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ABSTRACT Monolithic 3-D (M3-D) IC design is a manufacturing technique that opens several new
possibilities of chip design and exploration for power, performance, area (PPA), and cost benefits. Designing
a commercially viable M3-D IC first requires a sign-off timing closure capability. Since the commercial tools
lack such capability, several 3-D flows have been proposed that treat 3-D as a 2-D die and use commercial
2-D electronic design automation (EDA) tools for the RTL-to-GDS stage. The conversion between the two
stages is done late in the design flow and the conversion is also nontrivial. Here, we propose a machine
learning-based prediction algorithm to decrease the discrepancy between the pre and post-partitioned 3-D
design using regression models. Our proposed model is circuit-agnostic and its performance with respect to a
circuit-dependent model is also studied. Furthermore, more details on the behavior and analysis of the model
are considered. Overall, we achieve a significant reduction in the total negative slack (TNS) of the test design
(3×–16×) using the machine learning model integrated pseudo-3-D flow at an expense of just −1%–4%
increase in total power.

INDEX TERMS Interconnect analysis, monolithic 3-D (M3-D) IC, pseudo-3-D Flows, tier partitioning.

I. INTRODUCTION

MONOLITHIC 3-D (M3-D) IC design is a process in
which multiple dies/tiers are sequentially fabricated

on top of each other [1], [2] to create a 3-D die stack. The
sequential processing helps one to maintain a 3-D contact
pitch∼100 nm enabling a high connection density and band-
width between the adjacent dies. The 3-D vias connecting the
two tiers in an M3-D IC are referred to as monolithic intertier
vias (MIVs).

The high bandwidth allows for fine-grained gate-level par-
titioning of an RTL which can lead to various implemen-
tations that target wire length reduction, memory latency
reduction, etc. In this work, we focus on the gate-level 3-D
implementations that target wire length reduction. A two-
tiered gate-level 3-D integration has (1/2)× the footprint
of a corresponding 2-D design, and (1/(2)1/2)× the linear
dimensions. This leads to an average reduction in wire length
of up to 30% in a 3-D design.

Commercial electronic design automation (EDA) tools do
not support the design and optimization of an M3-D IC. Due
to this, several pseudo-3-D flows are developed that make use
of the EDA capabilities to create timing-optimizedM3-D ICs.
Compact-2-D (C2-D) [3] and Shrunk-2-D [4] are two such
flows. A general pseudo-3-D flow follows three main stages
to create a 3-D IC: pseudo-3-D design, tier partitioning, and

MIV planning, 3-D routing. In the pseudo-3-D stage, a 2-D
type floorplan is first designed leveraging the commercial
EDA tool capabilities for placement, clock design, timing
optimization. In shrunk-2-D, all the linear dimensions of the
technology are scaled-down by (1/(2)1/2)× so that the foot-
print and the resultant x, y placement are more closely related
to a 3-D design in the original unscaled technology. As dis-
tances between cells are also approximately (1/(2)1/2)×
shorter on average, the parasitics replicate the 3-D parasitics
and the timing optimization done in pseudo-3-D is useful for
3-D.

In C2-D, the technology dimensions are not scaled as it
affects the metal cross section and RC parasitics. Instead,
the design uses a larger footprint which is ∼2× expected
3-D footprint, and the resistance and capacitance values are
all derated by (1/(2)1/2)× to make sure the net parasitics
in the derated pseudo-3-D stage are similar to the final 3-D
stage. By being limited to a single active layer in pseudo-3-D,
the conversion to 3-D stage requires placement modification
and complete routing overhaul, and therefore affects the final
3-D design quality in terms of power, performance, area
(PPA). The placement and routing inconsistencies also affect
the shrunk-2-D based flow (although, in shrunk-2-D the tech-
nology dimensions are shrunk matching the footprint size to
final 3-D).
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FIGURE 1. Pseudo-3-D flow and training from the corresponding
features.

To tackle these problems in the pseudo-3-D flows, we first
presented a machine learning integration framework in [5].
A high-level working of the flow is shown in Fig. 1. Better
estimations of RCs early in the design stage will improve the
final PPA in general. In the pseudo-3-D flows for 3-D ICs
in particular, this RC estimation becomes more important as
the timing optimization is exclusively done in the pseudo-3-D
stage. The 3-D parasitics depend on a lot of variables as will
be discussed later in Section II-B, and so a machine learning
framework is well suited to learn the different interactions of
the net features to estimate the 3-D R and C values. In this
article, we extend the machine learning framework to include
the following new items: 1) extend the framework with better
testing and training methods; 2) comparing the performance
of the circuit agnostic model with a circuit-specific model to
understand the performance of thesemodels and their interac-
tion with the EDA tools; and 3) more statistically significant
importance analysis of the features.

In this study, we use a total of 12 memoryless logic RTL
downloaded from open cores, ISPD contests [6]–[8]. These
are designed with a 28-nm commercial technology node.
For all the 2-D designs, six metal layers are used for signal
routing. 3-D designs have two tiers and a total of 12 signal
routing layers (6 per each die). All the machine learning
implementation are done with python3.6.

II. RC ANALYSIS
A. RC BREAKDOWN OF A NET
In a GDS layout of an RTL, the nets are complex 3-D struc-
tures whose parasitics depend on the exact shape of the net
as well as the overall bottom-end-of-line (BEOL) dielectrics,
neighboring nets. But such detailed analysis requires a signif-
icant amount of time for 3-D extractions and SPICE simula-
tions. So, the commercial EDA tools use several assumptions
and simplifications to achieve a trade-off between accuracy
and run-time.

Consider a rectangular wire of width W , thickness T ,
length L, at a distance H from the ground plane. The
resistance and ground capacitance are given by Cwire =
(εdWL/H );Rwire = (ρL/WT ), where εd is the dielectric
constant of the dielectric between the wire and the ground
plane. While the resistance model is fairly simple, the total
capacitance is much more complex with contributions from
the fringing effect of the ground capacitance, and coupling
capacitance. Modern-day IC designs also use multiple layers
of metals and the W ,T ,H , εd , ρ can be different for the
different metal layers. In an EDA tool, it is not feasible to
calculate these capacitances from just the physical dimen-
sions, and material properties. So, an RC lookup table is
provided by the technology foundry containing precalculated
unit length ground capacitance, coupling capacitance, and

resistance values of the wires (denoted by lower-case c, r
in this article), and the vias at different scenarios (width,
thickness, spacing, temperature, etc.) for each metal layer.
The total resistance, and capacitance of a net with wires of
length lMi on metal layer Mi, and nVi number of vias of type
Vi is given by

Cnet =
∑
Mi

cMi lMi +

∑
Vi

cVinVi + XCap (1)

Rnet =
∑
Mi

rMi lMi +

∑
Vi

rVinVi (2)

where Xcap is the cross coupling capacitance between the
net and the neighboring nets in the design. c(r)Mi is the
capacitance (resistance) of a wire of length 1 µm, and c(r)Vi
is the capacitance (resistance) of a via of type Vi. Note that
there can be multiple types of vias from metal layer Mi to
Mi+1. Coupling capacitance of the net is dependent on the
final routing. While most of the nets have a negligible cou-
pling capacitance, the nets that are routed in congested areas
can have majority of the total capacitance as the coupling
capacitance.

B. RC EVOLUTION FROM PSEUDO-3-D TO FINAL-3-D
DESIGNS
As discussed in Section I C2-D’s pseudo-3-D stage works
under the assumption that the wire RCs scale down by
a factor a (1/(2)1/2) when the design is converted from
pseudo-3-D to 3-D stage. So, the scaling factor is applied
in the pseudo-3-D stage. This assumption is true in an ideal
case, but the discrete row placement of cells and complex
routing algorithms of commercial tools create variations in
the scaling factor. Even in a global sense, the overall RC
reduction is rarely as expected. Furthermore, the global scal-
ing is applied only considering the length reduction por-
tion in (1) and (2). A number of vias on a net is much
harder to predict as the routing in pseudo-3-D (six metal
layers total) and final-3-D (12 metal layers total) is very
different. The contact resistance of vias keeps increasing in
smaller technology nodes, and ignoring the via resistance
on the overall resistance can cause inconsistencies in the
resistance of nets from the pseudo-3-D to final-3-D stages.
In the technology node considered here, the unit values for
metal layer 4 are as follows: cM4 ≈ 0.20 fFµm−1, cV4 ≈
0.02 fFµm−1, rM4 ≈ 10.0 �/µm, rV4 ≈ 8.0 �/µm. It is
clear that the contact resistance is significant even in the
relatively older 28-nm node, considering the total wire length
and via count in Table 1.

To further analyze the RC evolution in design implementa-
tion, we design AES-128 circuit in pseudo-3-D and final-3-D
stages. Some of the useful metrics from this implementation
is shown in Table 1. Note that the wire length, ground capaci-
tance, wire resistance are considerably underestimated in the
pseudo-3-D stage. Via count increases by ∼17.5%, but the
global scaling [(1/(2)1/2)] performed is suitable for a ∼30%
reduction in the via count. This increase in 3-D is due to
the halved footprint (or a number of tracks per layer) and
twice the number of vertical layers compared to a 2-D or
pseudo-3-D implementation.

The scatter plot of the wire parasitics as a function of the
routed wire length is in Fig. 2 visualizes a couple of trends.
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TABLE 1. Routing statistics of the pseudo-3-D and the final 3-D
routed designs.

FIGURE 2. (a) Capacitance and (b) resistance of nets in the
AES-128 design with respect to routed wire length of the net.
The data points are color coded according to the number of
vias on each net.

One, the wire resistance can be given by a set of linear
functions of the wire length, whose slope is fixed and inter-
cept increases with the number of vias on the net. Two,
the via capacitance has a negligible impact on the total wire
capacitance. Three, the resistance and capacitance are linear
functions of the total wire length, i.e., they do not vary due to
different distributions of the total routing on separate metal
layers. This is due to the fact that the unit RC values for
the one to six metal layers in the considered commercial
technology node are very close to each other. The difference
between routing in pseudo-3-D and final-3-D means that

FIGURE 3. Net and its connected cells (smaller squares). The
local regions at each endpoint of the net are shaded in blue
(larger squares). bin1 has a high cell density and the contained
cell will be displaced during legalization after tier partitioning.

the via count in pseudo-3-D cannot be directly used as a
proxy for the final-3-D via count. But it provides a new
point of information for the machine learning algorithm. In
Section III-B, we show that via count indeed has useful
information regarding final 3-D parasitics by verifying the
null hypothesis probability.

From the stages shown in Fig. 1, the tier partitioning and
3-D routing change layout after the pseudo-3-D stage. Within
tier partitioning, cell legalization is performed to get a clean
placement solution in two tiers. As mentioned in Section I,
the location mapping from a larger 2-D footprint to a halved
3-D footprint in C2-D creates cell overlaps. Additionally in
this work, instead of legalizing the cells independently in
each tier, we perform an incremental placement similar to
the proposed solution in [9]. This allows for a better place-
ment quality as die-by-die legalization does not consider the
PPA impact. Based on cell placement and net connectivity,
nets undergo different amounts of cell movement during
the tier partitioning. Fig. 3 shows an example of a net and
neighboring cells. Features such as the local density in a small
neighborhood to the end-points of nets can be used to learn
the extent of cell movement each net undergoes.

In the next stage of the pseudo-3-D flow—3-D routing—
the routing of the nets is fully modified. Based on the routing,
nets can be grouped into three different types: 1) single-tier
nets; 2) multitier nets; and 3) nets with metal layer borrowing.

Single-tier nets are the ones where the 3-D routing is done
entirely within the top or bottom tier. These are expected to
undergo the least amount of change from the pseudo-3-D
stage as they are still routed within the six signal routing
layers.

Multitier nets are the nets connecting cells from different
tiers after the partitioning. These have the highest difference
in routing between the two design stages, as they need to be
routed vertically for proper connectivity. These would have
increased wire length and number of vias that will affect
capacitance and the resistance of the nets.

Finally, the last group is the nets that use metal-borrowing.
Consider a net that is connecting to cells entirely within the
top tier.When performing 3-D routing, some of these nets can
use metal layers belonging to a different tier. This is called
metal layer borrowing, and such nets would have a medium
variation in the parasitics in 3-D.
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To quantify the impact the tier partitioning and 3-D routing
have on the nets and to understand the extent of this impact
from different net features, the following metric is useful:

res(cap) of net(s) in pseudo-3-D
res(cap) of the net(s) in final-3-D

= Scaling Error of R,C

represented as SER(C). This shows how well the scaling in
pseudo-3-D corresponds with the final 3-D RCs.

Scaling error can also be defined for a group of nets by
using the sum of R and C values in the numerator and
denominator of the fraction. SER(C) ≈ 1 of a group of nets
implies that the scaling done in the pseudo-3-D stage is close
to accurate for the group.
SER(C) � 1 for a group of nets means that the estimation in

pseudo-3-D is much lower than the final 3-D for this group.
This results in worse timing after the design is 3-D routed.
Identifying such a group of nets using a combination of net is
useful in properly applying scaling factors.Most of the nets in
a design would fall in this group as the pseudo-3-D is usually
optimistic.
SER(C) � 1 occurs when the parasitic value in pseudo-3-D

is overestimated. Cells on these nets would be oversized in
pseudo-3-D. These cells not only consume additional but also
manifests as an additional capacitance load to the connected
cells.

Grouping the nets using net metrics like routed wire length,
fan-out/number of connected cells, number of MIVs, local
cell density near the cells, we plot the scaling error variation
of these groups in Fig. 4.

In Fig. 4(a), the nets are grouped based on the routed wire
length. All the nets with wire length [x, x + 1)µm are put
into group x. Based on this, the average scaling error of R,
C , and the MIV counts are plotted. The number of MIVs
is dependent on many different features such as cell count,
overall connectivity graph, and bin size chosen. In order to
observe the impact of just wire length, the other features
are kept constant for this plot by only considering nets with
fan-out 2 in the implementation of aes-128 with fixed bin-
size. This shows how wire length can impact the 3-D routing
(specifically the average number ofMIVs). The average num-
ber of MIVs in each group increases as the pseudo-3-D wire
length keeps getting higher. Net groups with at least 1000 nets
are considered to reduce volatility in the plot.

More importantly, we observe the scaling error of resis-
tance and capacitance of these groups. This follows a slightly
more complex trajectory. The scaling error plots are much
smoother by the virtue of the central limit theorem as we
consider significantly more number of nets. It is interesting
to note that none of the groups have an average scaling
error >1 in line with our claim that pseudo-3-D underrepre-
sents the final RC values. Misrepresenting the via calculation
causes the resistance to be significantly undervalued. Overall,
the scaling error versus wire length plots have two main
trends: a steep increase at lower values 0 ≤ x < 10 followed
by a saddle-like shape for 10 < x < 60.
At 0 ≤ x < 10, the scaling error values are the most <1.

Since these nets are smaller, small perturbation during legal-
ization and routing changes can cause a relatively significant
increase in the final parasitics and so the SE < 1. As the
nets become relatively large, the net are more likely to be
partitioned (as evident from the avg.MIV count plot) and 3-D

routing is now going to have a higher impact adding more
RCs in the final 3-D that was unaccounted for. This shows
us up as the decrease in SE. And as the net length keeps on
increasing, the pseudo-3-D RCs increase at a rate higher than
the impact of 3-D routing, so the SE increases again. This
interaction between the pseudo-3-D RCs and the additional
3-D touringmanifests as the saddle shape.With relatively low
noise, this allows us to learn a scaling model as a function of
routed wire lengths.

Extending a similar analysis to the number of cells con-
nected to a net versus SER(C) gives us the plot in Fig. 4(b).
These plots are close to monotonically decreasing. This
shows that a highly connected net is more likely to have a
higher discrepancy between the pseudo-3-D and final-3-D
stages. This is a direct result of the bin-based Fiduccia-
Mattheyses partitioning done in pseudo-3-D flow.

a: BIN-BASED FIDUCCIA-MATTHEYSES PARTITIONING
In this partitioning, placement layout is first divided into
smaller rectangular bins and then each bin is partitioned into
two tiers such that the area of cells in the two tiers is the same
within a tolerance threshold. In any hypergraph partitioning,
the nets with high fan-out are more likely to be partitioned.
For example, a net with ‘‘c’’ cells connected has 2c ways
being split into two partitions. Apart from the two solutions
where all the cells in either of the partitions, the other 2c − 2
solutions have a cut-size of 1 net. So, once such a net is
forced to not be partitioned, the solution space decreases
by a fraction of ∼2c. But allowing the net to be partitioned
leaves the solution space almost unchanged with different
configurations achieving the same result. So, it is not a good
move to keep a highly partitioned net constrained to a single
partition as we might miss the chance of finding a better
cut-size solution. So, a highly connected cell is more likely
to be partitioned under hypergraph partitioning.

With this knowledge of hypergraph partitioning, it is easy
to see the reason for the monotonically decreasing plots
in Fig. 4(b). As discussed in the wire length analysis, a parti-
tioned net will have increased parasitics in 3-D and since the
groups are not directly dependent on wire length, the numer-
ator (pseudo-3-D parasitic value) cannot compensate for the
increase in the 3-D parasitics unlike in Fig. 4(a).

The scaling error due to tier partitioning can also be seen
by grouping nets based on the number ofMIVs. This is a final
3-D metric and cannot be used in training. But this helps one
to understand the scaling error evolution in terms of grouping
based on final 3-D parameters. No MIVs on a net imply that
it is fully routed in a single tier, and as discussed earlier,
such nets have the least deviation from the ideal. This is seen
in Fig. 4(c) as the SEC ≈ 0.95, SER ≈ 0.80 is highest at
#MIVs= 0. Both SER and SEC have a significant drop when
#MIVs = 1. This is because nets with fewer MIVs also have
a smaller avg. WL (Fig. 4). When the nets are partitioned its
adds vertical routing in 3-D which is particularly significant
for small nets. And as resistance is especially large for vias,
this causes the significantly large drop for SER.
Finally, the number of dense bins per net is analyzed.

As discussed in earlier sections, as the number of dense bins
per net increases, the legalization distorts the net more. When
this value is 0, SEC = 1 showing the group of nets that is
closest to ideal in terms of pseudo-3-D scaling. In this case,
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FIGURE 4. Average RC scaling errors with respect to various net features. (a) Wire length. (b) Number of MIVs on the net. (c) Number
of cells connected to the net. (d) Number of dense bins of the net.

each bin at the endpoint is a square centered at the pin with
a side of size 3 × Row Height. A bin is considered dense if
the density is greater than a certain threshold (which is set
to 75%). This again shows a monotonic drop with the range
almost as large as the trend for cell count.

III. DESIGN AND LEARNING MODEL IMPLEMENTATION
A. DESIGN IMPLEMENTATION
Training machine learning models require input data to train
and the output labels as the target output of the model.
In our case, the input data comes from pseudo-3-D design,
specifically, the postroute stage of the pseudo-3-D design.
This is specially chosen as we can extract proper pseudo-3-D
parasitic values as well as routing metrics like wire length
via count of nets. We add a few improvements to the 3-D
stages of the flow using improvements suggested in [9]. This
allows for better legalization with full 3-D connectivity and
3-D congestion-driven placement, and the routing is done
with a complete metal stack. This is useful in our model
application as the target parasitic value extraction becomes
more streamlined. With an independent die-by-die routing,
net extraction should be performed for each die separately.
By using the full 3-D routing (routing both dies together),
net extraction becomes more streamlined leveraging in-built
query commands of the commercial EDA tools. So, the target
data are the parasitic values of the 3-D routed nets done with
full 3-D routing.

The inputs to the model are the net features and design
features from the pseudo-3-D stage. Net features differentiate
the nets, whereas the design features are different among the
type of designs. All the different features used are speci-
fied in Table 2. The evolution of a net from pseudo-3-D to
final-3-D is design-dependent and, wire dominant and cell
dominant designs have very different routing and therefore
very different net evolution between the two stages. Similarly
global nets that span over a huge fraction of the chip width
or height would have varying lengths as the design varies.
Similarly, even when a circuit is fixed, different frequency
implementations will add additional timing constraints to
routing and additional buffers required for timing closure.
And finally, tier partitioning has an important variable that
changes the partitioning type-bin width. The bin width is used
to define bins within which FM min-cut is performed. So,
a high bin count (small bin width) can increase the number
of nets partitioned. In order to generalize over all these vari-
ations, we chose eight different training netlists, four target
frequencies per circuit, three bin sizes per frequency totaling
96 implementations for training. Different circuits have a
different number of nets, and to make sure some large circuits
do not overwhelm the training process, the number of nets per
design is capped at a certain value. Four circuits are left out
at the training stage that are used during testing.

Fig. 5 shows the overall flow after integrating the RC
prediction. After the routing stage in pseudo-3-D, pretrained
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TABLE 2. Input features used to train the XGBoost model, and their importance and/or explanation.

FIGURE 5. Pseudo-3-D flow with integrated RC prediction results.

models are loaded and used for RC value predictions. These
values are annotated to the existing nets and the design
is optimized. But postroute optimization has the ability to
change the net connectivity and add/delete nets. Completely
constraining the net updates at this stage will impact the
optimization quality. So, during optimization, nets that do not
have the RC annotations from the trained model would be
introduced to the design by the EDA tool for timing closure.
To rectify this, an incremental optimization is performed by
reannotating the parasitic values to all the nets in the design
followed by an in-place optimization. In this stage, the nets
are cells that are fixed in position to minimize the changes to
placement and routing structure that could invalidate the RC
annotation.

B. MACHINE LEARNING MODEL
To find the best learning model, we first consider a couple
of different options during the training stage: 1) an XGBoost
regressor; 2) XGBoost random forest regressor; and 3) ran-
dom forest regressor. We chose XGBoost as it is well suited
for regression-type problems. RC estimation is formulated
as a linear regression problem in our work with the least
squared sum lossmodel. Random forest regressors are closely
related to the XGBoost regressors, and havingmore weak tree
learners in a forest could be helpful to avoid overfitting data
to a single design or net type. Within each model, various
hyperparameters are varied and twofold cross validation is
used to choose the best combination. Specifically, they are
the number of trees, number of features per tree, and max
depth of each tree. In general, it is better to have many weak
trees to avoid overfitting. Similarly, by randomly choosing
a subset of all the features in each tree, the model can be
generalized better and performs well with test sets. Moreover,
before training any model, we perform feature selection on
the 24 selected features. By removing the unnecessary fea-
tures, overfitting in tree learning models can be avoided. This
is done using backward feature selection and null hypothesis
test using linear regression.

In backward feature selection, a linear regression model
is first fitted based on an initial set of features. p-values
are extracted for the features and at each stage, the worst
features are discarded if its p-value> 0.05. p-value shows the
probability of the null hypothesis, i.e., the probability that a
feature does not contribute to the target. In capacitance model
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TABLE 3. R2 scores and mean squared error of C2-D scaling and
the best model for capacitance training.

TABLE 4. Permutation importance using RMSE loss of the eight
most important features per model. The RMSE loss of
resistance model is 7.31× 10−2�, and capacitance model loss
is 9.22× 10−4 fF.

training, the ‘‘design id’’ was the only feature that had a p-
value greater than 0.05 and is removed duringmodel learning.
In the resistance model, the wire resistance was the only
feature with p-value > 0.05. This is an extremely unintuitive
outcome and happens because the influence of vias made
the wire resistance less useful and redundant. Changing the
design significantly changes the routing patterns (metal usage
per layer, vias used, etc.), which has more impact on the
resistance model. So ‘‘design id’’ has a smaller p-value and
is kept in resistance modeling.

IV. RESULTS
A. TRAINING AND INFERENCE
With the data collected from the previous stages, twofold
cross-validation is used on the testing sets and the model
with the best cross-validation error is selected. The R2 score
(explained variance) of the designs is shown in Table 3.
Of note are the designs with a low R2 score. When R2 score
equals 1, the model predicts all the variations in the target
label. R2 score is zero when output is a constant equal to the
target mean. The R2 score is higher in both training and test-
ing netlists, although the increase per netlist varies. Netlists
like vga, ldpc, and netcard already have a relatively high R2
score in C2-D stage. Interesting to note is that these three
are the wire dominant designs in the netlists considered. So,
the slight variances due to 3-D routing are not very significant
relative to the overall wire length. MSE is also high for these
circuits due to their large parasitics.

In Table 4, the permutation importance is given for the top
ten most important features in the model on the test set. In
permutation importance, a loss metric is first calculated using
a trained model, and then a feature is permuted so that values

FIGURE 6. RC histograms of ML based implementation.

of the feature are incorrect and the score is recalculated. The
difference between the scores is the permutation importance.
A large value implies a feature of high importance and a small
value implies low importance.

Fig. 6 shows the RC histograms of three design stages:
Model predicted RCs, pseudo-3-D RCs, and true 3-D RCs.
We see that the pseudo-3-D RCs deviate more from the
ground truth in the lower RC ranges leading to smaller RCs
than final 3-D. Such a design would not meet timing when
RCs becomes worse in the actual 3-D stage.

B. FULL-CHIP PPA
Irrespective of RC prediction, PPA is the most important
consideration for a full chip study, and in Table 5 we report
the PPA of the four testing netlists used: b19, ecg, tate, vga.
b19, and vga are relatively small circuits, and ecg and tate
are significantly larger. Three different implementations of
PPA are reported: 3-D design using circuit agnostic machine
learning model, circuit-specific model, and the C2-D’s global
RC scaling model.

The capacitance error in each implementation is the dif-
ference between the total capacitance of its final 3-D and
pseudo-3-D stages. −ve capacitance error means that the
pseudo-3-D stage predicts a low capacitance value. C2-D
flow always underestimates the value leading to worse slack
overall. With machine learning models, the error is always
positive and slightly in the positive direction. For circuits with
large over or underestimates, the power consumption varies
based on the method chosen (although this is a very small %
of total power). For the small circuits, such as b19 and vga,
the power consumption is actually smaller as the machine
learning model is employed. This is because the accurate par-
asitic estimation allows for better optimization in the pseudo-
3-D stage.

Total negative slack (TNS) has the highest impact overall
as it becomes ≈ 3×−16× smaller with the circuit agnostic
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TABLE 5. Overall PPA of the test netlists with circuit agnostic ML scaling, C2-D scaling, circuit specific ML scaling models.

model compared to the C2-D scaling. This is mainly because
each net is assigned a better parasitic which contributes a
little to the overall slack improvement. Worst negative slack
(WNS), on the other hand, depends on just the critical nets
in 3-D. These nets are not identifiable from C2-D stages,
as the 3-D routing changes the criticality of the paths. The
nets with negative timing slack in pseudo-3-D can have a
positive slack, and nets with positive slacks in pseudo-3-D
can become the new critical paths in final 3-D. To identify
the critical paths, a learning model that is tailored for the
timing estimation of graph networks should be used and
requires high accuracy. But the best solutionwould be to add a
postroute optimization stage in 3-D that can fix the relatively
minor TNS and few WNS violations in 3-D.

Finally, we also trained circuit-specific models to check
the benefit of having such models. While these models were
able to perform better in terms of total capacitance error, they
do not have significant improvement in power consumption.
With regards to timing, the circuit-specific models have even
more volatile WNS. The TNS is better than the C2-D scaling
but is not as good as using a general model. This is slightly
counter-intuitive as we would assume circuit-specific model
would perform better. But they suffer from overfitting and
lack of different types of nets during training. Another reason
is that these models are trained to learn the parasitics and
cannot be directly helpful with overall timing. So the general
learning model is as good as circuit-specific models for par-
asitic estimation and power consumption, but is significantly
better in terms of timing.

V. CONCLUSION
In summary, we have presented a machine learning model
that can predict final net parasitics at an early stage of
the design. We have analyzed several net features and how
they impact the parasitic evolution in a pseudo-3-D flow.
We formulate new metrics and use them to achieve better cir-
cuit, agnostic learning models. Using these models, we were
able to achieve higher R2 score, lower MSE, better timing.

We discussed the issue of critical path estimation in 3-D
design and showed that our general model is better than a
circuit-specific model. With 3×−16× TNS reduction on test
circuits, integrating these models in the pseudo-3-D flows
help us to minimize the number of timing violations and the
severity of the violations after routing.
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