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ABSTRACT Embedding advanced cognitive capabilities in battery-constrained edge devices requires
specialized hardware with new circuit architecture and—in the medium/long term—new device technology.
We evaluate the potential of recently investigated devices based on 2-D materials for the realization of analog
deep neural networks (DNNs), by comparing the performance of neural networks based on the same circuit
architecture using three different device technologies for transistors and analog memories. As a reference
result, it is included in the comparison also an implementation on a standard 0.18 µm CMOS technology.
Our architecture of choice makes use of current-mode analog vector-matrix multipliers (VMMs) based
on programmable current mirrors (CMs) consisting of transistors and floating-gate non-volatile memories.
We consider experimentally demonstrated transistors and memories based on a monolayer molybdenum
disulfide channel and ideal devices based on heterostructures of multilayer–monolayer PtSe2. Following a
consistent methodology for device-circuit co-design and optimization, we estimate the layout area, energy
efficiency, and throughput as a function of the equivalent number of bits (ENOB), which is strictly correlated
with classification accuracy. System-level tradeoffs are apparent: for a small ENOB experimental MoS2
floating-gate devices are already very promising; in our comparison, a larger ENOB (7 bits) is only achieved
with CMOS, signaling the necessity to improve linearity and electrostatics of devices with 2-D materials.

INDEX TERMS 2-D materials, analog neural networks, floating-gate memories, vector-matrix multipliers
(VMMs).

I. INTRODUCTION

THE pervasive success of deep learning in artificial intel-
ligence applications [1] is accelerating research efforts

toward specialized hardware with optimized computer archi-
tecture, circuit design, and even device technology. The main
effect is a shift from the general-purpose Von Neumann
paradigm to specialized hardware that leverages the proper-
ties of deep neural network (DNN) algorithms [2]. Logic in-
memory architectures [3] are extremely interesting from this
point of view: they consist of many modularized processing
elements distributed in space and operating in parallel, imple-
menting the simultaneous operations performed by neurons.
In addition, each processing element contains both the logic

and part of the memory required for the task, reducing the
energy consumption and the delay associated with access to
a cache or an external memory [2], [4]. In fact, the main
principles of ‘‘neuromorphic’’ silicon circuits date back to
the pioneering work at Caltech in late 1990s [5]–[7], but
the new wave of interest in integrated circuits for neural
networks is much stronger now that there is a potent market
pull and is mainly driven by the needs of maximizing data
center computing capability at constant power envelope and
of bringing cognitive capability to embedded systems [8].

Vector-matrix multipliers (VMMs) are the ubiquitous logic
blocks in a DNN, performing the multiplication of a vector
of inputs by a matrix of trained features, that is, weights,
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FIGURE 1. (a) Block diagram of a fully connected layer. (b) Simplified circuit of a single VMM node. (c) Architecture of the considered
DNN.

as sketched in Fig. 1(a). The VMMs play a crucial role in
establishing the performance of a full DNN system, such
as the classification accuracy of the network [9], the energy
efficiency, and the throughput [10]. It has been demonstrated
that the inference operations with a reduced multi-bit pre-
cision can reach a comparable classification accuracy to
floating-point arithmetics due to the resilience to disturb the
learning algorithms [9], [11].

This opens up the possibility to perform computation in
the analog domain by exploiting the device physics and cir-
cuit properties (e.g., Kirchhoff laws) [9], [10], [12], [13].
It is well known that analog processing blocks are usually
affected by circuit non-idealities such as noise and nonlin-
earity, which limit the effective number of bits of the arith-
metic operations. However, there are tradeoffs among area,
throughput, energy efficiency, and computation accuracy that
must be investigated and that heuristically show that area and
energy efficiency can be traded for computation accuracy and
throughput.

An in-memory analog VMM has been designed and real-
ized in a commercial 0.18 µm CMOS platform [9] by using
programmable current mirrors (CMs) similar to the one in
Fig. 1(b). We consider this very same circuit architecture for
a comparison of different 2-D device technologies, so that we
can use as reference a case for which we have a full range of
experimental results.

Transition metal dichalcogenides (TMDCs) are well suited
for post-silicon CMOS or for an integration with CMOS
technology because: 1) they provide much higher mobility
than silicon in the case of ultrathin channel layers required by
aggressive scaling and 2) the weak Van der Waals interaction
between stacked layers is useful for 3-D integration of tran-
sistors [14]–[16]. Some recent experimental results are very
promising in view of their use in analog neural networks.

1) A floating gate FET (FGFET) with a monolayer MoS2
channel has been demonstrated and used to implement
reconfigurable logic in the digital domain [17].

2) Monolayer MoS2 MOSFETs with planar geometry
have been used to fabricate fundamental analog circuits
such as a two-stage operational amplifier [18].

We also include in the comparison an ideal FET with a chan-
nel consisting of a lateral heterostructure (LH) of monolayer
and multilayer PtSe2 [19]. Such heterostructure has perfect
lattice match, with a monolayer PtSe2 that is a semiconductor

with a gap of 1.36 eV and a multilayer PtSe2 that is a metal
providing a low contact resistance. The device has been sim-
ulated in [19] without defects, with ideal contacts, and with
an aggressive 12.8-nm channel length, exhibiting a very high
ION/IOFF ratio and an almost ideal subthreshold slope (SS).
We use this device as the upper limit of what it could be
achievable as fabrication technology improves.

As anticipated above, we assess the potential of the use
of these 2-D device technologies in analog neural networks,
using as a reference the experimental results obtained with a
commercial CMOS technology (single-poly UMC 0.18 µm).
Let us stress here that the spirit of the comparison is not to
choose among different technologies, because they do not
have the same degree of maturity and cost, but rather to
understand the different tradeoffs at play and the aspects of
each device technology that need to improve the most.

CM-based VMMs with the MoS2 and the PtSe2-based
FETs have been designed and optimized according to the
design approach we have proposed in [9] for a standard
CMOS. The performance of the designed multipliers has
then been tested at the DNN level on a purposely designed
network [‘‘Net A’’ depicted in Fig. 1(c)], trained with the
gray-scale MNIST handwritten digit dataset [19]. All the
considered device technology options have been evaluated in
terms of area occupation, throughput, energy efficiency, and
classification accuracy.

The remainder of this article is organized as follows.
In Section II, we present the basic operation of the
current-mode analog VMM used in our neural network
architecture. In Section III, we describe the reference ana-
log neural network used in the evaluation. In Section IV,
the main figures of merit are introduced. In Section V,
we extract the compact models of MoS2 and PtSe2 transistors
from measurements and simulations, respectively. In Sec-
tion VI, we explain the design techniques used to optimize
the CM-based VMM for the minimum area requirement.
The comparison of the considered device technology options
is reported in Section VII. Final conclusions are drawn in
Section VIII.

II. BASIC OPERATION OF AN IN-MEMORY ANALOG
VMM
A fully connected (FC) layer of a DNN is sketched
in Fig. 1(a). Each output yj (j = 1, 2, . . . ,N ) of a layer
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is obtained by applying an activation function f to the
cumulative sum of the products of each generic input
xi (i = 1, 2, . . . ,M) of the layer times a weight wi,j

yj = f

(
M∑
i

xi × wi,j

)
. (1)

The sum in (1) can be physically implemented by means
of a current-mode VMM, realized with programmable CMs
such as the one depicted in Fig. 1(b) [9]. In this case, the
x ′is are encoded in the currents Iin,i and each wi,j is the
current magnification factor of the programmable CMs. The
sum is provided as the total output current Iout,j, obtained
by connecting to the same node the output branches of all
CMs corresponding to the same j-th output element [9]. Pro-
grammable mirrors are realized with three terminal floating-
gate (FG) non-volatile memories, and the magnification
factor depends on the threshold voltage difference 1V thi,j
between the two FG non-volatile memories of the same mir-
ror, programmed by injecting a charge in the floating gate of
the CM output device.

All transistors operate in the sub-threshold region allowing
to reduce the power consumption and to achieve a range
of the weights variation larger than two orders of magni-
tude [9], [13] considering that the weight can be expressed
as

wi,j = e
1Vthi,j
ηVT (2)

where η is the subthreshold ideality factor (typically
between 1 and 2) and VT= KBT/q is the thermal voltage,
in which KB is Boltzmann’s constant, T is the temperature,
and q is the elementary charge. We therefore have

Iout,j =
M∑
i

Iin,i × e
1Vthi,j
ηVT . (3)

Weights are determined in the ‘‘training’’ phase of the neu-
ral network using a so-called ‘‘training dataset,’’ consisting of
labeled sample images [21]. The obtained set of weights are
then used in the classification phase, also known as ‘‘infer-
ence.’’ Mismatch between devices can be mitigated during
the programming phase, given that this threshold voltage
variation can be fully compensated with appropriate tuning of
the charge injected in the FGs. This work is mainly focused
on the inference phase: the experimental demonstration of
programming analog weights is provided in a few papers,
either based on CMOS technology [9], [12], [13], [22] or on
2-D-materials [17], using different injection mechanisms.

III. SYSTEM-LEVEL TESTBENCH
The VMM is the most recurrent building block of DNNs,
instantiated in all FC and convolutional layers. Therefore, it is
reasonable to benchmark different technologies for analog
neural networks by comparing the behavior of VMMs.

However, in the case of an analog VMM, the statistical
distribution of weights, which depend on the architecture and
the training of a particular DNN, can have a quantitative

impact on power dissipation and on the speed. For this reason,
in the assessment exercise presented here, we will consider
a testbench convolutional neural network, ‘‘Net-A,’’ shown
in Fig. 1(c), where only the analog VMMs are simulated at
the circuit level in Cadence Virtuoso, while the full network
behavior (both training and inference) are simulated in MAT-
LAB. Net-A consists of the following layers: an input layer,
which receives a 28 × 28 pixels grayscale image from the
MNIST database [19]; a convolutional layer [23] with 20
9 × 9 filters for feature extraction from images; a pooling
layer [23] with 2× 2 kernels, which halves the overall num-
ber of coefficients preventing overfitting; a transform level,
which rearranges the 2-D data into a 1-D vector with 2000
elements; a 100-node FC layer and an output layer, composed
of ten nodes with softmax activation function for the final
10-digit classification. The rectified linear unit (ReLU) [23]
is used as nonlinear activation function for both the convolu-
tional and the FC layers.

The image dataset was used for training and inference
in a 8:2 ratio. The training process was performed with a
supervised mini-batch method, with each batch composed
of 100 images, for a total of 60 epochs.

IV. FIGURES OF MERIT FOR NEURAL NETWORK
BENCHMARKING
In this section, we introduce the key figures of merit (FOMs)
used for the VMM benchmarking: effective number of bits
(ENOB), number of operations, latency time, throughput,
energy efficiency, and area occupation.

1) ENOB:The ENOB is ameasure of the computing accu-
racy [9]: it depends on the signal-to-noise and distortion
ratio (SINAD), according to

ENOB =
SINADdB − 1.76

6.02
. (4)

The SINAD value depends on the nonlinearity, esti-
mated through the total harmonic distortion (THD), and
on the signal-to-noise ratio (SNR), according to

10−
SINADdB

10 = 10−
SNRdB

10 + 10
THDdB

10 . (5)

In order to provide a reference value for the ENOB,
one should note that we have previously proved that a
VMM with an ENOB of 6-bit can guarantee a 99.7%
classification accuracy of the network Net-A, trained
with the MNIST database [9], [19]. The required
ENOB for a given classification accuracy typically
depends on the DNN architecture. For example, the
well-known AlexNet [28] requires an ENOB = 7 for
a classification accuracy of 92% [9].

2) Number of operations: Each multiplication and
addition is considered as an elementary arithmetic
operation. For an M × N VMM, which includes M
multiply-and-accumulate (MAC) units andN columns,
there are a total of M multiplications and M – 1
additions per each of the N columns, corresponding to
a total number of (2M – 1) × N elementary operations.
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3) Latency time (τLAT) represents the time needed by
each processing unit to perform a single arithmetic
operation, and it is estimated through the settling time
of the output in response to an input step. Considering
that all processing elements are arranged in parallel,
the worst case latency time of a single multiplier corre-
sponds to the latency time of the whole VMM imple-
menting a layer of the network.

4) Throughput: The throughput is the ratio of the number
of arithmetic operations performed in parallel to the
VMM latency time and is a measure of performance of
the VMM expressed in term of operations per second
(OPs/s).

5) Energy efficiency (EE): It is calculated as the ratio of
the number of operations to the total energy consumed
by the VMM to perform a vector-matrix multiplica-
tion (i.e., the integral of the consumed power over
τLAT), typically measured in tera operations per joule
(TOPs/J). The energy is determined using the weights
obtained from the training phase for Net-A and it is
averaged over many operations, each corresponding to
an input vector associated with an image of the MNIST
database.

6) VMM area: In a multilayer DNN, large VMMs are
the dominant elements in terms of area occupation.
We have compared both gate and layout area of VMMs
realized with the sameM × N size.

V. DEVICES BASED ON 2-D MATERIALS FOR ANALOG
DNNs
In this section, we present the considered devices and the
calibrated compact models (Berkeley short-channel IGFET
model-silicon-on-insulator (BSIM-SOI) [24]) used to per-
form VMM circuit simulations. Two MoS2 experimental
devices presented in the literature have been considered,
as representative of the state of the art for MoS2 FETs: the
FG memory cell (FGFET) presented in [17] and sketched in
Fig. 2(a) and (b), and the planar MoS2 FET presented in [18]
and sketched in Fig. 2(c) and (d). In addition, the PtSe2
double-gate LH field-effect transistor (LH-FET) proposed
in [19] and represented in Fig. 2(e) and (f), designed and
analyzed through multi-scale simulations, has been consid-
ered to estimate the maximum achievable performance of
ultra-scaled and optimized 2-D material transistors. We have
comparedVMM implemented bymeans of these deviceswith
a VMM implementation based on a standard 0.18µmCMOS
technology, typical for the analog circuit design. In order
to exploit these devices for analog neural network blocks,
we have first calibrated the compact model with the available
I–V characteristics by considering the physical properties of
each reference device; then, device geometry optimization
has been performed to adapt each device to the specific
application and circuit.

Concerning 2-D-FET devices, there are no standard com-
pact models for circuit simulations including both static
and dynamic behavior. This drawback makes the design
and predictive simulation of complex circuits ineffective.

FIGURE 2. Representation of the benchmarked technology
platforms and the related drain currents as a function of the
applied VGS and VDS. (a) and (b) Structure of the MoS2-based
floating-gate FET (FGFET) and the corresponding drain current
(withW = L = 1 µm), respectively; (c) and (d) 3-D representation
of the planar transistor with the MoS2 channel and the ID–VGS
and ID–VGS(W = 20 µm and L = 5 µm), respectively. (e) LH-FET
with a monolayer PtSe2 channel. (f) Correspondent output and
trans-characteristics for L = 12.5 nm and W = 1 µm.
(g) Reference structure of a standard CMOS technology (UMC
0.18 µm). (h) ID for an nMOS with a sizing: W = L = 1 µm.
Dashed lines: measurements (MoS2-based devices) or device
simulations (PtSe2 transistor); solid lines: compact model
simulations.

Some discrete models based on lookup table (LUTs) [25] and
some semi-analytical models [26], [27] have been proposed
for DC simulations but without accounting for dynamic signal
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parameters (e.g., device internal capacitances) and noise
models. For this reason, we have selected the BSIM-SOI [24]
transistor model as a reference template to reproduce the
subthreshold operation of all the device options investigated
in this work. This model is physically based and can be
tailored to reproduce the operation of many FETs by tuning
few parameters. Although BSIM-SOI has been developed for
silicon-on-insulator FETs, it includes the relevant physics to
simulate the ultimate ultrathin-body devices that transistors
based on 2-D materials represent. The static and dynamic
simulations have been performed within reasonable limits on
the geometry and by considering the same operating region
as the one of the available experiments, in order to neglect
effects which may compromise the model validity. Both
physics-based device simulations (for the PtSe2 LH-FET) and
experimental data (for the MoS2 device options) have been
exploited to carefully calibrate the BSIM-SOI model.

A. STANDARD CMOS BENCHMARK
The assessment of novel transistors is given in relation to
a mature technology. The reference VMM is realized in
a standard 0.18 µm single-poly CMOS technology (UMC
0.18 µm), with a sketch of a transistor represented in
Fig. 2(g). This silicon technology includes devices operating
at 3.3 V nominal voltage, whose ID–VGS characteristics are
shown in Fig. 2(h). The oxide thickness of 3.3 V transistors
is tox = 7 nm, which provides an adequate retention time for a
neural network operation. Standard CMOS reference circuits
have been simulated by means of Cadence Virtuoso models
available within the dedicated process-design-kit. The real-
ized prototype features competitive performance in terms of
both the EE and area occupation [9].

B. MoS2 FGFET
FGFETs are FG non-volatile memories that represent promis-
ing candidates for programmable logic applications [5].
Monolayer MoS2 FGFETs have been successfully fabricated
and used for a reconfigurable logic [17]. The experimental
device [17] has a bottom-gate configuration with a platinum
FG isolated from a control gate (CG) by a 30-nm thick
layer of HfO2 and separated from the channel by a 7-nm-
thick HfO2 layer, as shown in Fig. 2(a). It has a channel
length L = 1 µm. Additional details can be found in [17].
The BSIM-SOI model has been fit to experimental data: the
ID–VGS transfer characteristics are shown in Fig. 2(b), for a
device with W = 1 µm. The FGFET has been modeled as
a standard MOS transistor with a capacitor in series to the
gate. This device is externally accessible through the drain
and source of the transistor and from the external terminal
of the capacitor (i.e., the CG). The equivalent model of
the intrinsic MOSFET has the same oxide thickness of the
original device, that is, tox = 7 nm, which guarantees an
acceptable retention time. Due to the missing experimental
data for a complementary pMOS, a virtual pMOS device
has been conceived using similar model parameters as the
ones obtained for the nMOS, leading to a device with almost
mirrored characteristics. Finally, the Ioff of the FGFET and

of the virtual pMOS were aligned by tuning the threshold
voltages, which can be done through a proper choice of the
work function of the CG.

C. PLANAR MoS2 TRANSISTOR
As in the single-poly CMOS option, a planarMoS2 MOSFET
can be used to realize a three-terminal FG cell by adding a
capacitor in series to the gate. The experimental MoS2 device
presented in [18] and sketched in Fig. 2(c) has already been
used to implement an operational amplifier (OPAMP) [18].
The device has been realized as follows: an MoS2 film
for the channel, grown by chemical vapor deposition on a
silicon substrate, separated by a 30-nm-thick Al2O3 from the
Ti/Au back-gate. The fabricated MoS2 transistor features a
large on/off current ratio of eight orders of magnitude [18],
as shown in Fig. 2(d). In the same figure, the ID–VGS of
the BSIM-SOI model, calibrated to reproduce experimental
I–V characteristics in the subthreshold region, are shown.
Also in this case, a virtual pMOS was derived from the
calibrated device, by changing the channel type from ‘‘n’’
to ‘‘p.’’ After the calibration, some geometrical parameter
has been modified in order to get a device suitable for
the specific application. For instance, an oxide thickness
of 30 nm does not allow to program or erase the floating-
gate memory, thus the tox was lowered down to 10 nm. The
reduced tox = 10 nm provides a steeper SS with respect to
the original device. Finally, Ioff was also tuned by increasing
the threshold voltage.

D. PtSe2 LH-FET
As an ideal 2-D material device, we have also considered the
PtSe2 double-gate LH-FET proposed in [19]. This is only a
concept based on simulations, and no experimental data have
been provided up to date.

The device is based on a channel obtained with an LH
consisting of a monolayer PtSe2 region under the gate and by
a multilayer PtSe2 for the source and drain regions, as shown
in Fig. 2(e). The multilayer PtSe2 is a metal, enabling low
contact resistance, whereas the monolayer PtSe2 is a semi-
conductor with an energy gap of 1.36 eV. The I–V char-
acteristics for an LH-FET with channel length in the range
of few nanometers have been simulated by considering only
ballistic transport and ideal contact resistance [19]. A model
with a so detailed physical description is not adequate to
perform circuit simulations with several devices. Thus, also
in this case, we have calibrated a BSIM-SOI model. The
device is ambipolar, that is, it can be operated in both nMOS
and pMOS modes based on the bias condition. However,
we have realized two separate calibrations for each operation
mode to independently optimize the threshold voltages: the
resulting ID–VGS transfer characteristics of the nMOS for
VDS = 1 and 0.5 V are shown in Fig. 2(f) (the pMOS
characteristics are symmetrical). To obtain an acceptable
retention time, the silicon oxide thickness has been increased
to 7 nm (the original equivalent oxide thickness of the tran-
sistor for logic was 0.5 nm), while keeping the other param-
eters unchanged. The increased tox of course leads to an
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electrostatics degradation, resulting in very low on current
of 10 nA at VGS = VDS = 0.5 V.

VI. PROGRAMMABLE CM DESIGN
The inputs of a CM-based VMM are encoded as a vector of
currents with a full-scale value Iin,MAX, which is properly
chosen in order to ensure the required ENOB. In addition,
the selected supply voltage is the minimum VDD which
guarantees constant THD and SNR [9]. From the archi-
tectural prospective, there are few possible topologies for
programmable CMs. Here we consider two options: the sym-
metric simple CM [SSCM, Fig. 3(a)] and the symmetric
cascode CMs [SCCM, Fig. 3(b)]. The FG basic cell is used
in both the input and output cells of the mirror, to maximize
the symmetry, so that the current magnification factor only
depends on the threshold voltage different of the two FG
devices of the mirror. We have verified that the use of a
‘‘dummy’’ input FG ensures a better linearity of themultiplier
in the whole input current range, compared to the case where
the FG cell is employed only in the multiplying stage [9].

For any considered technology, a symmetric simple and/or
cascode CM have been carefully designed with proper tran-
sistor sizing and operating current values in order to obtain a
given ENOB accuracy, by relying on the design methodology
reported in [9].

We assume that an M × N layer is followed by an N × K
layer. In our implementation, the input current signal is pro-
vided to a diode-connected transistor, connected to N (or
K , for the second VMM) columns with N (K ) parallel CGS
parasitic capacitances.

In order to address the fan-out issue, we assume that:
1) the output signals are processed by an activation func-

tion (not implemented in circuit in our work), before
being transferred to the next layer;

2) the activation function of the first layer is designed
in a way to provide a magnified output current (by a
factor of K ) to the next VMM, realized by p-type CMs
with a magnification factor of K . Then, the input-cell
transistor width of the second VMM is sized K times
the width of the multiplying-cell transistors; for consis-
tency, we also assume that theM input cells of the first
M×N VMM are sized accordingly (with a width sized
N times the width of the multiplying-cell transistors);

3) for the N output currents of the first layer (and the K
output currents of the second layer), they are mirrored
by N (K ) p-type CMs, similar to the single-cell case
represented in Fig. 3. The p-type current-mirror transis-
tors are sizedwith a width equal to 4×M (4×N ) times
the n-type ones, in order to work in a similar operating
region. These outputs are sent to the activation function.

In this configuration, each multiplying cell operates at the
nominal current, and the latency becomes independent of the
VMM size.

Important parameters for the sizing of the CM are also
CMULT and CIN, the capacitances between the CG and the FG
of the multiplying and input FG devices of the mirror, respec-
tively. We call ‘‘coupling ratio’’ the ratio CMULT/CnMOS,

FIGURE 3. Schematic of (a) symmetric simple CM (SSCM) and
(b) symmetric cascode CM (SCCM).

where CnMOS = Cox× LW and Cox is the FET oxide
capacitance per unit area, and ‘‘capacitance ratio’’ the ratio
CIN/CMULT.
The finite coupling ratio CMULT/CnMOS introduces

non-idealities due to a finite electrostatic coupling, since
η = (1+ CnMOS/CMULT), which degrade the mirror linear-
ity. On the other hand, a large coupling ratio would imply a
large capacitance area and high area occupation. Therefore,
a different optimization approach is proposed in this arti-
cle: CMULT/CnMOS and CIN/CnMOS have been independently
optimized to compensate for the input-cell/multiplying-cell
asymmetry rising from different drain bias. This approach
enables quite good linearity characteristics for the designed
CMs, with no need to use extremely large area for the
capacitors.

Only for the MoS2 FGFET, an FG structure is intrinsic to
the cell, and therefore the coupling ratio is always smaller
than 1, since the dielectric between CG and FG has to be
thicker than the tunnel dielectric, and the capacitors have the
same area. This is the solution that minimizes the CM area.
For the standard CMOS, CIN and CMULT were realized with
pCAPs, similar to the VMM reported in [9]. For the planar
MoS2 and PtSe2, an ideal capacitor in series to the gate of
a transistor was used to reproduce the memory cell, while
the layout area was calculated by using the same rules as
for the pCAP (see Supplementary Material). If a separate
capacitor in series to the FET is used, the coupling ratio can
also be larger than 1.

Beyond nonlinearity, also noise can degrade the ENOB of
a VMM. In this regard, we have considered the default model
available in the BSIM-SOI template, without calibration due
to the lack of experimental data for noise in the 2-D devices.
This is consistent with the assumption that with technology
optimization, 2-D devices can exhibit a level of noise compa-
rable to CMOS devices.

By considering the design of the PtSe2 CM, first we
have optimized the THD by varying both CIN/CnMOS and
CMULT/CnMOS ratios (with CIN = CMULT). Once the optimal
CMULT/CnMOS ratio has been found, we have fixed the nMOS
size and the CIN/CMULT ratio has been varied to compensate
for the asymmetry between the input and the multiplication.
The simulated SSCM shows poor THD values, that is, lower
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FIGURE 4. Linearity (THD) curves of the PtSe2-based VMMs
reported for symmetric simple (solid lines) and symmetric
cascode (dashed lines) topologies (a) as a function of the
coupling ratio CMULT/CnMOS and (b) for the CIN/CMULT coupling
ratio variation for a fixed CMULT/CnMOS.

TABLE 1. VMM Sizing for the Maximum ENOB.

than 20 dB [see Fig. 4(a)] for any CMULT/CnMOS, and further
trimming of CIN/CMULT ratio leads only to a slight improve-
ment [see Fig. 4(b)]. On the other hand, the cascode topology
reaches a THD of 30 dB for CMULT/CnMOS = 0.7 [see
Fig. 4(a)]. Therefore, only cascode mirrors can reach an
ENOB of 5. A similar optimization approach can also be
applied to the other devices and for a different ENOB.

A 6 bit precision is achieved for the PtSe2 cascode
option by using the following parameters: channel length
of 60 nm and width of 0.6 µm, CMULT/CnMOS = 0.7, and
CIN/CMULT = 0.6 (see Table 1). As regard to the PtSe2 SSCM
option, the achievable accuracy is too low to be exploited for
the target application and then it will not be considered in the
following.

The same optimization technique has also been applied
for VMM implemented with the other considered devices.
In Table 1, we summarized the sizing corresponding to the
maximum reachable ENOB for each technology for both the
SSCM and SCCM topologies. For instance, the VMM real-
ized with MoS2 transistors can reach the maximum accuracy
of ENOB= 5. The UMC 0.18µmCMOS platform can reach
an ENOB = 7, for a coupling ratio larger than 1. It should
be emphasized that the FGFET devices has an incorporated
FG cell with fixed width and length which cannot be tuned
independent of the nMOS, thus a variation of the FGFET
geometry corresponds to a variation of both the internal
transistor and of the associated FG capacitor. Instead, it is
possible to realize a device with a different oxide thickness
between the CG and the FG in order to trim theCMULT/CnMOS
ratio, if necessary. In this case, only an SSCM topology was
designed and tested.

VII. BENCHMARK AND DISCUSSION
Minimum area VMMs were designed for different ENOB
specifications through extensive parametric simulations.
Extracted FOMs for the designed VMMs are then used to
compare the different device/materials options. Table 2 (see
Supplementary Material) summarizes the geometrical and
electrical design characteristics and the corresponding FOMs,
defined in Section IV. It is important to note that the area
occupation was calculated with two different approaches: by
considering only the gate area, or by considering a possible
physical layout (details of the layout area are in the Supple-
mentary Material).

In general, the area increases for a higher ENOB due to the
longer devices required to achieve an improved linearity and
to increased width needed to meet the SNR specification [9].
Only the UMC 0.18 µm technology can reach a 7 bit speci-
fication with 7.43 and 4.05 mm2 layout area for the SSCM
and SCCM cases, respectively, considering a 100 × 100
multiplier (Table 2 in Supplementary Material). The PtSe2
CM can be sized for a 6 bit ENOB using the cascode mirrors.
All the considered technologies can reach an ENOB target
of 5 or 4, even though only the SSCM topology is possible
for the FGFET devices, and only SCCM can operate with
such a precision for the PtSe2 devices. As we mentioned, the
PtSe2 option represents an ideal asymptotic reference case,
and indeed, for a given ENOB, the PtSe2 VMM occupies
the smallest area, being more than ten times smaller than the
FGFET case and more than two orders of magnitude smaller
than the planar technologies (MoS2 and standard CMOS).
The CMOS VMMs are almost 50% smaller than the planar
MoS2 counterparts featuring the same ENOB, except for the
4-bit SCCM, where the CMOS has only a 23% advantage
over the planar MoS2 counterpart. Finally, due to the vertical
integration of the FGFET memory, the layout areas of the
FGFET implementations are much smaller than those of the
other solutions with similar device size.

In Figs. 5 and 6, the EE (expressed as TOPs/J) is bench-
marked against the number of operations per layout area
and throughput, respectively. One should note that for the
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FIGURE 5. Comparison of area and EE of the designed
CM-based VMM implemented with the considered technologies
for different computation accuracy. Red symbols and lines:
SSCMs; blue symbols and lines: SCCM.

FIGURE 6. Comparison of throughput and EE of the designed
CM-based VMM implemented with the considered technologies
for different computation accuracy. Circle symbols: SSCMs;
square symbols: SCCM.

same ENOB and the same device type, the SCCM topologies
outperform the SSCM ones in terms of area occupation, even
if they require a higher number of devices, while the SSCM
case has a better EE than SCCM since it can operate at
lower currents for the same linearity conditions (Table 2 in
Supplementary Material).

A partially expected but still remarkable observation is
that, for a given technology, an increased ENOB can be
obtained at the cost of a larger area, lower EE, and throughput.
System-level and application-level optimization is therefore
key at the design stage of the analog VMM.

Among considered technologies, the performance of the
ideal PtSe2 platform represents an asymptotic limit in terms

of both energy consumption and throughput. For instance,
if we consider the ENOB = 4 case, an EE of 7.63E3
TOPs/J can be reached with the PtSe2 VMM. This EE value
is ×183, ×277, and almost ×2084 higher than the CMOS
(41.6 TOPs/J), MoS2 FGFETs (27.5 TOPs/J), and planar
MoS2 (3.66 TOPs/J) platforms for the same ENOB, respec-
tively. Similarly, the simulated PtSe2 has the lowest τLAT and
outperforms other technologies in terms of throughput for the
same ENOB case, which is from ×3 to three decades faster
than the other technologies.

Considering the two experimental MoS2 devices, the
FGFET archives a higher EE due to a lower supply voltage
and Iin,MAX. On the other hand, the standard CMOS has two
orders of magnitude of lower latency than the one achieved
by using fabricated MoS2 devices, and therefore reaching a
higher EE, despite an almost ×40 of Iin,MAX.

VIII. CONCLUSION
In this work, we have investigated the use of 2-D material
devices in the design of dedicated hardware for analog deep
neutral networks using in-memory computing, considering
the same architecture based on current-mode analog VMMs.
Layout area, EE, and throughput have been extracted for
different target ENOB. The ideal PtSe2 LH-FET transistor
simulated in [19] provides asymptotic performance limits
with more than one order of magnitude better energy effi-
ciency and area occupation for similar accuracy than stan-
dard CMOS. Among two experimental MoS2 options, the
FGFET [17] presents an EE comparable to the standard
CMOS, despite being slower, while it is advantageous in
terms of area occupation. Estimations performed on exper-
imental MoS2 planar MOSFETs, presented in [18], show a
comparable area occupation with the standard CMOS. How-
ever, the planar MoS2 device presents the lowest EE and
throughput compared to the considered technologies. It is
also important to note that only the CMOS case achieves
ENOB = 7, which clearly means that is very important to
improve the electrostatics of devices with 2-D materials lead-
ing to a better linearity.

As a final remark, let us stress that the scope of this
comparison is limited to CM-based VMM and results can be
different for other implementations, such as memristor-based
ones. We also would like to highlight the fact that for MoS2
options we have considered experimentally demonstrated
devices, assuming that deep trap states—often responsible for
extremely slow transients [29]—are under control. Very large
improvements of the implementations based on MoS2 FETs
can be obtained if contact resistances (that are more than
10 k�/µm in the considered devices) are reduced, leading
to higher currents and therefore lower latency.
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