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ABSTRACT Analog compute schemes and compute-in-memory (CIM) have emerged in an effort to
reduce the increasing power hunger of convolutional neural networks (CNNs), which exceeds the constraints
of edge devices. Memristive device types are a relatively new offering with interesting opportunities for
unexplored circuit concepts. In this work, the use of memristive devices in cascaded time-domain CIM
(TDCIM) is introducedwith the primary goal of reducing the size of fully unrolled architectures. The different
effects influencing the determinism in memristive devices are outlined together with reliability concerns.
Architectures for binary as well as multibit multiply and accumulate (MAC) cells are presented and evaluated.
As more involved circuits offer more accurate compute result, a tradeoff between design effort and accuracy
comes into the picture. To further evaluate this tradeoff, the impact of variations on overall compute accuracy
is discussed. The presented cells reach an energy/OP of 0.23 fJ at a size of 1.2 µm2 for binary and 6.04 fJ at
3.2 µm2 for 4× 4 bit MAC operations.

INDEX TERMS Compute-in-memory (CIM), convolutional neural networks (CNNs), memristive devices,
time-domain (TD) computing, time-domain CIM (TDCIM).

I. INTRODUCTION

SURPASSING the standing record in the ImageNet chal-
lenge by far, AlexNet started a continued surge in the

use of convolutional neural networks (CNNs). A trend of
ever-increasing network complexity is observed improving
the accuracy while increasing the memory footprint and
power consumption. To tackle both these challenges, new
schemes for computation have emerged, which take inspira-
tion from the human brain, i.e., the domain of neuromorphic
computing. Thereby, one key principle is to compute-in-
memory (CIM), an approach that co-locates data and com-
putation to address the von Neumann bottleneck [1].

In this domain, analog computing is often considered to
decrease power consumption further. The resilience of deep
neural networks to a certain degree of imprecision is exploited
with a moderate impact on the classification accuracy [2].
While current and charge domain computing have enjoyed
high popularity for CIM [1], [3], [4], [5], they require expen-
sive analog-to-digital conversion and lack in ability of voltage

scaling. A different compute scheme is time-domain CIM
(TDCIM). In time-domain (TD) computing, the values are
encoded as discrete arrival times of signal edges. While sig-
naling is sample discrete, the arrival time is fundamentally
continuous. Similar to charge and current, time is inherently
additive, allowing for efficient accumulation operations.

TD implementations vary, one example being the integra-
tion of currents on a capacitor and observing the reached
voltage level [6], [7]. The total time is given using (1), with N
as the number of multiply and accumulate (MAC) operations
and IMAC as the current component of a singleMACoperation

t =
C · U∑N IMAC

. (1)

It becomes evident that for rising N , the time difference
between MAC results diminishes, making time-to-digital
conversion increasingly harder. Compensating this effect by
increasing voltage, U , or output capacitance, C , comes with
added cost. In this tradeoff, N is kept small, requiring more
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FIGURE 1. Cascaded TDCIM array.

time-to-digital conversions and accumulation of partial sums
in the digital domain thereby increasing power consumption.

Cascaded TDCIM chains digitally adjustable delay ele-
ments to introduce a delay as a function of the multiplica-
tion result (see Fig. 1). The full-swing operation now offers
margin for voltage scaling. Cascaded TDCIM is first intro-
duced in [8] where registers are implemented by standard cell
latches, allowing to unroll the complete kernel in a weight-
stationary dataflow. However, the adopted standard cell
memory suffers from large area. For a binary network imple-
mentation with an energy efficiency of 1.05 POPS/W, [9]
devotes 22% of the total MAC area to memory. In [10],
a cascaded TDCIM for ternary operation at 716 TOPS/W is
shown using custom current-starved inverters combined with
static random-access memory (SRAM). The used custom
SRAM co-integrates the delay cell, leading to memory foot-
print of 50% of the total MAC area. For multibit operation,
the increased memory size limits realizable chain length.

The designs in [11], [12], and [13] all use commercial
SRAM separating memory and MAC operation. Due to the
row sequential access of SRAMs, the chain size is limited
by the number of SRAM columns. Therefore, these designs
have short chain lengths of 128, 121, and 64, respectively.
The two-terminal memristive switching devices can be used
to replace SRAM to reduce the area. Among the different
physical realizations, filamentary switching devices based
on the valence change mechanism (VCM) are one of the
most studied variants [14]. First memory macros have been
introduced for embedded memory applications [15], [16].
Using such memory arrays, further application areas such
as neuromorphic engineering have been demonstrated [17],
[18]. Best area savings are achieved in monolithic 3-D struc-
tures placing the memristive devices in the back end of line
(BEOL). Further area reduction potential results from their
potentially high resistance leading to smaller caps in the delay
elements. At the same time, their nonvolatile storage provides
inherent leakage power savings.

On the downside, today’s devices still feature high vari-
ability. As TDCIM is susceptible to process, temperature,
and voltage (PVT) variations, prudent assessment of this is
key. This work aims to assess these nonidealities and their
impact on important design metrics to better understand the

FIGURE 2. TDC (a) binary and (b) multibit using threshold chain,
tth, and temperature-coded output, Q.

tradeoffs and limits that memristive devices entail in cascaded
TDCIM. Section II gives an introduction into the general con-
cept of memristive cascaded TDCIM. Section III introduces
basic concerns of VCM reliability and mechanism of vari-
ability. Section IV presents a binary TDMAC cell based on
VCM and discusses the implications of those nonidealities.
In Section V, this concept is extended to the multibit case.
Finally, we conclude in Section VI.

II. CASCADED TDCIM ARCHITECTURE
The operation of the typical convolution layer is shown in (2),
where x is the input activation andw is the weight vector. f is
the activation function and usually the binarize function for
binary neural networks (BNNs) and the rectified linear unit
(RELU) function for CNNs

Z = f (w · x). (2)

In TD computing, cascaded variable delay elements can
implement an accumulation. Each element realizes the delay
to encode one multiplication result, thus realizing the MAC
function. Unlike in the traditional digital circuits, the convo-
lution result is therefore presented as an accumulated delay.

For the TDCIM architecture, the weights of one kernel are
stored in the memory of one computing chain. For a kernel
size of N with M computing chains in parallel, the total
area, Atot, is given by M · N · Acell + ATDC with the cell
area, Acell, and the area for time-to-digital converter (TDC),
ATDC. After computing a convolution, the activation signals
are changed, whereas the weights can remain in memory. The
weights are only updated after the complete output feature
map is computed, thus reducing the data movement from the
main memory. The input activation can be shared by all the
computing chains and further reduce the data movement.

The MAC computation is processed in the TD and will
be converted into the digital domain by TDCs. For BNN,
the TDC is reduced to a sampling of the output at a spe-
cific time-point using a standard flip-flop, as shown in
Fig. 2(a) [9]. Based on the arrival time of the computing
delay, tcmpt, and the threshold delay, tth, the binarized out-
put, out, is generated. For multibit CNNs, sampling can
also be performed using a threshold chain, producing a
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temperature-coded output [see Fig. 2(b)] [19]. To save area,
sampling can alternatively be performed by an oscillator
combined with a counter resulting in a tradeoff between area
and sampling noise as variations get amplified by the number
of oscillations. Using the same delay elements in TDC as
for the compute chain ensures best attenuation of global chip
variations. While it is not possible to subtract time, there are
multiple ways to implement negative numbers in TD com-
puting. By adding an offset to the delay, negative numbers
can be represented by shorter delays than said offset, as done
in [12] and [20]. In [8] and [21], a negative and a positive
path are used with the numeric value being represented by
the difference in delay.

By representing positive numbers with delays of a cer-
tain edge type and negative numbers with delays of the
complementary edge type, duty cycle as an output with
50% marks the sign swap [22]. A basic technique to realize
multibit numbers in TD lies in the bit-serial approach. Here,
a multiplication can be split up into multiple multiplications
with reduced word length down to binary. This way, negative
values can be implemented by means of sign magnitude
representation or one’s/two’s complement as done in [13].

A. MEMRISTIVE TDCIM
Memristive devices are used as the resistive component of
the RC element in TD computing. The resulting difference
in cell delay as a function of resistive states R1 and R2 is
approximated according to (3). In a cascaded TD design, C is
typically realized by the input capacitance of an inverter stage
that follows the memristor:

1tcell = 0.69(τ2 − τ1) = 0.69(R2 − R1) · C . (3)

As the numeric result is a function of programmed resistance
values, any device-to-device or cycle-to-cycle variations in
the memristive elements impact this delay value. As there
are no write operations within the multiplication of a kernel
with the input feature map, these two can be lumped to a
single variation in resistance. An equivalent of the classical
signal-to-noise ratio (SNR) can be found for TD computing
in (µt/σt ), with µt being the average delay step and σt being
its standard deviation. Therefore, not only the variation in
resistance but also the total resistance is important. Roughly a
constant variation in current can be assumed for the low resis-
tance state (LRS). For higher resistances within this state, this
leads to an increase in the relative variation, as the nominal
current, Inom, goes down according to (4). This observation is
also made in [23] for cycle-to-cycle variations and in [24] for
chip-to-chip variations. For this reason, small delays can be
realized with lower variations than higher delays

R
Rnom

=
Unom · Inom

Unom · (Inom +1I )
=

Inom
Inom +1I

. (4)

In the binary case, the high resistance state (HRS) is pro-
grammed to realize long delays. As long delays introduce
higher total error for the same relative error, HRS variability
bounds binary accuracy. On the other hand, resistances for

FIGURE 3. Experimental characteristics of ZrO2 VCM cells.
(a) Resistance distributions. (b) SET kinetics redrawn from [39].

multibit lie within the LRS to allow formultiple steps of resis-
tance. Thus, multibit accuracy is bound by LRS variability.

Besides the effects influencing variability, reliability
aspects have to be considered. These include read disturb,
writability, and forming and will be addressed in the next
section.

III. VARIATIONS AND RELIABILITY CONCERNS OF VCM
The VCM cells consist in their simplest form of a metal
oxide (e.g., TiO2, ZrO2, HfO2, Ta2O5, or SrTiO3) sand-
wiched between two different metal electrodes [25]. The
switchingmechanism inVCMcells is based on themovement
of oxygen vacancy defects within the oxide region [26], [27].
Prior to the repetitive switching, a so-called electroforming
process is required, during which the oxygen vacancies are
introduced into the system via an oxygen exchange process
at the metal/oxide interfaces [28]. While it only happens
once, the variability of this process may influence the later
switching performance and can already lead to device-to-
device variability [29]. Due to the switching variability also
the programmed states show some variability as illustrated in
Fig. 3(a). Whereas the programmed high resistive state shows
a log-normal distribution, the programmed low resistive state
shows a normal distribution of the resistance states. This
behavior is typical for filamentary VCM cells [30], [31],
[32]. It was observed that the states relax after programming,
which leads to a widening of the distribution [33], [34],
[35]. Moreover, it was shown that reprogramming the tail
bits (i.e., shaping the distribution) by applying an additional
programming pulse has no effect as the stable distribution is
restored after some time [30], [34], [35]. Another variability
aspect of concern is the state retention, i.e., the change in
the resistance over time. It has, however, been shown that
the states are stable over few hundred hours at temperatures
above 150 ◦C [36], [37], [38].
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Read disturb describes the directed change in a resis-
tance distribution under a repeated application of read pulses.
It therefore not only represents a variability concern but
one for reliability as well. So far, read disturb properties
have been mostly investigated for binary devices and under
the assumption of constant voltage during each read pulse.
Under these assumptions and for the use case of an embed-
ded memory, recent results have shown that read disturb is
not a critical issue in advanced integrated technologies [36].
In [39], we have demonstrated read disturb stability for binary
devices under constant read voltage pulses for up to 5 × 1010

VMM operations suggesting that far larger numbers of read
operations are possible than the conventionally investigated
for memory applications under the right conditions. For this
stability, the SET voltage has to be kept below−0.3 V and the
RESET voltage has to be kept below 0.5 V. While short read
pulses can be expected for cascaded TDCIM, further investi-
gations must be made on read disturb, as shape and duration
of the read pulse heavily depend on circuit implementation.

Besides read disturb, other reliability aspects have to be
investigated for the use of memristors. Due to the ionic
nature of the switching mechanism, the switching process
is inherently stochastic. Owing to the small dimensions of
the filament, Joule heating occurs in this device accelerating
the switching process further. On one hand, Joule heating is
the key enabler solving the voltage–time dilemma, i.e., high
stability at small read voltages while enabling fast switching
times at high write voltages [40]. On the other hand, Joule
heating introduces a positive feedback during switching [41],
leading to a strong state dependence of the switching time.
It has been shown that the switching time can vary over orders
of magnitudes for a given voltage from cycle-to-cycle and
device-to-device [42], [43]. In consequence, one can expect
to have slow switching devices and fast switching devices in
an array, as illustrated in Fig. 3(b). Tuning for goodwritability
therefore also increases susceptibility to read disturb. The
spread of switching times has further implications on the
writing process. In principle, the programming pulsewidth
could be chosen long enough for successful one-shot pro-
gramming. However, most devices will then switch early and
a high amount of energy is dissipated. Moreover, the fast
switching devices may be overprogrammed leading to failed
rewrite attempts. Thus, in most cases, a so-called write-verify
process is used to program desired resistance states [33], [44].
Le et al. [33] demonstrate such programming of eight differ-
ent resistance states on a large array. Resistance relaxation
or retention describes changes in the programmed resistance
distributions and therefore also introduces reliability con-
cerns. In contrast to read disturb, it is neither directed to a
certain resistance state nor directly associated with repeated
reading as exhibited, e.g., by the relaxed HRS distribution
in Fig. 3(a). In [33], the retention properties of 3-bit VCM
cells were investigated in which the bit error rate (BER)
was increased from 0% to 0.6% after the experiment. As the
relaxation is stronger at higher, resistances the resistances
were all kept below 35 k� [33].

FIGURE 4. Binary MAC cell. (a) CMOS only. (b) Memristive-
based. (c) Stick diagram of the memristive-based cell for area
estimation.

The maximum required voltages to operate the devices
are important as they have to be supported by the transis-
tors. As the initial forming step requires the highest voltages
applied for the longest time, it is the most critical one in
that regard. Different proposals have been made to tackle
this problem such as implanting the oxide of the VCM
devices [45] or adapted pulsing schemes [46]. In [47], the
use of an additional deep n-well allowed for keeping all the
applied voltages within the limitations of the core devices
(1 V), while still allowing for high enough voltages for the
forming process (1.65 V). In addition, the gap between form-
ing voltage and technology node has been shrinking from
around 2 V at 130 nm to about 1 V at 14 nm [47]. Compared
with bulk devices, fdSOI offers elevated drain-source break-
down voltage (BVDS) with [48] reporting more than 2 V
for soft breakdowns in a 22-nm process. Therefore, elevated
voltages for the forming step can be tolerated, as this step is
done only once, and time-dependent degradation therefore is
negligible.

To investigate the variability and reliability of filamentary
VCM cells as shown in Fig. 3(a), the respective devices
with a 30-nm Pt/5-nm ZrO2/20-nm Ta/30-nm Pt stack were
fabricated into a 7 × 7 µm crossbar architecture. The Pt
bottom electrode is connected to ground and all voltages are
applied to the Ta/Pt top electrode. However, for the sake of
comparability, all the voltages in this article are given with
respect to 0 V at the Ta/Pt top electrode. Further details on the
device fabrication and the measurement setup can be found
in [39].

IV. PROPOSED MAC CELL FOR BNNs
Fig. 4(a) shows implementations for binary TDCIM MAC
cells in classical CMOS (a) comparedwith amemristor-based
solution (b) and the corresponding stick diagram (c). Both
designs allow for computation on rising and falling edges,
increasing the energy efficiency. For BNNs, weights are typ-
ically defined as −1 and 1 as presented in [49]. The values
−1 and 1 can be mapped to 0 and 1, thus translating an
XNOR operation to a multiplication. In the CMOS case, the
XNOR gate therefore implements multiplication. The result
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of the multiplication is then connected to the variable delay
element consisting of a multiplexer and a delay cell. In the
memristive implementation, the memory, multiplication, and
variable delay are not that clearly separable. A construct of
two complementary controlled transmission gates with two
complementary programmed memristors acts as a resistive
XNOR gate. ForW = 1, the lowermemristor is in HRS and the
upper memristor is in LRS, respectively. Thus, X = 1 acti-
vates RHRS in the delay path and X = 0 activates RLRS. For
W = 0, the memristors are swapped, leading to an inverted
operation with respect to X . The resistance of this gate holds
the weight, but also realizes the delay, as it implements an
RC-element when considering the gate capacitance of the
output inverter. The NMOS before the output inverter is used
for programming.

For the memristive implementation, an inverting design is
shownwhereas the CMOS example is noninverting. This only
leads to a swap of trigger direction in TDC in case of an odd
number of delay elements for the inverting case.

A. VARIABILITY ANALYSIS
The delay of individual MAC cells is sensitive to noise and
PVT variations. Here, process variations can be separated into
global or chip-to-chip variations as well as local variations,
which are present on a single chip. For TDCs build from
the same delay cells used for computations, global variations
have the same impact on all the delay paths. Thus, accuracy
of the computation is only susceptible to local variations [50]
considering a matched TDC circuit [9].

The compute chain SNR is directly related to the SNR of a
single cell. As the delay of the individual stages accumulates
over the course of the compute chain, σchain can be obtained
by (5), with N being the length of the compute chain and
µi and σi the mean and standard deviation of the ith cell,
respectively. Thus, the SNR of the computation is given by (6)

σchain =

√√√√ N∑
i

σ 2
i (5)

SNRchain =
µchain

σchain
=

∑N
i µi√∑N
i σ

2
i

. (6)

Due to σchain growing in a square root relationship to the chain
length, longer chains generally provide a better SNR. For the
binary case, the equation can be simplified to the following
equation by assuming the MAC cells delay step size as 1t:

SNRchain,bin =

∑N
i 1t√∑N
i σ

2
1t

= SNRcell ·
√
N . (7)

In [51], we use this relationship to obtain the mean square
error (mse). The central limit theorem allows to assume the
Gaussian variations for the compute chain, leading to the

FIGURE 5. SNR and relative mse over compute chain length.

following equation:

mse =
N∑
i

i2
[
erf
(
(i+ 0.5)

SNRcell
√
2N

)
−erf

(
(i− 0.5)

SNRcell
√
2N

)]
. (8)

Plotting (mse/N ) in Fig. 5 reveals a regime, where mse is
zero. Here, the compute chain length is sufficiently short that
the error is smaller than the threshold for the next value.
The threshold for this regime is given by the following equa-
tion (9) [51]:

1
6

√
N

N + 1
=

1
SNRcell

. (9)

In this regime, the TD computation can be assumed to be
purely deterministic. Usually, operation does not take place
in this regime as it only allows for short compute chains or
large delay increments, and therefore low energy efficiency.

Due to the HRS providing a lower current, classical cross-
bar vector multipliers are specially sensible to the variations
within the LRS state. For binary TD computing, this rela-
tionship is reversed, as the HRS has a higher time constant.
To model the influence of these variations compared with
process variations seen in classical transistors, the PDK of
a commercial 22-nm fdSOI technology was used to obtain
transistor devicemodels including back-annotated variability.
Memristors are modeled with a resistance of configurable
process variability.

In contrast to other compute schemes, cascaded TD com-
puting offers good voltage scaling capabilities. By scaling
voltage, efficiency is traded off against lower SNR due
to higher impact of transistor threshold voltage variations.
In Fig. 6, we provide cell level SNR for different voltage lev-
els and different combinations of relative memristor variance
as well as HRS resistances. For low memristor variations,
transistor variations significantly contribute to cell variations,
leading to more than 2% cell variance for σRHRS = 1%.
For scaled voltages, this effect is amplified, leading to cell
variations of more than 4%. For a higher noise assumption,
the memristor variance dominates and this effect diminishes.
Here, we see that higher RHRS delivers better SNR. This can
be explained with an increase inµ, while memristor variation
remains constant over voltage. The red line indicates the HRS
case from the tuned case in Fig. 3(b). The assumed LRS
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FIGURE 6. Binary MAC cell delay variability for changing
memristor variability, σRHRS

, and HRS resistance, RHRS.

FIGURE 7. Write scheme visualization.

resistance is 1.5 k�, in correspondence to the measurements
above. Lower mean resistance leads to a similar SNR as the
example with higher memristor variations but higher mean.

In [51], we show that (σ/µ) below 6% has negligible
impact on network accuracy for the MNIST dataset. While
this threshold is surpassed for the tuned HRS case, for
σRHRS = 5%, the requirement is fulfilled even for voltage
scaling to 0.6 V.

B. WRITE SCHEME AND READ DISTURB
Besides variations, writability and forming of the memristors
are concerns when combined with core devices, as high volt-
age is typically required. For forming, elevated voltages are
assumed to be tolerable, as this step is performed only once.
Tuning for easier writability trades off with susceptibility to
read disturb. Therefore, these concerns are closely related.

Fig. 7 shows the write scheme for the proposed cell. The
inverting property is used, so that setting the chain-wide
programming enable Pen, pulls all the inverter stage inputs to
Pin resulting in a differential voltage over the resistive XNOR

gate. Altering X allows a selection of the memristors to be
written. To reduce the voltage drop over the transistor, fdSOI
back-gate biasing is used, and all the transistors involved in
programming are super low threshold devices. In addition,
the programming signals and the control signals for X can be
chosen higher than Vdd, as the voltage drop over the transistor
ensures safe operating margins for all the devices. This way,
the differential programming voltage can be increased. After
the chain-wide write procedure, a write-verify process can

FIGURE 8. (a) Delay variation of a single cell over 5000 read
cycles. (b) Differential voltage over the memristor.

be implemented for the HRS by controlling the X input
cell-by-cell.

To test for writability, the Verilog-A model presented
in [30] (JART VCM v1b) was used with a reduction of the
maximum oxygen vacancy density of Nplug = Ndisk,max =

4×1026 m3. In this configuration, the HRS resistance, RHRS,
was determined as 150 k� for this configuration, therefore
generating an even longer read voltage pulse than previously.
To find corners for fast and slow switching devices, the
model parameters ldisk, rdisk, Nmin, and Nmax were altered,
which represent the length of the disk region, the radius
of the filament, and the minimum and maximum oxygen
vacancy densities, respectively. To analyze writability, all the
parameters were therefore altered by ±10%. Writability was
confirmed in all the corners.

To ensure read stability, 5000 pulses equivalent to 10 000
computations were applied to the TDMAC cell. Here, the fast
switching corner was set up in an effort to create a realistic
edge case. The relative cell delay shows no systematic drift
and only shows small noise indicating no read disturb issue
even for a supply voltage of 0.8 V [see Fig. 8(a)]. This
can be accounted to really short differential voltage over the
memristor [see Fig. 8(b)] which represents another benefit of
cascaded TDCIM.

C. CELL COMPARISON
Table 1 shows a comparison of binaryMAC cells for cascaded
TDCIM.All the cells can implement unrolled kernels to allow
for minimal memory movement. While [10] provides a small
footprint when scaled, its delay element only consists of a
single current-starved inverter, leading to low SNR. For the
sake of comparability, a version of the design was considered,
which queues multiple delay stages, scaling the SNR by
(Nscale)1/2. For Nscale = 4, a similar (σt/µt ) to this work is
reached.

The design presented in [9] is optimized for SNR at the
cost of area. Therefore, the area-sensitive DLY40 version
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TABLE 1. Comparison of cascaded and unrolled TDCIM cells.

FIGURE 9. Multibit MAC cell schematic.

evaluated in simulation was used for comparison. Area esti-
mation is performed using the stick diagram from Fig. 4(c)
by assuming eight-track cell height corresponding to the
used technology and a width of 18 contact poly pitches of
100 nm [52]. Accounting for technology scaling, the mem-
ristive implementation provides a 2× smaller footprint to [9]
and a 3× smaller footprint to [10] adapted for comparable
SNR. Comparing SNR at scaled voltages reveals another
major advantage of implementing cascaded TDCIM using
memristors. When Vdd approaches the transistor threshold
voltage, the variations in threshold voltage get amplified,
decreasing SNR. Contrary to the transistor, the memristor
read behavior remains linear for lower voltages, leading to
less deterioration of SNR. In this comparison, the setup cor-
responding to the red curve from Fig. 6 is assumed.
Given the same die area, the throughput of the designs is

mainly dominated by two parameters: cell area and delay step
size,1t .Minimizing the former allows for greater parallelism
and therefore better throughput. Using wave pipelining as
shown in [9] computations can be overlapped, speeding up
the time per computation in a chain from tmin + 1t to 1t .
By considering 1

Area1t as a figure of merit for the throughput,
the presented design also proves advantageous.

V. MEMRISTIVE MULTIBIT TDCIM
A. MAC CELL IMPLEMENTATION
Multibit TDCIM is mostly implemented in a bit-serial fash-
ion. Here, MAC cells implement a 1-bit by X -bit multipli-
cation and intermediate results are combined by a shift and
add operation. Slight changes to the MAC cell presented in
Section IV realize such an implementation (see Fig. 9). For
X = 0, the memristor is bridged by the upper TX gate
and blocked by the lower one. For X = 1, the TX gates
change roll and the memristor is connected in series with

FIGURE 10. Multibit INL for (a) σLRS = 1% and (b) σLRS = 2%.

the output inverter. Here, delay depends on the memristor
state. By combining two compute chains, a sign-magnitude
implementation is realized. To realize positive numbers, the
memristors are programmed with (|W | + 1) · Rstep in the
positive chain and Rstep in the negative chain. Negative num-
bers are implemented by switching this assignment for a time
difference ofW ·1tstep between both the chains. For TDC+
RELU, the negative path can be used as the threshold chain
input in Fig. 2.

The write scheme for the multibit version can be directly
copied from the binary case due to the similarity in design.
To prevent stress on the upper TX gate, Pin can, however,
not be globally put above 0.88 V and may only be increased
for cells which are supposed to be written in set direction.
Findings on reliability in Section IV can be applied to the
multibit MAC cell as, besides of the case X = 0, the same
devices are involved in writing and reading the circuit.

Due to the additional logic controlling the upper trans-
mission gate, the area increases by the size of a NOR

gate and an inverter, equivalent to 0.4 µm2. Together
with the negative chain, the area of the multibit design is
2 × (1.2 + 0.4 µm2) = 1.66 · Acell. Energy consumption
increases linearly with the word length of the activation,
resulting in 10.8 fJ for the complete 4 × 4 MAC operation.
Within this section, RLRS is assumed as 15 k�, resulting in a
unit delay step of 27.5 ps. Throughput is limited by the maxi-
mum cell delay, tmax, which is 257 ps for W = 7. At 0.7-V
supply voltage, the energy/Op reduces to 6.04 fJ and tmax
increases to 265 ps.

B. NONLINEARITY AND VARIATIONS
In contrast to the binary case, linearity is a concern for
the multibit case, adding onto variations and noise. Besides
nonlinearities in the transmission gates and the Miller effect,
another effect influences linearity proportional to memristor
variance. As the delay is reciprocal to the conductance of the
memristor, negative deviations in conductance influence the
delay to a higher degree than deviations of same amplitude in
the other direction, hence shifting the mean value. Due to the
relationship in (4), higher delay values have higher variance
and therefore are influenced to higher degree by this effect.
Comparing integral nonlinearity (INL) of σLRS = 1% and
σLRS = 2%, this becomes obvious, as for σLRS = 2% INL
increases (see Fig. 10).
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FIGURE 11. Network accuracy evaluation.

Unwanted deviations in the delays for X = 0 can be noted.
To ensure writability, the memristor is only isolated from the
input direction, leading to current flowing into the parasitic
capacitance of the closed transmission gate. Thus, a spread in
delay values is observed for X = 0.

C. NETWORK ACCURACY
Different combinations of X and W will have different stan-
dard deviations, leading to a complex relationship between
error and chain length. The error of a single computation, e,
can be estimated using (10), and the resulting error after the
shift&add operation can then be modeled with (11)

µchain =

N∑
i

inl(xi,wi), σchain =

√√√√ N∑
i

σ 2
cell(xi,wi) (10)

e =
B∑
i

2i ·N (µchain, σchain). (11)

To estimate the resulting effect on network accuracy, the
error model of (11) was applied to resnet20 on the CIFAR10
dataset. For the quantized networks, the first layer and the
last layer were kept at 8 bit without added noise and the TDC
is assumed to be sufficiently accurate. The results for INL
and σcell were obtained by averaging falling and rising edge
results. The achieved accuracies after training are shown in
Fig. 11. For Vdd = 0.8 V, the memristor variation dominates,
leading to a drop in accuracy from σLRS = 1% to σLRS =
2%. For scaled voltages, the transistor variance increases and
acts as the new bottleneck, leaving only a small difference
between both the variation levels. Voltage scaling below 0.7V
was not attainable as the overall noise increases too much.
Amethod to allow further voltage scaling could lie in increas-
ing RLRS, hence sacrificing throughput for improved SNR.

VI. CONCLUSION
In this work, the use of memristive devices for TDCIM
is evaluated. Thereby, benefits of the cascaded approach
for TD computing based on these devices offer promising
alternatives to classical memory especially considering area
reduction. Variability and reliability aspects of memristive
devices were discussed in the context of TDCIM applica-
tions. An implementation for a binary TDCIM MAC cell is
presented, and rigorous analysis on the impact of variations
and reliability was performed. While the reached SNR is

still not fully competitive to pure CMOS implementation at
regular supply voltages, all other design goals could be met
or surpassed for the memristive implementation. For reduced
supply voltages, the memristive implementation outperforms
even in terms of SNR. We expect that improvements in man-
ufacturing quality soon will close this gap, enabling highly
competitive memristive TD implementations. The limits on
tolerated variations to achieve this goal were derived for the
binary case.

In addition to the binary case, the TDCIM MAC cell
was altered to support multibit operation. The proposed cell
introduces minimal overhead in size using the shift&add
operations and offers comparable reliability. An error model
is presented to obtain network accuracy estimates for designs
using nonlinearities and variations and is used to evaluate
network performance. For σLRS = 1%, these nonidealities
could be mitigated in training, almost reaching classification
accuracy to the purely quantized network. While the pre-
sented design shows less headroom for voltage scaling, it is
well-suited for increasing throughput and reducing area.

REFERENCES
[1] V. Sharma, J. E. Kim, Y.-J. Jo, Y. Chen, and T. T.-H. Kim, ‘‘AND8T SRAM

macro with improved linearity for multi-bit in-memory computing,’’ in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2021, pp. 1–5.

[2] C.-Y. Chen, J. Choi, K. Gopalakrishnan, V. Srinivasan, and
S. Venkataramani, ‘‘Exploiting approximate computing for deep learning
acceleration,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2018, pp. 821–826.

[3] Z. Chen, Q. Jin, J. Wang, Y. Wang, and K. Yang, ‘‘MC2-RAM: An
In-8T-SRAM computing macro featuring multi-bit charge-domain com-
puting and ADC-reduction weight encoding,’’ in Proc. IEEE/ACM Int.
Symp. Low Power Electron. Design (ISLPED), Jul. 2021, pp. 1–6.

[4] X. Si et al., ‘‘A 28 nm 64Kb 6T SRAM computing-in-memory macro with
8b MAC operation for AI edge chips,’’ in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, Feb. 2020, pp. 246–248.

[5] M. E. Sinangil et al., ‘‘A 7-nm compute-in-memory SRAM macro sup-
porting multi-bit input, weight and output and achieving 351 TOPS/W and
372.4 GOPS,’’ IEEE J. Solid-State Circuits, vol. 56, no. 1, pp. 188–198,
Jan. 2021.

[6] M. Bavandpour, S. Sahay, M. R. Mahmoodi, and D. Strukov, ‘‘Effi-
cient mixed-signal neurocomputing via successive integration and rescal-
ing,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 3,
pp. 823–827, Mar. 2020.

[7] S. Sahay, M. Bavandpour, M. R. Mahmoodi, and D. Strukov, ‘‘Energy-
efficient moderate precision time-domain mixed-signal vector-by-matrix
multiplier exploiting 1T-1R arrays,’’ IEEE J. Explor. Solid-State Comput.
Devices Circuits, vol. 6, pp. 18–26, 2020.

[8] D. Miyashita, S. Kousai, T. Suzuki, and J. Deguchi, ‘‘A neuromorphic
chip optimized for deep learning and CMOS technology with time-domain
analog and digital mixed-signal processing,’’ IEEE J. Solid-State Circuits,
vol. 52, no. 10, pp. 2679–2689, Oct. 2017.

[9] J. Lou et al., ‘‘All-digital time-domain compute-in-memory engine for
binary neural networks with 1.05 POPS/W energy efficiency,’’ in Proc.
Eur. Solid-State Circuits Conf. (ESSCIRC), 2022, pp. 149–152.

[10] J. Song et al., ‘‘TD-SRAM: Time-domain-based in-memory computing
macro for binary neural networks,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 68, no. 8, pp. 3377–3387, Aug. 2021.

[11] J. Yang et al., ‘‘TIMAQ: A time-domain computing-in-memory-based pro-
cessor using predictable decomposed convolution for arbitrary quantized
DNNs,’’ IEEE J. Solid-State Circuits, vol. 56, no. 10, pp. 3021–3038,
Oct. 2021.

[12] L. R. Everson, M. Liu, N. Pande, and C. H. Kim, ‘‘An energy-efficient one-
shot time-based neural network accelerator employing dynamic threshold
error correction in 65 nm,’’ IEEE J. Solid-State Circuits, vol. 54, no. 10,
pp. 2777–2785, Oct. 2019.

126 VOLUME 8, NO. 2, DECEMBER 2022



Freye et al.: Memristive Devices for Time Domain Compute-in-Memory

[13] P.-C. Wu et al., ‘‘A 28 nm 1 Mb time-domain computing-in-memory
6T-SRAMmacro with a 6.6 ns latency, 1241GOPS and 37.01TOPS/W for
8b-MAC operations for edge-AI devices,’’ in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, Feb. 2022, pp. 1–3.

[14] A. Chen, ‘‘A review of emerging non-volatile memory (NVM) tech-
nologies and applications,’’ Solid-State Electron., vol. 125, pp. 25–38,
Nov. 2016.

[15] A. Hayakawa et al., ‘‘Resolving endurance and program time trade-off of
40 nm TaOx -based ReRAM by co-optimizing verify cycles, reset volt-
age and ECC strength,’’ in Proc. IEEE Int. Memory Workshop (IMW),
May 2017, pp. 1–4.

[16] Y.-C. Chiu et al., ‘‘A 40 nm 2 Mb ReRAM macro with 85% reduction
in FORMING time and 99% reduction in page-write time using auto-
FORMING and auto-write schemes,’’ in Proc. IEEE Symp. VLSI Technol.,
Jun. 2019, pp. T232–T233.

[17] M. Giordano et al., ‘‘CHIMERA: A 0.92 TOPS, 2.2 TOPS/W edge AI
accelerator with 2 MByte on-chip foundry resistive RAM for efficient
training and inference,’’ in Proc. Symp. VLSI Circuits, Jun. 2021, pp. 1–2.

[18] H. Li et al., ‘‘SAPIENS: A 64-kb RRAM-based non-volatile associative
memory for one-shot learning and inference at the edge,’’ IEEE Trans.
Electron Devices, vol. 68, no. 12, pp. 6637–6643, Dec. 2021.

[19] K. Kim, W. Yu, and S. Cho, ‘‘A 9 bit, 1.12 ps resolution 2.5 b/stage
pipelined time-to-digital converter in 65 nm CMOS using time-register,’’
IEEE J. Solid-State Circuits, vol. 49, no. 4, pp. 1007–1016, Apr. 2014.

[20] D. Miyashita et al., ‘‘An LDPC decoder with time-domain analog and
digital mixed-signal processing,’’ IEEE J. Solid-State Circuits, vol. 49,
no. 1, pp. 73–83, Jan. 2014.

[21] S. Gopal et al., ‘‘A spatial multi-bit sub-1-V time-domain matrix multiplier
interface for approximate computing in 65-nm CMOS,’’ IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 8, no. 3, pp. 506–518, Sep. 2018.

[22] J. Yang et al., ‘‘Sandwich-RAM: An energy-efficient in-memory BWN
architecture with pulse-width modulation: Digest of technical papers,’’ in
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019,
pp. 394–396.

[23] C. Giovinazzo et al., ‘‘Analog control of retainable resistance multistates
in HfO2 resistive-switching random access memories (ReRAMs),’’ ACS
Appl. Electron. Mater., vol. 1, no. 6, pp. 900–909, 2019.

[24] R. Yasuhara et al., ‘‘Reliability issues in analog ReRAM based neural-
network processor,’’ inProc. IEEE Int. Rel. Phys. Symp. (IRPS), Mar. 2019,
pp. 1–5.

[25] J. J. Yang and R. S. Williams, ‘‘Memristive devices in computing system:
Promises and challenges,’’ ACM J. Emerg. Technol. Comput. Syst., vol. 9,
no. 2, pp. 1–20, May 2013.

[26] R. Waser, R. Dittmann, G. Staikov, and K. Szot, ‘‘Redox-based resistive
switchingmemories—Nanoionicmechanisms, prospects, and challenges,’’
Adv. Mater., vol. 21, nos. 25–26, pp. 2632–2663, Jul. 2009.

[27] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and
R. S. Williams, ‘‘Memristive switching mechanism for metal/oxide/metal
nanodevices,’’ Nature Nanotechnol., vol. 3, no. 7, pp. 429–433, Jul. 2008.

[28] J. J. Yang et al., ‘‘The mechanism of electroforming of metal oxide
memristive switches,’’ Nanotechnology, vol. 20, no. 21, May 2009,
Art. no. 215201.

[29] G. Bersuker et al., ‘‘Metal oxide resistive memory switching mechanism
based on conductive filament properties,’’ J. Appl. Phys., vol. 110, no. 12,
Dec. 2011, Art. no. 124518.

[30] S. Wiefels, C. Bengel, N. Kopperberg, K. Zhang, R. Waser, and
S. Menzel, ‘‘HRS instability in oxide-based bipolar resistive switching
cells,’’ IEEE Trans. Electron Devices, vol. 67, no. 10, pp. 4208–4215,
Oct. 2020.

[31] V. G. Karpov and D. Niraula, ‘‘Log-normal statistics in filamentary RRAM
devices and related systems,’’ IEEE Electron Device Lett., vol. 38, no. 9,
pp. 1240–1243, Sep. 2017.

[32] P. Huang et al., ‘‘Analytic model for statistical state instability and retention
behaviors of filamentary analog RRAM array and its applications in design
of neural network,’’ in IEDM Tech. Dig., Dec. 2018, pp. 40.4.1–40.4.4.

[33] B. Q. Le et al., ‘‘RADAR: A fast and energy-efficient programming
technique for multiple bits-per-cell RRAM arrays,’’ IEEE Trans. Electron
Devices, vol. 68, no. 9, pp. 4397–4403, Sep. 2021.

[34] A. Fantini et al., ‘‘Intrinsic program instability in HfO2 RRAM and
consequences on program algorithms,’’ in IEDM Tech. Dig., Dec. 2015,
pp. 7.5.1–7.5.4.

[35] S. Clima et al., ‘‘Intrinsic tailing of resistive states distributions in amor-
phous HfOx and TaOx based resistive random access memories,’’ IEEE
Electron Device Lett., vol. 36, no. 8, pp. 769–771, Aug. 2015.

[36] C. Peters, F. Adler, K. Hofmann, and J. Otterstedt, ‘‘Reliability of 28 nm
embedded RRAM for consumer and industrial products,’’ in Proc. IEEE
Int. Memory Workshop (IMW), May 2022, pp. 1–3.

[37] S. Fukuyama, K. Maeda, S. Matsuda, K. Takeuchi, and R. Yasuhara,
‘‘Suppression of endurance-stressed data-retention failures of 40 nmTaOx -
based ReRAM,’’ in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Mar. 2018,
pp. P-MY.4-1–P-MY.4-5.

[38] S. Muraoka, T. Ninomiya, Z. Wei, K. Katayama, R. Yasuhara, and
T. Takagi, ‘‘Comprehensive understanding of conductive filament charac-
teristics and retention properties for highly reliable ReRAM,’’ in Proc.
Symp. VLSI Technol., 2013, pp. T62–T63.

[39] C. Bengel et al., ‘‘Reliability aspects of binary vector-matrix-
multiplications using ReRAM devices,’’ Neuromorphic Comput. Eng.,
vol. 2, no. 3, Sep. 2022, Art. no. 034001.

[40] S. Menzel, U. Böttger, M. Wimmer, and M. Salinga, ‘‘Physics of the
switching kinetics in resistive memories,’’ Adv. Funct. Mater., vol. 25,
no. 40, pp. 6306–6325, Oct. 2015.

[41] K. Fleck, C. La Torre, N. Aslam, S. Hoffmann-Eifert, U. Böttger, and
S. Menzel, ‘‘Uniting gradual and abrupt set processes in resistive switching
oxides,’’ Phys. Rev. Appl., vol. 6, no. 6, Dec. 2016, Art. no. 064015.

[42] F. Cüppers et al., ‘‘Exploiting the switching dynamics of HfO2-based
ReRAM devices for reliable analog memristive behavior,’’ APL Mater.,
vol. 7, no. 9, Sep. 2019, Art. no. 091105.

[43] C. Bengel et al., ‘‘Variability-aware modeling of filamentary oxide-based
bipolar resistive switching cells using SPICE level compact models,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 12, pp. 4618–4630,
Dec. 2020.

[44] V. Milo et al., ‘‘Accurate program/verify schemes of resistive switching
memory (RRAM) for in-memory neural network circuits,’’ IEEE Trans.
Electron Devices, vol. 68, no. 8, pp. 3832–3837, Aug. 2021.

[45] L. Grenouillet et al., ‘‘16 kbit 1T1R OxRAM arrays embedded in 28 nm
FDSOI technology demonstrating low BER, high endurance, and compat-
ibility with core logic transistors,’’ in Proc. IEEE Int. Memory Workshop
(IMW), May 2021, pp. 1–4.

[46] H.-X. Zheng et al., ‘‘Reducing forming voltage by applying bipolar incre-
mental step pulse programming in a 1T1R structure resistance random
access memory,’’ IEEE Electron Device Lett., vol. 39, no. 6, pp. 815–818,
Jun. 2018.

[47] X. Xu et al., ‘‘First demonstration of OxRRAM integration on 14 nm
FinFET platform and scaling potential analysis towards sub-10nm node,’’
in IEDM Tech. Dig., Dec. 2020, pp. 24.3.1–24.3.4.

[48] S. N. Ong et al., ‘‘A 22 nm FDSOI technology optimized for RF/mmWave
applications,’’ in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC),
Jun. 2018, pp. 72–75.

[49] M. Kim and P. Smaragdis, ‘‘Bitwise neural networks,’’ in Proc. Int. Conf.
Mach. Learn., 2016, pp. 1–5.

[50] Z. Chen and J. Gu, ‘‘Analysis and design of energy efficient time domain
signal processing,’’ in Proc. Int. Symp. Low Power Electron. Design,
Aug. 2016, pp. 100–105.

[51] M. Gansen et al., ‘‘Discrete steps towards approximate computing,’’ in
Proc. 23rd Int. Symp. Quality Electron. Design (ISQED), Apr. 2022,
pp. 1–6.

[52] M. Wiatr and S. Kolodinski, ‘‘22FDXTM technology and add-on-
functionalities,’’ in Proc. 49th Eur. Solid-State Device Res. Conf. (ESS-
DERC), Sep. 2019, pp. 70–73.

VOLUME 8, NO. 2, DECEMBER 2022 127


