.4 V) and low-power ULVR at 0.2 V.
The optimally designed ULVR-SRAM cell can exhibit high
noise immunity for the EMP- and ULVR-operating modes.
The EMP operation of the macro can reduce the active power
by 99%, enabling the large-scale parallelization of MAC pro-
cessing. This EMP operation is strongly effective at achieving
a high energy efficiency of 65 TOPS/W for the FCL networks.
Using the ULVR mode, the standby power of the macro can
be reduced by 84% with a short BET of 2.9 µs, which is
applicable to substantive PG for mobile-edge applications.
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