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ABSTRACT This work discusses the proposal of a spintronic neuromorphic system with spin orbit
torque-driven domain wall motion (DWM)-based neurons and synapses. We propose a voltage-controlled
magnetic anisotropy DWM-based magnetic tunnel junction (MTJ) neuron. We investigate how the electric
field at the gate (pinning site), generated by the voltage signals from pre-neurons, modulates the DWM,which
reflects in the nonlinear switching behavior of neuron magnetization. For the implementation of synaptic
weights, we propose a 3-terminal MTJ with stochastic DWM in the free layer. We incorporate intrinsic
pinning effects by creating triangular notches on the sides of the free layer. The pinning of the domain wall and
intrinsic thermal noise of the device lead to the stochastic behavior of DWM. The control of this stochasticity
by the spin orbit torque is shown to realize the potentiation and depression of the synaptic weight. The
micromagnetics and spin transport studies in synapses and neurons are carried out by developing a coupled
micromagnetic non-equilibrium Green’s function (MuMag-NEGF) model. The minimization of the writing
current pulsewidth by leveraging the thermal noise and demagnetization energy is also presented. Finally,
we discuss the implementation of digit recognition by the proposed system using a spike time-dependent
algorithm.

INDEX TERMS Domain wall motion (DWM), magnetic tunnel junction (MTJ), neuromorphic computing,
pattern recognition, spin orbit torque, thermal effects, voltage-controlled neuron.

I. INTRODUCTION

THE high energy-efficient computational power of brain
has inspired a paradigm shift in hardware implementa-

tion of computing systems [1], [2]. The realization of deep
neural networks (DNNs) on graphics processing unit (GPU)
and application specific integrated circuits (ASICs) based
on CMOS are limited by the high-energy cost associated
with the Von-Neumann bottleneck [3]–[5]. In comparison
to the CMOS implementation, the memristor-based neuro-
morphic computing is promising to be energy-efficient and
scalable down to even 2 nm [6], [7]. Some spintronic devices
such as magnetic tunnel junctions (MTJs), the basic build-
ing block of magnetic random access memories (MRAMs),
are competitive candidates for the next-generation memory

applications, thanks to their non-volatility, high endurance,
low power consumption, high operation speed, and integra-
tion capability [8], [9]. Moreover, the scaling of the MTJ
dimensions changes the switching characteristics of the MTJ
from the non-volatile and deterministic switching [10], [11]
to the super-paramagnetic and stochastic behavior [12], [13].
In recent years, the MTJ has been widely used in neuromor-
phic computing as neurons [14] and synapses [15]. Further-
more, with advances in device fabrication technologies, new
thermally stable and topologically protected spin textures
such as domain walls and skyrmions have emerged. The
synapses and neurons based on these emergent spintronic
phenomenon have been widely used in the neuromorphic
computing [16], [17].
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The voltage control of the surface magnetic anisotropy
(VCMA) in the 5d transition metals results in temporary
lowering of energy barrier during the switching process [18].
Thus, application of voltage along with spin transfer torque
or spin orbit torque in the MTJ switching is promising to
be more energy-efficient [19]. The VCMA is driven by the
electric field dependence of the 5d-orbital occupancy of
the interface atoms [20]. The electric field control of these
devices has attracted extensive attention in memory and logic
applications, as it provides an efficient way to improve the
data storage density [21], [22]. The domain wall velocity in
a magnetic layer varies with change in the surface anisotropy
by VCMA [23]. Moreover, VCMA improves the magnetic
domain nucleation and storage density in a chip [24]. The
voltage control ofmagnetic domain traps shows that a pinning
strength of 650 Oe is easily achievable, which is enough
to stop a domain wall moving with 20 m/s [25]. The MTJ
with the domain wall motion (DWM)-based magnetization
switching of the free layer has been shown to provide mul-
tilevel weights for a spin-based neuron model [26]. Thus,
these devices have been used for energy-efficient imple-
mentation of the neuromorphic computing solutions such as
spike time-dependent plasticity (STDP) [27] and unsuper-
vised spintronic clustering [28]. The combined neuromorphic
unit consisting of DWM-based synapse and nanomagnet neu-
rons has shown 95% lower power consumption compared to
CMOS counterparts [26].

This work discusses the proposal of a spintronic neu-
romorphic system with a spin orbit torque-driven DWM-
based neurons and synapses. The DWM in the neuron is
controlled by the electric field at the gate and this electric
field is generated by voltage signals from the pre-neurons.
The application of voltage as input and output variable helps
in reducing power consumption, as pinning site can be turned
ON/OFF only when required. Furthermore, it provides bet-
ter fan-out as post-neuron output from the first stage can
drive a large number of neurons of the next stage, which is
going to play an important role in the realization of large-
scale neuromorphic architectures. So, the proposed device
structure is a 4-terminal MTJ device in which the write,
read, and control paths are completely decoupled from each
other, providing more flexibility in tuning the neuron behav-
ior. For the implementation of the synaptic weight, we pro-
pose a 3-terminal MTJ with stochastic DWM in the free
layer. The edge roughness causes the intrinsic pinning of
the domain wall which leads to the stochastic behavior of
DWM in the presence of spin transfer torque and/or spin orbit
torque [29]. We have incorporated these intrinsic pinning
effects by creating triangular notches on the sides of the free
layer. For modeling the micromagnetics and spin transport
in the synapse and neuron, we developed a micromagnetic
non-equilibrium Green’s function (MuMag-NEGF) coupled
model. We show that thermal effects plus the domain wall
pinning results in stochastic DWM but stochasticity can be
tuned by the external current in the form of a spin orbit
torque. We also explain how leveraging the thermal noise,

FIGURE 1. (a) Voltage-controlled neuron with the reference layer
of length 50 nm, for realization of spiking neuron output. (b) For
the same current density, the device with larger reference layer,
length L = 170 nm, switches gradually, thus the sigmoid
function of the tunable slope can be realized. (c) MTJ-Synapse
device structure with notches for artificial pinning and
stochasticity.

demagnetization energy, and anisotropy energy can minimize
the writing current pulsewidth. Finally, using STDP learning
algorithm, we discuss the implementation of neuromorphic
circuit for digit recognition application. We end by conclud-
ing a basic summary of our results and discussing the future
prospects of our work.

II. VOLTAGE-CONTROLLED NEURON AND
STOCHASTIC SYNAPSE DEVICES
The proposed neuromorphic system is based on a
3T-MTJ with an extended free layer with dimensions
512 × 128 × 2 nm3. The free layer is having a domain wall
as shown in Fig. 1(a). The reference layer and the tunnel
barrier are placed toward the right with width same as the
free layer but the effective MTJ length is varied in order to
capture the neuron output characteristics. The easy axis of the
free and reference layers lies in the z-direction. Depending
upon the length of the reference layer, the neuron output
voltage switches from low to high as a sharp spike for small
dimensions or it switches gradually for larger dimensions
as shown in Fig. 1(b), resulting in nonlinear sigmoid type
thresholding. The DWM is driven by the spin orbit torque
generated at the free layer (CoFeB)/heavy metal (Pt) inter-
face. The direction of DWM depends upon the charge current
direction in the heavy metal. Charge current moving in the
−x-direction (electrons in the +x-direction) drives DWM
right, whereas charge current in +x drives DWM in the
−x-direction. Since we have put the reference layer toward
right of the origin, a short negative current pulse is used to
drive the neuron throughout our simulation. The extra gate
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(oxide layer) is placed at the 30 nm right between the origin
and the MTJ. This small oxide layer acts as the gate by
controlling the surface anisotropy of the free layer below the
gate oxide. The electric field at the gate/free layer interface
modulates the 5d-orbital occupancy of surface’s atoms which
varies the surface’s anisotropy [30]. The current signals from
the pre-neurons after getting weighted by their respective
synapses add up and generate gate voltage. Depending upon
the sign and magnitude of gate voltage, the anisotropy can
be increased or reduced by few percent (5%). This results in
the increasing of the DW velocity, reduction of DW velocity,
or complete pinning of DW.

Fig. 1(c) shows the MTJ synapse device structure with
dimensions 1 µm × 128 nm × 2 nm. We consider the
domain wall at the origin (0) and it moves in both +x and
−x with the application of charge current across the heavy
metal. The magnetic free layer/heavy metal interface gener-
ates SOT which acts as the main driving force for the DWM.
For the realization of the thermally stable resistance values,
the domain wall should remain stable in the absence of an
external bias. Thus, we create artificial pinning in our design
which can be justified by the interface roughness resulting
in some intrinsic pinning of the DW. We model this pinning
by creating small (5–10) nm triangular notches in the free
layer sides. In the presence of thermal noise and pinning, the
DWM becomes stochastic but, by applying a proper number
of positive and/or negative SOT pulses, the DWends up either
in the right end with current in−x-axis or it moves left in the
presence of +x directed current pulses.

III. SYNAPSE AND NEURON MODELING
For modeling the micromagnetics and spin transport in
synapses and neurons, we developed a MuMag-NEGF cou-
pled model as shown in Fig. 2(a). The micromagnetic simu-
lations were carried out using MuMax having Landau Lipsitz
Gilbert (LLG) equation as the basic magnetization dynamics
computing unit [31]. The LLG in the absence of any spin
transfer torque or spin orbit torque term describes the mag-
netization evolution by

dm̂
dt
=
−γ

1+ α2
[
m̂×Heff + m̂× (m̂×Heff )

]
(1)

where m̂ is the normalized magnetization vector, γ is the
gyromagnetic ratio, α is the Gilbert damping coefficient,
and Heff = (−1/µ0MS )(δE/δm) is the effective magnetic
field aroundwhichmagnetization process. The total magnetic
energy of the free layer includes exchange energy, Zeeman
energy, uniaxial anisotropy energy, demagnetization energy,
and any other energy terms [32]

E (m) =
∫
V

[
(A∇m)2

]
−µ0M .Hext −

µ0

2
M .Hd −

−→
KU .M

]
dv. (2)

We also include the thermal noise term into our simula-
tions by adding a random field term Hth as a function of

FIGURE 2. (a) MuMax coupled NEGF model for micromagnetics
and spin transport study of synapses and neurons. (b) Pictorial
representation of NEGF formulation of the neuron and synapse
for computation of resistance (weight) and post-neuron output.

the temperature with properties [33] such as zero mean and
spatially–temporally uncorrelated

〈Hth(r, t)〉 = 0 (3)

〈Hth(r, t)〉.〈Hth(r′, t ′)〉 =
2kBTα
MSγ

δ
(
r − r ′

)
δ
(
t − t ′

)
. (4)

By adopting the method from [34], [35], we add spin orbit
torque as a custom field term in MuMax

τSOT = −
γ

1+ α2
aJ [(1+ ξα)m× (m× p)

+ (ξ − α)(m× p)]

aJ =

∣∣∣∣ }
2MSeµ0

θSHj
d

∣∣∣∣ and p = sign (θSH) j × n (5)

where θSH is the spin Hall coefficient of the material, j is the
current density, and d is the free layer thickness.
Themagnetization of the free layer computed fromMuMax

acts as the input variable to the spin transport (NEGF) module
which computes the time evolution of the synapse resistance
and the neuron output. We use effective mass tight binding
and mode space approach method to formulate the MTJ
device as shown in Fig. 2(b) [36]. The complete device
Hamiltonian is expressed as [37]

HD = HLFM + HI1 + HTB + HI2 + HRFM(6) (6)

where HD is the complete device Hamiltonian consisting of
the HLFM, HI , HTB, and HRFM corresponding to the Hamil-
tonians of left FM, interface, TB, and right FM, respectively.
The Hamiltonian is described in terms of onsite potential ε0,
and hopping parameter t is given by

t =
−}2

2ma2
(7)
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where h,m, and a are reduced Planck’s constant, and effective
mass of the electron and lattice spacing in the model, respec-
tively. The retarded Green’s function describing this device is
computed as per [19]

GR (E) =
[
(E + iη)− H −

∑
L −

∑
R
]−1

(8)

and advanced Green’s function as

GA(E) = GR(E)+ (9)

where E is the energy range of interest in the transport
direction and E is computed from the band structure (E, k).
Solving it further, the current between unit cells k and k +

1 is computed by

ICσ = trace

∑
kt

Cσ
i
}

{
Hk , k + 1Gnk+1,k
−Gnk,k+1Hk+1,k

} (10)

Rsyn =
VPreN
IMTJ

(11)

VPostN = VRead − IPostNRF . (12)

IV. RESULTS AND DISCUSSION
The voltage control of the DWM is shown in Fig. 3. The volt-
age control of the surface magnetic anisotropy is expressed
by [38]

KS (V ) = KS (0)−
ξE
tF

(13)

where KS (V ) is the anisotropy at voltage V , E is the electric
field across oxide, ξ is the VCMA coefficient, and tF is
the thickness of the free layer. In Fig. 3(a), we observe that
for the zero bias at the gate, the domain wall moves at an
average velocity of 22.5 m/s, in the presence of the spin
orbit torque. For the positive bias at the gate, the surface
anisotropy of the region below the gate is reduced depending
upon the magnitude of the gate voltage. Table 1 presents the
relationship between the gate voltage required for pinning of
the domain wall and the magnitude of the VCMA coefficient.
We observe that if ξ = 77 and tF = 1 nm, we need
Vgate =1.53 V to completely pin the domain wall. But if value
of ξ = 130 for the same free layer thickness, we need Vgate =
0.9 V for complete pinning. Thus, withmore advancements in
the material engineering in VCMA-based device, we should
be able to operate the proposed devices at smaller voltages.

For our device simulations, we consider ξ = 77 and
tF = 1 nm which corresponds to gate voltage = 1.53 V.
In the case of a positive gate voltage of magnitude 1.53 V,
the domain wall velocity is increased to 27.5 m/s. The neg-
ative gate voltage of same magnitude increases the surface
anisotropy, resulting in the reduction of domain wall veloc-
ity and the domain wall gets completely pinned for voltage
above this threshold value. The domain wall velocity varia-
tion with VCMA has also been reported by [20]. Fig. 3(b)
shows the effect of gate voltage on domain wall velocity.
We can observe that for VG = 0 V, the domain wall velocity

FIGURE 3. (a) Voltage control of the DWM. (b) DW—speed for
zero bias and negative bias case. (c) Neuron threshold function
modulation versus the area of the effective MTJ.
(d) DW—Chirality switching at the pinning site this results in
DW motion in the opposite direction.

increases monotonically but for VG = −0.76 V velocity
first increases then effect of pinning comes into picture at
around 3 ns and at exactly 6 ns we observe the velocity
reducing to near zero value. This indicates complete pinning
of the domain wall. The driving current for all simulations is
6 × 1011 A/m2. In Fig. 3(c), we show the response of MTJ-
neuron magnetization for different cross-sectional areas. For
the same magnitude of current, we observe that if the length
of the reference layer is small, the domain wall traverses
this length abruptly, which reflects in the spike type neu-
ron output. As we increase the length, the output voltage
starts changing gradually. Thus, for spiking type neurons,
we prefer the smaller effective MTJ length, whereas larger
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TABLE 1. Variation of Surface Anisotropy With Gate Voltage for
Different VCMA Coefficients and Ferromagnet Thickness

effective MTJ lengths can be useful for the realization of
the sigmoid-type threshold functions. Thus, by proper device
fabrication, we can adjust the slope of the neuron thresholding
function as per learning algorithm requirement. In Fig. 3(d),
the domain wall configuration at different locations across the
free layer clearly shows a chirality change at the pinning site.
This results in DW-motion in the opposite direction.

Fig. 4(a) shows the domain wall position and post-neuron
output voltage as function of the gate voltage. The domain
wall moves more right with increase in the gate voltage and
this gets reflected in the increased post neuron output voltage.
The neuron output voltage is given by

VPostN = VRead − IPostNRF . (14)

The increasing neuron output voltage indicates reduction in
post-neuron current. Thus, the MTJ gradually switches from
parallel to antiparallel state. The magnitude of neuron out-
put voltage is controlled by the gate voltage. In Fig. 4(b),
we show the response of the post-neuron with respect to
the magnitude of the driving pulse current density. The neu-
ron output voltage response is linear for lower current den-
sity J , which becomes nonlinear for current density around
1.5 × 1012 A/m2 and starts to saturate at J = 2.5×1012 A/m2.
Thus, by tuning the gate bias and driving current simul-
taneously, we can adjust the thresholding function of the
post-neuron as shown in Fig. 4(d). We clearly observe that
the slope of the magnetization evolution with current density
of the MTJ neuron is a strong function of the gate voltage.
The slope for positive gate voltage is steep compared to slope
for negative gate voltage. So, the proposed neuron device
structure is more flexible to adjustments in behavior of the
thresholding function which is valuable to deep learning
community.

The energy per neuron operation versus domainwall veloc-
ity scaling for large and small length effective MTJ is pre-
sented in Fig. 4(c) in which we observe that the domain wall
velocity increases sharply for low energies but a saturating
behavior is seen after 0.15 pJ energy. In addition to that, for
the same energy, the velocity of larger length MTJ is slightly
higher. The time evolution of the synaptic weight in terms
of 3T-MTJ resistance and domain wall position is shown
in Fig. 5. For the realization of the better thermal stability
and non-volatile weights, the temporary domain wall pining
is important as domain wall moves across the free layer.

FIGURE 4. (a) Domain wall position and post-neuron output
voltage controlled by the gate bias. (b) Post-neuron output
response for the driving current density showing more
flexibility in adjusting the behavior of the thresholding function.
(c) Normalized magnetization versus current density for varying
gate voltage. (d) Energy per neuron operation (4 ns) versus
domain wall velocity scaling for large and small length effective.
Note that the current density considered for study in (a) is
2 × 1012 A/m2 and the gate voltage for (b) is 0 V.

In neuron device in the absence of gate voltage, the relation
between DW position and free layer magnetization is almost
similar and linear. So, we can express magnetization in terms
of DW position by

m =
2X
L

(15)

where X is the DW position and L is the free layer length

X = 0→ m = 0,X = L/2→ m = 1

and X = −L/2→ m = −1.

In Fig. 5(a), we clearly observe the pinning and depinning of
the domain wall at different sites across the free layer length.
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FIGURE 5. (a) Time evolution of domain wall position during the
training phase showing potentiation and depression.
(b) Synaptic weight evolution in terms of 3T-MTJ synapse
resistance for potentiation and depression. (c) Input pulse train
with positive current pulses of magnitude 0.3 mA results in the
synaptic depression.

In our proposed device structure, the thermal noise adds to the
stochastic DW behavior caused by pinning. By stochastic we
mean the DWmotion between two pinning points is random.
Considering DW having pinning site on its left and other site
on its right. With application of current the DW starts to move
right (+x) but the pinning barrier reflects it in (-x). Likewise,
as it starts approaching the left pinning site it gets reflected
in (+x) it. Thus, unless we increase the current pulse width or
magnitude, we see a stochastic DWM behavior. The stochas-
ticity is tunable with SOT. In the presence of more positive
current pulses, we observe the domain wall moving righter
and resistance is increased correspondingly which indicates
synaptic weight depression, while the dominating number
of negative current pulses results in the DWM more toward
left. Consequently, the resistance is decreased indicating
synaptic weight potentiation as shown in Fig. 5(b). Fig. 5(c)
shows free layer magnetization evolution in the presence of
SOT pulse train as the domain wall moves. The evolution
in magnetization is fed into the NEGF module to compute
resistance/weight evolution. The amplitude of current pulse
in both cases is 0.3 mA. More details about input pulses
are provided in the supplementary material. The TMR value
considered in our simulations is around 100 and resistance of
MTJ in parallel/antiparallel state as computed by the NEGF
module is 422/825�. The depinning current density is around
2 × 1011 A/m2.

FIGURE 6. (a) DWM after a small current spike. (b) Domain wall
velocity is reduced by three times but still enough for reliable
neuron operation.

To analyze the impact of temperature and demagnetization
on the performance of both neuron and synapse performance,
we simulated the devices in the presence of the thermal noise
with temperature as parameter. In Fig. 6(a), we show that the
presence of thermal noise and demagnetization field help in
reducing the energy dissipation during the neuron operation.
For different driving current pulses with varying pulsewidth,
we show that if the driving current is switched off just around
time 1 ns, the domain wall persists its motion as shown in
Fig. 6(a). But, for reliable detection, the pulsewidth should
be above 1 ns.

In Fig. 6(b), we observe that in the absence of any current
via heavy metal, the domain wall velocity is reduced from
average 60–20m/s but domainwall velocity is still enough for
a reliable writing operation. Thus, we have a tradeoff between
energy dissipation and writing time.

The effect of temperature on synapse resistance is shown
in Fig. 7(a) and (b). Where we show that the evolution of
synapse resistance in time is random. With temperatures
increasing, the resistance begins to drop sharply indicat-
ing increased domain wall velocity. Increasing temperature
results in sharper drop and the critical point in time for this
behavior shits more toward origin. The critical point is at
2 ns for 300 K and drops to 1.6 ns for 340 K. The free layer
magnetization shows an increasing trend with temperature,
but the behavior is stochastic.

V. NEUROMORPHIC CIRCUIT IMPLEMENTATION
Based on the proposed neuron device structure and following
the STDP learning algorithm for the image recognition in
Fig. 8(a), we present the feedforward neural architecture for
the implementation of the digit recognition by the circuit.
The neuromorphic circuit for digit recognition applications is
based on the voltage-controlled neuron and stochastic domain
wall synapses in a cross-bar architecture. The circuit also
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FIGURE 7. (a) Synapse resistance (weight) time evolution for
increasing temperatures shows sharp resistance roll-off after
1.6 ns for high temperatures. (b) Free layer magnetization
versus temperature.

consists of the sensing unit and weight update circuitry as
shown in Fig. 8(b). The circuit description of weight unit
and sensing unit is provided in the supplementary mate-
rial. For the reduced complexity, we represent the image
by 5 × 4 pixel geometry where each pixel can take values
from 0 to 250 mV, where 0 represents completely dark pixel
and 50 mV corresponds to bright pixel. The pre-neuron layer
consists of 20 neurons each representing a pixel from image
and post-neuron layer has total ten neurons representing
digits from 0 to 9, respectively. The number of synapses
(domain wall MTJs) is 200. For training network for digit 1,
we first give a small (−0.7 V) negative voltage bias to
post-neuron-1 and all other post-neurons are biasedmore neg-
atively (−1.5 V) to ensure inhibition. The circuit is presented
with the pre-neuron voltage pulses where each bright digit
pixel has 250 mV amplitude and background noise is below
20 mV.

The total voltage drop across the biasing resistor (transis-
tor) at the post neuron gate is

VG (i) = RG × J (i)+ VB(i)

where VB(i) is the post-neuron-i bias voltage, J (i) is the net
current via gate transistor, and is computed by

J (i) =
n∑

k=1

VPre(k)
Wik

.

Since post-neuron-1 is biased less negatively, in the absence
of any current coming from the pre-neurons, the surface
anisotropy below gate remains high by around 1%–2%, thus
causing domain wall pinning, even if we turn on the driv-
ing current pulse at terminal T3. As soon as the network is

FIGURE 8. (a) Basic feedforward network involving neurons and
synapses in discussion for the circuit representation of the digit
recognition application. (b) Neuromorphic circuit schematic for
the STDP-based digit recognition implementation. (c) Analytical
fitting (average) of the time evolution of the domain wall
position computed with micromagnetic simulations.

presented with the training pulses, the gate voltage at post-
neuron-1 switches from negative to positive which increases
the DW velocity, thus the neuron is on. At the same time,
a short current pulse of current density−2× 1012 A/m2 flows
via heavymetal, driving DW toward right which gets detected
by the effective MTJ.

The domain wall velocity determines the slope of the post-
neuron output and once the neuron fires, the small output sig-
nal is detected by the sensing unit. The sensing unit switches
on the transistor M1 and switches off M2, thus the circuit
is ready for weight update phase. The weight update unit
follows the STDP weight update algorithm. The unit takes
pre-neuron and post-neuron signals as a gate input. For the
positive correlation between pre-neuron and post-neuron, the
domain wall synapses are potentiated with a greater number
of positive current pulses, whereas for negative and zero
correlation, synapses are depressed by providing more neg-
ative current pulses. The system-level implementation of the

VOLUME 8, NO. 1, JUNE 2022 7



IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

FIGURE 9. (a) Resistance of synapses connected to winner
neuron after 60 ns of training showing all the digit pixel
synapses at 443 � and background synapses at 785 �.
(b) Output voltage (amplified) of post-neurons 1 and 2 showing
with training the post-neuron-1 begins to accept more and more
digit pixel signals, while the all-other post-neurons show
opposite trend as their voltage decreases.

STDP for pattern recognition based on these devices is real-
ized by first fitting the synaptic potentiation and depression
computed.

The main operation of transistor M3 is to act as a resis-
tor across which the pre-neuron voltage drops for the gate
control of anisotropy. M3 receives either zero voltage from
pre-neuron or a positive voltage. When it receives zero, the
pre-neuron and the associated synapse is disconnected as M2
acts like a switch to couple and de-couple the M3 and post-
neuron from synapse-pre-neuron circuitry. When the output
neuron fires, the sensing unit switches on the transistor M1
and switches off M2, thus the circuit is ready for weight
update phase and M3 is off during this phase. Thus, VDS3
of M3 does not have any effect on the synaptic weight as M3
is on receives current

Vik (Avg)=VAVGY (k) (16a)

Xik (t)=
∫ t

0
αV ik (Avg) dt (16b)

RikS=RP

[
L
2 + Xik(t)

L

]
+ RAP

[
L
2 − Xik(t)

L

]
. (16c)

Fig. 8(c) shows the analytical expression matching the micro-
magnetic simulations quite well as an average fit.We consider
the analytical model for the system-level implementation
along with results computed from NEGF-MuMax model to
simulate the circuit behavior using MATLAB. The different
MOSFET switches are implemented as conditional state-
ments based on the input from pre-neuron, synapse, and post-
neuron as per the STDP rule discussed earlier.

We train the network for digit (1) for 60 ns and as shown
in Fig. 9, the synapse resistance corresponding to the digit
pixels have evolved into low-resistance state (potentiation),
while the background synapses have evolved into high-
resistance state (depression). Fig. 9(b) shows the evolution
of post-neuron output voltage during the learning phase. For
the same amount of pre-neuron voltage, we observe that the
Vp1 is increasing with time, so more current flows via heavy
metal of post-neuron Vp1 which makes Vp1 the winner neu-
ron. While rest of the neurons Vp2–Vp10 show a gradually
decreasing neuron output which corresponds to the depres-
sion of the synapses connecting pre-neurons with rest of the
post-neurons. Next, we present the neuron with noisy input
(1) as the circuit has adopted itself according to pattern 1 the
output voltage of post-neuron-1 is highest among all other
neurons.

Furthermore, depending upon the number of neurons in
the first layer, the recognition accuracy is increased as more
voltage will be reaching the gate terminal which increases the
domain wall velocity. Importantly, the speed can be further
increased if the driving pulse receives input from the pre-
neurons itself, thus an increasing current density will auto-
matically increase accuracy.

VI. CONCLUSION
In this article, we proposed a versatile and energy-efficient
spintronic voltage-controlled neuron which can be tuned by
current as well. The dual control provides for the more
flexibility in designing neuron threshold function. Further-
more, the fan-out is increased as both input and output are
voltage. We have also designed the stochastic domain wall
MTJ-based synapse. In order to study and optimize the per-
formance of the MTJ neuron and synapse, a coupled NEGF-
MuMAX model is developed. Furthermore, the effect of
temperature on the performance in terms of DW velocity of
these devices shows how we can take advantage from ther-
mal noise, demagnetization energy, and anisotropy energy to
reduce the writing energy in these devices. Using the pro-
posed neuron and synapse device structure, we have demon-
strated on-chip stochastic dynamic learning by adopting the
STDP as the learning algorithm. At the end of the training
phase, we demonstrated that all pattern synapses stochasti-
cally evolve into low-resistance state (high weight), while the
remaining background synapses are in high-resistance state
(low weight).
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