
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

Received 21 August 2022; revised 11 October 2022 and 25 October 2022; accepted 1 November 2022.
Date of publication 4 November 2022; date of current version 22 December 2022.

Digital Object Identifier 10.1109/JXCDC.2022.3220032

CRUS: A Hardware-Efficient Algorithm
Mitigating Highly Nonlinear Weight Update

in CIM Crossbar Arrays for Artificial
Neural Networks

JUNMO LEE 1, JOON HWANG 2 (Graduate Student Member, IEEE), YOUNGWOON CHO3,
MIN-KYU PARK 2 (Graduate Student Member, IEEE),

WOO YOUNG CHOI 2 (Senior Member, IEEE), SANGBUM KIM 3 (Member, IEEE),
and JONG-HO LEE 2,4 (Fellow, IEEE)

1Department of ECE, Georgia Institute of Technology, Atlanta, GA 30332 USA
2Department of ECE and ISRC, Seoul National University, Seoul 08826, South Korea
3Department of MSE and ISRC, Seoul National University, Seoul 08826, South Korea

4Ministry of Science and ICT, Sejong 30121, South Korea

CORRESPONDING AUTHORS: S. KIM (sangbum.kim@snu.ac.kr) and J.-H. LEE (jhl@snu.ac.kr)

This work was supported in part by the Technology Innovation Program under Grant 20009972 funded by the Ministry of Trade, Industry and
Energy (MOTIE, South Korea), in part by the Brain Korea 21 Plus Project in 2022, in part by the National Research Development Program

through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT under Grant
NRF-2020M3F3A2A01081240 and Grant NRF-2021M3F3A2A02037889, and in part by the Samsung

Electronics under Grant 0414-20210116.

This article has supplementary downloadable material available at https://doi.org/10.1109/JXCDC.2022.3220032, provided by the authors.

ABSTRACT Mitigating the nonlinear weight update of synaptic devices is one of the main challenges in
designing compute-in-memory (CIM) crossbar arrays for artificial neural networks (ANNs). While various
nonlinearity mitigation schemes have been proposed so far, only a few of them have dealt with high-weight
update nonlinearity. This article presents a hardware-efficient on-chip weight update scheme named the
conditional reverse update scheme (CRUS), which algorithmically mitigates highly nonlinear weight change
in synaptic devices. For hardware efficiency, CRUS is implemented on-chip using low precision (1-bit) and
infrequent circuit operations. To utilize algorithmic insights, the impact of the nonlinear weight update on
training is investigated.We first introduce ametric called update noise (UN), which quantifies the deviation of
the actual weight update in synaptic devices from the expected weight update calculated from the stochastic
gradient descent (SGD) algorithm. Based on UN analysis, we aim to reduce AUN, the UN average over
the entire training process. The key principle to reducing average UN (AUN) is to conditionally skip long-
term depression (LTD) pulses during training. The trends of AUN and accuracy under various LTD skip
conditions are investigated to find maximum accuracy conditions. By properly tuning LTD skip conditions,
CRUS achieves >90% accuracy on the Modified National Institute of Standards and Technology (MNIST)
dataset even under high-weight update nonlinearity. Furthermore, it shows better accuracy than previous
nonlinearity mitigation techniques under similar hardware conditions. It also exhibits robustness to cycle-to-
cycle variations (CCVs) in conductance updates. The results suggest that CRUS can be an effective solution
to relieve the algorithm-hardware tradeoff in CIM crossbar array design.

INDEX TERMS Artificial neural networks (ANNs), compute-in-memory (CIM), hardware neural network,
memristors, neuromorphic devices, neuromorphic systems, nonlinearity, on-chip training, synaptic device.

I. INTRODUCTION

RECENTLY, compute-in-memory (CIM) crossbar arrays
having synaptic devices as weight storage elements

have emerged as a promising solution to overcome the limi-
tations of von Neumann architecture. In particular, the capa-
bility of synaptic devices to tune and store the conductance

VOLUME 8, NO. 2, DECEMBER 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

145

https://orcid.org/0000-0001-6092-6436
https://orcid.org/0000-0003-2998-8174
https://orcid.org/0000-0002-1426-1944
https://orcid.org/0000-0002-5515-2912
https://orcid.org/0000-0001-7460-3750
https://orcid.org/0000-0003-3559-9802

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

makes them well-suited for emulating biological behaviors
such as long-term potentiation (LTP), long-term depression
(LTD), and spike-timing-dependent plasticity [1], [2]. Such
capabilities of synaptic devices can be utilized to build up a
new paradigm of computation that can solve complex com-
putational tasks with low power consumption.

Numerous types of synaptic devices that rely on various
physical mechanisms have been explored in recent years [1],
[2], [3]. It is well known that CIM crossbar arrays based
on synaptic devices have advantages in size, speed, and
power consumption compared to those in conventional digital
CMOS circuits [4], [5], [6]. Despite the bright prospects of
CIM crossbar arrays, several synaptic device issues must be
solved for their practical implementation.

One of the main obstacles hampering the practical appli-
cation of synaptic devices is nonlinearity in conductance
updates. For instance, flash-type synaptic devices employing
charge trapping/detrapping dynamics experience nonlinear
conductance change during the program and erase opera-
tions [7]. In addition, memristor-type synaptic devices utiliz-
ing drift and diffusion mechanisms of the ions or vacancies
have nonlinear gradual SET/RESET characteristics [8], [9],
[10]. Due to this inherent nonlinearity in the conductance
modulation process, CIM crossbar arrays suffer from a mis-
match between the expected weight change and the actual
weight change.

Especially, the nonlinearity issue poses a significant chal-
lenge to designing CIM crossbar arrays for on-chip artificial
neural network (ANN) training and inference. While ANN
can be highly resilient to random effects, excessive nonlin-
earity in weight updates can be harmful to training [11].
This problem has motivated many researchers to mitigate
the effect of nonlinearity through various approaches. How-
ever, tuning the nonlinearity through device engineering
degrades other synaptic device properties such as ON-OFF
ratios and endurance cycles, affecting the performance and
cost of the hardware [12], [13]. Moreover, nonlinearity mit-
igation using pulse schemes requires precise control of the
pulse duration/amplitude considering the conductance of
individual synaptic devices [14]. Unfortunately, an on-chip
implementation of such pulse schemes may raise latency
issues and complicate the peripheral circuit design. There-
fore, nonlinearity optimization through device engineering
or complicated circuit operations may not eventually lead
to performance enhancement at the system level. From this
point of view, incorporating algorithmic insights into nonlin-
earity mitigation may be an attractive option to relieve the
hardware-algorithm tradeoff when designing CIM crossbar
arrays for ANNs.

Accordingly, we present a hardware-efficient weight
update scheme named the conditional reverse update scheme
(CRUS) to train CIM crossbar arrays composed of synap-
tic devices with highly nonlinear LTP/LTD characteristics.
In this work, we focus on CIM crossbar arrays for ANN
training and inference. In contrast to the aforementioned
approaches that necessitate device engineering and costly

FIGURE 1. (a) Schematic 3-D view of the A/N/O device. (b) LTP
and LTD behavior of the A/N/O device.

circuit operations, we suggest a hardware-friendly weight
update scheme that utilizes algorithmic intuition for accuracy
enhancement. For hardware efficiency, we restrict the preci-
sion of any additional read and write operations during train-
ing to 1 bit. We also introduce metrics named update noise
(UN) and average UN (AUN), which quantify the deviation
between the actual and ideal weight update. Important hyper-
parameters in CRUS are optimized by careful algorithmic
analysis using UN and AUN. The proposed weight update
scheme and algorithmic analysis will be useful in optimizing
the system performance of CIM crossbar arrays under highly
nonlinear or abrupt weight update conditions.

II. BIDIRECTIONAL FLASH-TYPE SYNAPTIC DEVICE
In this Section, we present a flash-type memory device that
has weight update nonlinearity and abruptness level that are
within the target range of this article. A schematic 3-D view
of this device is illustrated in Fig. 1(a). The structure of
this device is identical to that of an n-channel MOSFET
with a gate insulator stack of Al2O3/Si3N4/SiO2 (A/N/O).
The A/N/O device is capable of bidirectional weight (con-
ductance) change through the program (for LTD) or erase
(for LTP) operations. The detailed fabrication steps, operating
principles, and other applications of the A/N/O device are
provided in S. 1 and [15], [16], [17].

Fig. 1(b) shows the measured LTP and LTD behaviors of
the A/N/O device. The noticeable characteristic of the LTP
curve is that the conductance changes are extremely abrupt
in the early stage of pulse application. In this article, we will
suggest that minimizing the abruptness of the conductance
update may not be a necessary requirement in synaptic device
engineering.

III. RELATED WORKS
Recently, various on-chip nonlinearity mitigation methods
beyond device-level optimization have been proposed. How-
ever, several critical issues remain to be addressed for further
development. In this section, we provide three major issues
that become the core motivation of CRUS.

First, the nonlinearity level (NL) tested in previous works
may be inappropriate to simulate highly nonlinear or abrupt
conductance update characteristics. In this work, we use the
following equations to model the conductance (G) change

146 VOLUME 8, NO. 2, DECEMBER 2022

Lee et al.: CRUS: A Hardware-Efficient Algorithm Mitigating Highly Nonlinear Weight Update

FIGURE 2. (a) LTP and (b) LTD curves corresponding to different
NL(LTP) and NL(LTD) values.

during LTP and LTD process for a given NL [18]:

GLTP (P) = B
(
1− e

−P
A

)
+Gmin (1)

GLTD (P) = B
(
1− e

−(Pmax−P)
A

)
+ Gmin (2)

B =
Gmax − Gmin

1− e−
Pmax
A

(3)

where Gmax and Gmin are the maximum and minimum con-
ductance of a synaptic device extracted from experimental
data, respectively. Pmax is the maximum number of avail-
able conductance steps of a synaptic device. A is a fitting
parameter dependent on NL (the definition of A is explained
in S. 2), and B is a function of A as defined by (3). The
NL(LTP) (NL of LTP) and NL(LTD) (NL of LTD) range
from −9 to 9. The sign of NL(LTP) (NL(LTD)) determines
whether LTP (LTD) curve is convex (positive sign) or concave
(negative sign). Some examples of NL(LTP) and NL(LTD),
and their corresponding LTP and LTD curves are illustrated
in Fig. 2(a) and (b). We normalize the conductance value of
synaptic devices to a range between 0 (Gmin) and 10 (Gmax)
in the rest of this article.

In addition, to measure the magnitude of the abruptness of
LTP or LTD characteristics, we define the abruptness factor
(AF) as follows:

AF =


100

CLTP

Pmax
, for LTP

100
CLTD

Pmax
, for LTD

(4)

where CLTP represents the minimum number of pulses
required to increase G = Gmin above G = Gmin +

0.6(Gmax−Gmin), and CLTD represents the minimum number
of pulses required to decrease G = Gmax below G = Gmax−

0.6(Gmax−Gmin). AF can range from 0 to 60 for the NL range
of −9 to 9. Fig. 3(a) presents AF as a function of NL(LTD).
Note that (1)–(3) may be unsuitable for modeling the LTP or
LTD curves of some synaptic devices [19]. However, (4) can
be generally applied to any synaptic device.

Nonlinearity mitigation techniques presented in [20] and
[21] were validated on NL ranging from approximately
−6 to 6. However, NL values within the range of −6 to 6
might be too small to capture the nonlinear or abrupt update
characteristics of some synaptic devices. For example, the

FIGURE 3. (a) AF of LTD with varying NL(LTD). (b) Abruptness of
LTD curve at NL(LTD) = −9. (b) LTD curve with large NL is
extremely abrupt in the early stage of pulse application.

NL(LTD) of a reported Pr0.7Ca0.3MnO3 (PCMO) device
using the nonlinearitymodel defined by (2)–(3) is−6.76 [18].
The A/N/O device mentioned above has an AF of 9.375 for
LTP and 17.1875 for LTD. Considering that the AF corre-
sponding to NL(LTP) = 6 is 13, setting NL(LTP) = 6 is
inappropriate to simulate abrupt LTP behavior in the A/N/O
device. Referring to Fig. 3(a), the absolute value of NL has to
be above 8 to simulate the abruptness of the A/N/O device.

Second, nonlinearity mitigation methods requiring fre-
quent or accurate conductance accessing may incur high
hardware costs, defeating the advantage of using CIM cross-
bar arrays for ANNs. Some of the successful methods yield-
ing acceptable accuracy under high nonlinearity settings
require conductance reading before eachweight update event.
They also necessitate a specific pulse generator design or
precise conductance sensing to guarantee an acceptable level
of accuracy [20], [22].

For instance, the refresh method is known as a successful
algorithm effectively dealing with devices having aggressive
nonlinearity such as phase changememory devices [23], [24].
By periodically sensing and rewriting the conductance values
of individual devices, the saturation of conductance is pre-
vented and thus accuracy can be increased. The key advantage
of the refresh method is that if LTP is linear enough, high
accuracies can be achieved regardless of the NL(LTD) value.

Despite its several benefits including high accuracy and
immunity to resistance drift effects [25], the periodical
sensing and rewriting process requires careful considera-
tion of the hardware-algorithm tradeoff. It is known that
analog-to-digital converter (ADC) is a major bottleneck in
CIM systems in terms of area, speed, and power [26],
[27], [28], [29]. Thus, using high-resolution ADC circuits
for precise sensing and rewriting of individual synaptic
weights may cause excessive hardware overhead. More-
over, while increasing the refresh period (number of training
iterations between successive refresh processes) decreases
power consumption and latency, it also decreases accuracy
[11], [30]. Thus, to create practical CIM crossbar arrays,
it may be more advantageous to design a weight update
method that can achieve high accuracy using infrequent and
inaccurate additional circuit operations.

Lastly, many studies on CIM lack quantitative analysis
on the relationship between the LTP/LTD nonlinearity and

VOLUME 8, NO. 2, DECEMBER 2022 147

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

accuracy [11], [22], [31]. Quantitative analysis employing
proper algorithmic metrics might help elucidate the ori-
gin of accuracy degradation under nonlinear weight update
conditions.

Accordingly, our work proposes: 1) CRUS, a hardware-
efficient weight update rule for mitigating high nonlinearity
and 2) evaluation metrics that quantify the impact of nonlin-
earity on CIM crossbar array performance. In addition to the
standard stochastic gradient descent (SGD) algorithm, infre-
quent conductance reading and writing techniques requiring
1-bit precision are introduced. By optimizing CRUS using the
proposed evaluation metrics, we achieve high accuracy even
in high NL cases (|NL(LTD)| ≥ 8 or |NL(LTP)| ≥ 8 except
for |NL(LTP)| = |NL(LTD)| = 9).

IV. UPDATE NOISE AND CONDITIONAL REVERSE
UPDATE SCHEME
A. CONCEPT OF UN AND ITS METRICS
We propose metrics called UN and AUN to quantify the
deviation between the actual weight update and the ideal
weight update. For a single training iteration, UN is defined
as follows:

UN (Wn) = ‖Pnk −
(
Wn,updated −Wn

)
‖ (L2 norm) (5)

where k,Pn,Wn, and Wn,updated are the scaling factor that
scales the number of applied pulses into the weight scale, a
vector of the number of pulses applied to synaptic devices,
a weight vector before weight update, and the weight vector
after weight update at the nth training iteration, respectively.
The L2 norm calculates the Euclidean distance of the vector
coordinate from the origin of the vector space. Note that the
term Pnk represents the ideal weight update amount and the
term (Wn,updated − Wn) represents the actual weight update
amount.

Software-based studies have shown that gradient noises
with certain structures have regularization effects [32]. How-
ever, to the best of our knowledge, the structure and the effect
of the gradient in CIM are not well understood. Moreover,
for on-chip training, it is difficult to freely manipulate the
gradient in the desired way. Thus, we try to self-adaptively
reduce the AUN after training. We use the following equation
to evaluate AUN after the end of the entire training process:

AUN (W) =
n∑
i=0

1
m
UN (Wi) (6)

where Wi, n, and m represent a weight vector at ith train-
ing iteration, the total number of training iterations of an
algorithm, and the total number of training iterations except
for the ones where the synaptic devices do not receive any
pulses, respectively. In Section V, we show that AUN pro-
vides important insights into the effect of nonlinear weight
updates on CIM crossbar training.

B. PROPOSED WEIGHT UPDATE SCHEME
Wenow introduce a hardware-efficient weight update method
named CRUS that can effectively control the AUN of an

algorithm. Specifically, we design a weight update method
that: 1) reduces AUN evaluated at the end of the training by
employing an infrequent and low precision circuit operation;
2) does not require any pulse shape or duration tuning; and
3) is compatible with on-chip training.

In this scheme, differential synapse pairs are used to repre-
sent each weight element. For notational simplicity, we refer
to synapse pairs as synapses. Each of the synapses consists of
two bidirectional synaptic devices with conductance values
Gp and Gn. The weight valueW that each synapse represents
can be expressed asW = (Gp − Gn/Gmax − Gmin).
For hardware simplicity, we divide the weight update

process into two phases: the normal update phase and the
reverse update phase. When a specific training iteration cor-
responds to the normal update phase, only LTP updates are
used for conductance updates. In contrast, only LTD updates
are used during the reverse update phase. In addition, the
reverse update phase occurs only once every rup (reverse
update period). rup is a hyperparameter ranging from 2 to 10.
By allowing both LTP and LTD updates, we can prevent the
saturation of conductance which significantly degrades the
performance of the network [11]. Note that the division of
the training into two phases also allows individual tuning
of the learning rate for LTP updates (αn) and that for LTD
updates (αr). This strategy can compensate for the inherent
asymmetrical update characteristics of synaptic devices [33].

The key idea to effectively reduce AUN under CRUS is
to conditionally skip LTD updates (pulses) only during the
reverse update phase. Specifically, if a bit (flagp or flagn in
Algorithm 1) assigned to each Gp or Gn synaptic device is 1,
no write pulses are applied to Gp or Gn even if the gradient
descent algorithm requires updating it.

The bits assigned to each synaptic device are stored in
auxiliary arrays and are updated every refp training iteration
(refp refers to the reference period). flagp or flagn is updated
to 1 if the conductance of the complementary synaptic device
(Gn for flagp, Gp for flagn) is smaller than a hyperparameter
Gth, and to 0, otherwise. This means that the LTD update
is skipped if the complementary synaptic conductance was
recently low enough. We will show that by adjusting Gth,
AUN can be effectively reduced.

For better understanding, we present the pseudocode of
the proposed update method and its hardware implementation
scheme in Algorithm 1 and S. 3, respectively.

For convenience, we only consider the cases for
|NL(LTP)| ≤ |NL(LTD)|. |NL(LTP)| ≥ |NL(LTD)| cases
can be handled identically by swapping the definition of
the reverse update phase and the normal update phase and
modifying the skip condition accordingly. We will show that
the refp in CRUS can be larger than the refresh period (rp) in
the refresh scheme to achieve the same level of accuracy.

V. ALGORITHMIC ANALYSIS OF CRUS
We analyze our proposed weight update rule with NeuroSim
[18] using the Modified National Institute of Standards
and Technology (MNIST) handwritten digit database [34].

148 VOLUME 8, NO. 2, DECEMBER 2022

Lee et al.: CRUS: A Hardware-Efficient Algorithm Mitigating Highly Nonlinear Weight Update

Algorithm 1 Conditional Reverse Update Algorithm

W =
Gp−Gn

Gmax−Gmin
;

Let n be the total number of training iterations;
Let rup be the reverse update period;
Let refp be the reference period;
Let Gth be the threshold value for skipping LTD update;
Let Pi be the number of pulses applied at training iterationi;
Let an be the learning rate for the normal update phase;
Let ar be the learning rate for the reverse update phase;
for i = 1 to n do

calculate dLdW ;
/∗ 1-bit information sensing & storage ∗/
if i is 1 or an integer multiple of refp then

store(bool) flagp = (Gn < Gth);
store(bool) flagn = (Gp < Gth);

endif
/∗ weight update (reverse update phase) ∗/
if i is an integer multiple of rup then
Pi = |ar

dL
dW |Pmax rounded to the nearest integer;

if (dLdW > 0) then
Apply Pi LTD pulses to Gn if not flagn;

else
Apply Pi LTD pulses to Gp if not flagp;

endif
/∗ weight update (normal update phase) ∗/
else
Pi = |an

dL
dW |Pmax rounded to the nearest integer;

if (dLdW > 0) then
Apply Pi LTP pulses to Gp;

else
Apply Pi LTP pulses to Gn;

endif
endif

endfor

We consider a two-layer neural network (400–100–10). From
this point, we define the synapses located between the input
and hidden (hidden and the output) layer as SIH (SHO) and the
correspondingweightmatrix asWIH (WHO). The details of the
network and simulation conditions are explained in S. 4.

We first consider a synaptic device with NL(LTP) = 1,
NL(LTD)=−9, andPmax = 100. By settingNL(LTD)= −9,
the AF of LTD becomes 3 and the conductance falls to 0.8%
of its maximum conductance within 11 pulses, as seen from
Fig. 3(a) and (b). Starting from this case, we show that our
proposed method can be extended to other highly nonlin-
ear cases. We only consider the cases where NL(LTP) and
NL(LTD) have different signs.

Nowwe examine how CRUS effectively reduces the UN of
individual synapses. The UN of a synapse representing one-
element weight vectorW can be expressed as UN(W). By set-
ting a Gth that ensures low UN(W) of individual synapses,
UN(WIH) and UN(WHO) can be reduced at each training
iteration, and therefore AUN(WIH) and AUN(WHO) can be
minimized. To estimate the expected amount of UN reduction
for a given conductance configuration (Gp, Gn), we calculate
the expected UN of an individual synapse when the reverse
period is set to 2. Here, not considering the actual training
situation, we roughly assume that the pulses to be applied

FIGURE 4. (a) Synaptic conductance distribution after
initialization. (b) Expected UN without LTD pulse skip condition
(Gth = 0). Expected UN for (c) Gth = 1, (d) Gth = 3, and
(e) Gth = 5.

during each weight update are extracted from a uniform
[−3, 3] distribution and the reverse update phase occurs with
a probability of 50%. To further analyze how the expectedUN
varies with the conductance configuration (Gp, Gn), we also
group the synapses based on their conductance configurations
as follows:

(0,0) synapse: Gp < Gth,Gn < Gth.

(0,1) synapse: Gp < Gth,Gn ≥ Gth.

(1,0) synapse: Gp ≥ Gth,Gn < Gth.

(1,1) synapse: Gp ≥ Gth,Gn ≥ Gth.

Fig. 4(a)–(e) shows the initialized conductance con-
figuration distribution and the expected UN of different
synapse types under varying Gth. It can be seen that the
expected UNs of the (0,0), (0,1), and (1,0) synapses are
relatively small compared to those of the (1,1) synapses.
This is because the LTD pulse skip condition applied
to (0,0), (0,1), and (1,0) synapses effectively suppress
the expected UN. Thus, it is implied that reducing the
number of (1,1) synapses during training is important to
minimize AUN.

We, therefore, discuss how to decrease the number of
(1,1) synapses during training. The conversion from (0,1)
or (1,0) synapses to (1,1) synapses during training should
be reduced to minimize AUN. According to previous work,
in a network composed of bidirectional synaptic devices, the
conductance values tend to converge around the ‘‘symmetry
point’’ [35]. This is the conductance value Gsym that satisfies
|G′LTP(G

−1
LTP(Gsym))| = |G′LTD(G

−1
LTD(Gsym))| [here, GLTP(P)

and GLTD(P) are the functions used in (1) and (2), respec-
tively]. Note that this is also the point to which the conduc-
tance value eventually converges after one LTP pulse and
one LTD pulse are continually applied to a synaptic device
in an alternating fashion. A similar phenomenon is observed
under CRUS as well (S. 5). Gp (Gn) in (0,1) ((1,0)) synapses,
which are capable of bidirectional conductance update, con-
verge around the symmetry point as training proceeds (S. 6).

VOLUME 8, NO. 2, DECEMBER 2022 149

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

FIGURE 5. Plot of AUNs corresponding to the entire synapses
and each synapse type calculated for (a)WIH and (b)WHO. Here,
the AUN values are scaled by a factor of 10 000. Test accuracies
are also shown.

Therefore, increasing the average distance between Gth and
the conductance distribution of Gp (Gn) in (0,1) ((1,0))
synapses reduces the probability of the Gps (Gns) crossing
overGth and switching the synapse type to (1,1) (S. 7). S. 5–7
provide further analyses of the aforementioned observations.
Therefore, the key strategy to reduce the number of (1,1)
synapses is to increase Gth.

Now we analyze how increasing Gth affects AUN values
of certain layers and synapse types. To calculate the AUN
of a specific synapse type, we extend the definition of AUN
hereafter. AUN(W synapse type) is calculated by masking the
weight and pulse elements that do not correspond to the
superscripted synapse type for Pn and Wn in the argument
of the summation in (6).

As seen from Fig. 5(a) and (b), increasing Gth does not
always lead to a decrease in AUN(WIH) and AUN(WHO).
Moreover, Fig. 5(a) shows that smaller AUN(WIH) does not
necessarily imply higher accuracy, suggesting minimizing
AUN(WIH) is not an optimal direction in accuracy optimiza-
tion. In the rest of this section, we examine several important
factors that determine the behaviors of accuracy, AUN(WIH),
and AUN(WHO) under varying Gth. Based on this analysis,
we finally show that AUN(WHO) should be crucially consid-
ered for Gth optimization.

FIGURE 6. Average ratio of (0,1) and (1,0) synapses that receive
non-zero pulses during the reverse update phase with respect
to Gth.

First, the UN reduction effect of CRUS decreases as Gth
increases.We attribute this trend to the increase in the average
ratio of (0,1)/(1,0) synaptic devices that receive non-zero
pulses (during the reverse update phase) with a Gth increase.
Pulses not being applied to (0,1)/(1,0) synapses during the
reverse update phase implies two cases: 1) LTD pulses are
applied to Gn (Gp) in (0,1) ((1,0)) synapses, so they are
skipped according to CRUS and 2) original weight update
amount is calculated to be zero. In 1), UN is suppressed by the
skip update effect as discussed earlier, and in 2), UN is zero.
Therefore, if the input pulse pattern changes with Gth, AUN
can be affected. Fig. 6 shows a ∼4× increase in the average
ratio of (0,1)/(1,0) synapses that receive nonzero pulses (dur-
ing the reverse update phase) with a Gth increase. This is cor-
related with the increase in AUN(WHO) and AUN(WIH) from
Gth ∼ 1 as seen in Fig. 5(a) and (b). Thus, Gth should not be
increased above the point where the increase in AUN(W (0,1)

IH),
AUN(W (1,0)

IH), AUN(W (0,1)
HO), and AUN(W (1,0)

HO) starts to offset
the decrease in AUN(W (1,1)

IH), and AUN(W (1,1)
HO).

Second, the weight distribution of WHO can significantly
affect the behavior of AUN(WIH) and accuracy at low Gth.
Fig. 5(a) shows that when Gth is lower than the symme-
try point (∼0.32), both AUN(WIH) and accuracy sharply
decrease with decreasing Gth. This differs from the case of
AUN(WHO) [see Fig. 5(b)], which generally has a contrary
relationship with accuracy with respect to Gth throughout
the entire Gth range. If the symmetry point increases above
Gth, conversion from (1,1) to (0,1) or (1,0) rarely happens.
In addition, both Gp and Gn keep converging around the
symmetry point until the end of training. Thus, not only
an excessive UN is caused due to a large number of (1,1)
synapses, but also the Gps and Gns of (1,1) synapses in SHO
become densely populated around the symmetry point as
training proceeds [see Fig. 7(a)]. Consequently, the number
of low magnitude weights in WHO substantially increases at
low Gth(Gth < 0.32).
Similar to a reported observation that excessive sparsity of

weights leads to a vanishing gradient problem [36], a large
increase in the number of low-magnitude weights in WHO
limits gradient flow to WIH when Gth is smaller than the
symmetry point. The vanishing gradient problem retards

150 VOLUME 8, NO. 2, DECEMBER 2022

Lee et al.: CRUS: A Hardware-Efficient Algorithm Mitigating Highly Nonlinear Weight Update

FIGURE 7. (a) Gp and Gn distribution of (1,1) synapses located
between the hidden and the output layer at low Gth(Gth < 0.32).
(b) Derivative of loss function (L) with respect to the hidden
layer pre-activations (zH) and the output layer pre-activations
(zO) averaged over the whole training process and sparsity of
WHO. Here, sparsity is defined by the ratio of weights of
magnitude <0.2.

training in early layers and significantly drops the accuracy
of a network [37]. Fig. 7(b) shows that the magnitude of
the gradient passed to WIH significantly decreases as Gth
decreases. Referring to Fig. 4(a), this means that the synapses
corresponding to WIH will mostly stay at their initialized
states, where the expected UN is relatively low, throughout
training. As a result, AUN(WIH) and accuracy both drop
sharply when Gth decreases below the symmetry point.
From the above analysis, it can be concluded that

AUN(WHO) is the most influential factor that determines
accuracy. When Gth is smaller than the symmetry point,
AUN(WHO) reflects the number of (1,1) synapses, which
is inversely related to the magnitude of the gradient WIH
receives. When Gth is larger than the symmetry point, the
average effect of weight update deviation throughout training
is a determining factor in accuracy. Thus, AUN(WHO) gener-
ally has a contrary relationship with accuracy with respect to
Gth [see Fig. 5(b)]. Using these observations, we show that
AUN(WHO) can be used for accuracy optimization in CRUS.
Fig. 8 shows the correlation between the Gth that minimizes
AUN(WHO) and the optimizedGth in terms of accuracy under
different NL settings. The result implies that accuracy can
easily be optimized by fine-tuning Gth around the value that
yields minimal AUN(WHO).

VI. OPTIMIZATION METHODOLOGY AND SYSTEM
PERFORMANCE ANALYSIS FOR GENERAL HIGH
NL CONDITIONS
A. RESULTS FOR VARIOUS DEVICE NLs AND
HYPERPARAMETER CONDITIONS
In this section, we show that the Gth optimization method-
ology is applicable to other high NL and hyperparameter
conditions.We examine several factors that increase/decrease
the symmetry point or the location of the conductance dis-
tribution of Gp (Gn) in (0,1) ((1,0)) synapses. Following the
analysis in Section IV, Gth needs to be optimized accord-
ingly in such cases. If the symmetry point or the position
of the conductance distribution increases, Gth should be set
higher to suppress Gth crossover events. In the opposite case,

FIGURE 8. Optimal Gth in terms of AUN(WHO), that in terms of
accuracy, and the best accuracy with varying NL(LTP) where
NL(LTD) is fixed to −9.

FIGURE 9. NL(LTP) and αn dependence of (a) optimized Gth and
(b) accuracy in CRUS. (c) Accuracy comparison between the
refresh scheme and CRUS. Here, NL(LTD), αn, and αr are fixed
to −9, 0.15, and 0.15, respectively. (d) NL(LTD) dependence of
accuracy and optimized Gth.(e) rup dependence of accuracy
and optimized Gth in CRUS.

Gth should be set lower to reduce the effect of increasing
AUN(W (0,1)

HO) and AUN(W (1,0)
HO). For the simulation, rp, refp,

and Pmax are set to 2, 2, and 100, respectively. rup is set to 2
for Fig. 9(a)–(d). αr is fixed to 0.15. The implementation
details of the refresh method are explained in S. 8.

Increasing NL(LTP) is expected to increase the opti-
mal Gth since the symmetry point is shifted upward

VOLUME 8, NO. 2, DECEMBER 2022 151

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

FIGURE 10. Accuracy with varying (a) refp and (b) rp.

[see Fig. 9(a)]. Decreasing NL(LTD) is expected to have the
opposite effect. Therefore, the optimal Gth decreases with
decreasing NL(LTD) [see Fig. 9(d)].

Similarly, the learning rate corresponding to the normal
update phase (αn) and that corresponding to the reverse
update phase (αr) also affect the choice ofGth. When a larger
αn is chosen while αr is fixed, the conductance distribution
ofGp (Gn) in (0,1) ((1,0)) synapses shifts upward. The reason
is that the LTP pulses are applied more frequently than when
αn = αr . Thus, as αn increases, Gth needs to be increased to
enhance accuracy, as shown in Fig. 9(a) and (b).

Fig. 9(b) and (d) clearly shows that CRUS yields >90%
accuracy for high NL cases (|NL(LTD)| ≥ 8 or |NL(LTP)|
≥ 8 except for |NL(LTP)| = |NL(LTD)| = 9) by setting an
optimal Gth value. In addition, CRUS yields better accuracy
than the refresh method if NL(LTP) exceeds 1.

Setting a high rup provides a similar effect as setting a
large αn since LTP updates happen more frequently with
higher rup. Increasing rup may offer latency benefits, as the
time required to sense the stored bits during the reverse
update phase can be reduced. Fig. 9(e) shows that the optimal
Gth increases with increasing rup. However, the optimized
accuracy tends to decrease when rup increases. Therefore,
the tradeoff between training speed and accuracy should be
considered when adjusting rup.

B. EFFECT OF THE REFERENCE PERIOD ON THE
TRAINING PERFORMANCE AND COMPARISON
WITH THE REFRESH METHOD
The key advantage of CRUS is that refp can be larger
than rp, implying a significant reduction in hardware cost.
Fig. 10(a) and (b) shows that CRUS could maintain the accu-
racy level at refp= 2 (>90%) up to a larger additional circuit
operation period, even for the worst case [NL(LTP) = 8,
NL(LTD) = −9] we are considering (>90% for refp ≤ 212).

TABLE 1. Comparison of accuracies and device/hardware
requirements among different nonlinearity mitigation
techniques.

As explained in Section III, the frequent refresh process may
incur excess power, area, and latency overhead due to ADCs.
The capability of achieving high accuracy under infrequent
and inaccurate additional circuit operations implies a relax-
ation in the ADC resolution and a reduction of costly mem-
ory/ADC circuit operations. This suggests that CRUS has
the potential to provide excellent hardware efficiency in CIM
crossbar array operation.

VII. SYSTEM PERFORMANCE COMPARISON WITH
OTHER NONLINEARITY MITIGATION SCHEMES
Table 1 compares the accuracies achieved by CRUS against
those from previous nonlinearity mitigation methods. We use
the MNIST dataset and set equal or poorer hardware/device
conditions compared to those of previous works for accuracy
comparison. For reasonable comparison, we do not consider
works that do not specify all hardware/device conditions
listed in Table 1. For [20], we perform additional simulations
to test its effectiveness under severe NL cases. The asymmet-
ric nonlinearity (ANL) factor denotes a metric proposed to
evaluate the asymmetry between LTP and LTD curves [31].
0 is the case of ideal symmetry, and the asymmetry increases
as the ANL value increases. Note that the accuracies of [20]
and [31] in Table 2 are not the highest reported values in each
reference, which were achieved under lower NLs or higher
weight precision.

As mentioned in Section III, Fu et al. [20] were suc-
cessful in dealing with NL values of −6 to 6. The results
of [20] in Table 1 imply that CRUS can be an attractive
algorithm/hardware solution targeting devices in the high
nonlinearity regime. Moreover, compared with [31], CRUS
can achieve high accuracy under worse LTP/LTD asymmetry
and more limited hardware conditions (lower input pixel
precision). Interestingly, CRUS still achieves>89% accuracy
under a lower number of conductance states (=64) when the
input pixel precision is relaxed.

152 VOLUME 8, NO. 2, DECEMBER 2022

Lee et al.: CRUS: A Hardware-Efficient Algorithm Mitigating Highly Nonlinear Weight Update

TABLE 2. Summary of hardware features among state-of-the-art
nonlinearity mitigation techniques.

Table 2 presents an overall summary of the hardware
features of the state-of-the-art nonlinearity mitigation tech-
niques. One may argue that introducing an auxiliary array
and reading/writing circuitries for stored bits can offset the
advantage of on-chip CIM crossbar array training. However,
since the precision required for reading/writing stored bits
is only 1-bit, the area/speed/power costs due to ADCs and
memory overhead are expected to be small [26], [27], [28],
[29]. Furthermore, the increased area overhead due to the
auxiliary array can be alleviated by stacking the synaptic
arrays vertically using 3-D integration schemes [38], [39],
[40]. As the operations performed in the auxiliary array are
identical to those in the main array, the peripheral circuit for
both arrays can also be shared [38]. Given its capability to
achieve high accuracy under aggressive nonlinearity condi-
tions with manageable hardware costs, CRUS is expected to
bring considerable system-level benefits.

VIII. ROBUSTNESS TO CYCLE-TO-CYCLE VARIATIONS
IN CONDUCTANCE UPDATES
Cycle-to-cycle variation (CCV) is another crucial factor to be
considered in designing algorithms for CIM crossbar arrays
[41], [42]. Therefore, we analyze the performance of CRUS
under CCV. The equations used to model the variation at
every conductance update event are as follows [18]:

Gi,updated = Gi+1Gi+Z
√
Pi,Z∼ N

(
0,σ 2

)
(7)

σ = β (Gmax − Gmin) (8)

whereGi,1Gi,Gi,updated,N(0,σ 2),Pi, and β are the conduc-
tance value at ith training iteration before the weight update,
the amount of conductance update at ith training iteration
assuming no variation, the conductance value at ith training
iteration after weight update, the normal distribution with
mean 0 and standard deviation σ , the number of applied
pulses at ith training iteration, and the variation coefficient
respectively. Fig. 11 shows that CRUS is highly resilient to
CCV compared to the refresh method. Moreover, for high β,

FIGURE 11. Comparison of robustness to CCV between different
methods. Here, NL(LTD) = −9, and refp and rup are set to
4096 and 2, respectively. rp for the refresh scheme is set to 2048.

CRUS with nonlinear synapses outperforms the ‘‘one ideal
synaptic device per synapse’’ method (an ideal CIM crossbar
architecture where a device with perfectly linear LTP and
LTD is used to represent each weight). This could be due
to: 1) frequent LTD update skips and 2) robustness to weight
update perturbation provided by the nonlinear weight update
[43]. More detailed discussions on 1) and 2) are provided
in S. 9.

IX. CONCLUSION
In this article, CRUS has been proposed to mitigate highly
nonlinear and the abrupt weight update of synaptic devices
in CIM crossbar arrays. The key advantage of CRUS is its
capability to achieve high accuracy under highly nonlinear
LTP and LTD characteristics utilizing infrequent and 1-bit
precision circuit operations. In particular, we have demon-
strated using NeuroSim that CRUS achieves >90% accu-
racy on the MNIST classification task under Pmax = 100,
|NL(LTP)| ≥ 8 or |NL(LTD)| ≥ 8 cases (except for the
|NL(LTP)| = |NL(LTD)| = 9 case). Based on the AUN
and the symmetry point analysis under various situations,
we have introduced methodologies to optimize Gth depend-
ing on NL(LTP), NL(LTD), learning rate, and rup. System
performance comparisons with different nonlinearity mitiga-
tion techniques have implied that CRUS exhibits a superior
hardware-accuracy tradeoff. Finally, we have demonstrated
that CRUS exhibits robustness to CCV in conductance
updates.

CRUS and the AUN analysis would be more appealing
if their validity could be tested on different datasets and
other complex tasks. Especially, the generalization of AUN
analysis to more complicated networks could provide a better
understanding of nonlinear weight updates. Moreover, devis-
ing a synaptic architecture where the synaptic device and
stored bit coexist within a single cell could be a practical
solution to further lessen hardware requirements. We believe
the proposed weight update scheme and the AUN analysis
can be attractive options when designing CIM crossbar arrays
consisting of devices with high nonlinearity.

VOLUME 8, NO. 2, DECEMBER 2022 153

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

REFERENCES
[1] G. W. Burr et al., ‘‘Neuromorphic computing using non-volatile memory,’’

Adv. Phys., X, vol. 2, no. 1, pp. 89–124, 2017.
[2] S. Yu, ‘‘Neuro-inspired computing with emerging nonvolatile memorys,’’

Proc. IEEE, vol. 106, no. 2, pp. 260–285, Feb. 2018.
[3] Q. Wan, M. T. Sharbati, J. R. Erickson, Y. Du, and F. Xiong, ‘‘Emerging

artificial synaptic devices for neuromorphic computing,’’ Adv. Mater. Tech-
nol., vol. 4, no. 4, Apr. 2019, Art. no. 1900037.

[4] S. B. Eryilmaz, S. Joshi, E. Neftci, W. Wan, G. Cauwenberghs, and
H.-S.-P. Wong, ‘‘Neuromorphic architectures with electronic synapses,’’
in Proc. 17th Int. Symp. Quality Electron. Design (ISQED), Mar. 2016,
pp. 118–123.

[5] C. Li et al., ‘‘Efficient and self-adaptive in-situ learning in multilayer
memristor neural networks,’’Nature Commun., vol. 9, no. 1, pp. 1–8, 2018.

[6] T. Gokmen and Y. Vlasov, ‘‘Acceleration of deep neural network training
with resistive cross-point devices: Design considerations,’’ Frontiers Neu-
rosci., vol. 10, p. 333, Jul. 2016.

[7] J.-M. Choi, E.-J. Park, J.-J. Woo, and K.-W. Kwon, ‘‘A highly linear
neuromorphic synaptic device based on regulated charge trap/detrap,’’
IEEE Electron Device Lett., vol. 40, no. 11, pp. 1848–1851, Nov. 2019.

[8] S. Park et al., ‘‘Neuromorphic speech systems using advanced ReRAM-
based synapse,’’ in IEDM Tech. Dig., pp. 25.6.1–25.6.4.

[9] H.Wu et al., ‘‘Device and circuit optimization of RRAM for neuromorphic
computing,’’ in IEDM Tech. Dig., 2017, pp. 11.5.1–11.5. 4.

[10] H. Liu, M. Wei, and Y. Chen, ‘‘Optimization of non-linear conductance
modulation based on metal oxide memristors,’’ Nanotechnol. Rev., vol. 7,
no. 5, pp. 443–468, Oct. 2018.

[11] G. W. Burr et al., ‘‘Experimental demonstration and tolerancing of a large-
scale neural network (165 000 synapses) using phase-change memory
as the synaptic weight element,’’ IEEE Trans. Electron Devices, vol. 62,
no. 11, pp. 3498–3507, Nov. 2015.

[12] J. Woo and S. Yu, ‘‘Impact of selector devices in analog RRAM-based
crossbar arrays for inference and training of neuromorphic system,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 9, pp. 2205–2212,
Sep. 2019.

[13] S. A. Khan and S. Kim, ‘‘Comparison of diverse resistive switching char-
acteristics and demonstration of transitions among them in al-incorporated
HfO2-based resistive switching memory for neuromorphic applications,’’
RSC Adv., vol. 10, no. 52, pp. 31342–31347, 2020.

[14] P.-Y. Chen et al., ‘‘Mitigating effects of non-ideal synaptic device char-
acteristics for on-chip learning,’’ in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design (ICCAD), Nov. 2015, pp. 194–199.

[15] M.-K. Park et al., ‘‘Field effect transistor-type devices using high-K
gate insulator stacks for neuromorphic applications,’’ ACS Appl. Electron.
Mater., vol. 2, no. 2, pp. 323–328, 2019.

[16] Y.-T. Seo, M.-K. Park, J.-H. Bae, B.-G. Park, and J.-H. Lee, ‘‘Implemen-
tation of synaptic device using various high-K gate dielectric stacks,’’
J. Nanosci. Nanotechnol., vol. 20, no. 7, pp. 4292–4297, Jul. 2020.

[17] M.-K. Park et al., ‘‘CMOS-compatible low-power gated diode synaptic
device for hardware-based neural network,’’ IEEE Trans. ElectronDevices,
vol. 69, no. 2, pp. 832–837, Feb. 2022.

[18] P.-Y. Chen, X. Peng, and S. Yu, ‘‘NeuroSim: A circuit-level macro
model for benchmarking neuro-inspired architectures in online learning,’’
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 37, no. 12,
pp. 3067–3080, Dec. 2018.

[19] D. Querlioz, P. Dollfus, O. Bichler, and C. Gamrat, ‘‘Learning with mem-
ristive devices: How shouldwemodel their behavior?’’ inProc. IEEE/ACM
Int. Symp. Nanosc. Architectures, Jun. 2011, pp. 150–156.

[20] J. Fu, Z. Liao, N. Gong, and J. Wang, ‘‘Mitigating nonlinear effect of
memristive synaptic device for neuromorphic computing,’’ IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 377–387, Jun. 2019.

[21] W. Zhang et al., ‘‘Hardware-friendly stochastic and adaptive learning in
memristor convolutional neural networks,’’ Adv. Intell. Syst., vol. 3, no. 9,
2021, Art. no. 2100041.

[22] W.-Q. Pan et al., ‘‘Strategies to improve the accuracy of memristor-based
convolutional neural networks,’’ IEEE Trans. Electron Devices, vol. 67,
no. 3, pp. 895–901, Mar. 2020.

[23] M. Ito et al., ‘‘Lightweight refresh method for PCM-based neuromorphic
circuits,’’ in Proc. IEEE 18th Int. Conf. Nanotechnol., Jul. 2018, pp. 1–4.

[24] O. Bichler,M. Suri, D. Querlioz, D. Vuillaume, B. DeSalvo, andC.Gamrat,
‘‘Visual pattern extraction using energy-efficient ‘2-PCM synapse’ neu-
romorphic architecture,’’ IEEE Trans. Electron Devices, vol. 59, no. 8,
pp. 2206–2214, Aug. 2012.

[25] M. Suri et al., ‘‘Interface engineering of PCM for improved synaptic
performance in neuromorphic systems,’’ in Proc. 4th IEEE Int. Memory
Workshop, May 2012, pp. 1–4.

[26] S. Yu, X. Sun, X. Peng, and S. Huang, ‘‘Compute-in-memory with emerg-
ing nonvolatile-memories: Challenges and prospects,’’ in Proc. IEEE Cus-
tom Integr. Circuits Conf. (CICC), Mar. 2020, pp. 1–4.

[27] A. Singh, M. A. Lebdeh, A. Gebregiorgis, R. Bishnoi, R. V. Joshi, and
S. Hamdioui, ‘‘SRIF: Scalable and reliable integrate and fire circuit ADC
for memristor-based CIM architectures,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 68, no. 5, pp. 1917–1930, May 2021.

[28] A. Shafiee et al., ‘‘ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,’’ ACM SIGARCH Comput.
Archit. News, vol. 44, no. 3, pp. 14–26, 2016.

[29] M. Hu et al., ‘‘Dot-product engine for neuromorphic computing: Program-
ming 1T1M crossbar to accelerate matrix-vector multiplication,’’ in Proc.
53rd ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2016, pp. 1–6.

[30] G. Burr et al., ‘‘Large-scale neural networks implemented with non-
volatile memory as the synaptic weight element: Comparative perfor-
mance analysis (accuracy, speed, and power),’’ in IEDM Tech. Dig., 2015,
pp. 4.4.1–4.4.4.

[31] C.-C. Chang et al., ‘‘Mitigating asymmetric nonlinear weight update
effects in hardware neural network based on analog resistive synapse,’’
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 1, pp. 116–124,
Mar. 2018.

[32] J. Wu,W. Hu, H. Xiong, J. Huan, V. Braverman, and Z. Zhu, ‘‘On the noisy
gradient descent that generalizes as sgd,’’ in Proc. Int. Conf. Mach. Learn.,
2020, pp. 10367–10376.

[33] A. Fumarola et al., ‘‘Accelerating machine learning with non-volatile
memory: Exploring device and circuit tradeoffs,’’ in Proc. IEEE Int. Conf.
Rebooting Comput. (ICRC), Oct. 2016, pp. 1–8.

[34] L. Deng, ‘‘The MNIST database of handwritten digit images for machine
learning research [best of the web],’’ IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141–142, Nov. 2012.

[35] H. Kim et al., ‘‘Zero-shifting technique for deep neural network training
on resistive cross-point arrays,’’ 2019, arXiv:1907.10228.

[36] P.Wimmer, J. Mehnert, and A. Condurache, ‘‘FreezeNet: Full performance
by reduced storage costs,’’ in Proc. Asian Conf. Comput. Vis., 2020,
pp. 1–17.

[37] R. Pascanu, T. Mikolov, and Y. Bengio, ‘‘On the difficulty of train-
ing recurrent neural networks,’’ in Proc. Int. Conf. Mach. Learn., 2013,
pp. 1310–1318.

[38] T. Gokmen and W. Haensch, ‘‘Algorithm for training neural networks on
resistive device arrays,’’ Frontiers Neurosci., vol. 14, p. 103, Feb. 2020.

[39] S. Hyun Jo, T. Kumar, S. Narayanan, W. D. Lu, and H. Nazarian, ‘‘3D-
stackable crossbar resistive memory based on field assisted superlinear
threshold (FAST) selector,’’ in IEDM Tech. Dig., Dec. 2014, pp. 6.7.1–
6.7.4.

[40] C.-H. Wang et al., ‘‘3D monolithic stacked 1T1R cells using monolayer
MoS2 FET and hBN RRAM fabricated at low (150◦C) temperature,’’ in
IEDM Tech. Dig., 2018, pp. 22.5.1–22.5.4.

[41] J.-H. Lee, D.-H. Lim, H. Jeong, H. Ma, and L. Shi, ‘‘Exploring cycle-
to-cycle and device-to-device variation tolerance in MLC storage-based
neural network training,’’ IEEE Trans. Electron Devices, vol. 66, no. 5,
pp. 2172–2178, May 2019.

[42] X. Sun and S. Yu, ‘‘Impact of non-ideal characteristics of resistive synaptic
devices on implementing convolutional neural networks,’’ IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 9, no. 3, pp. 570–579, Sep. 2019.

[43] S. Dong et al., ‘‘A backpropagation with gradient accumulation algorithm
capable of tolerating memristor non-idealities for training memristive neu-
ral networks,’’ Neurocomputing, vol. 494, pp. 89–103, Jul. 2022.

154 VOLUME 8, NO. 2, DECEMBER 2022

