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ABSTRACT Machine learning (ML) accelerators have a broad spectrum of use cases that pose different
requirements on accelerator design for latency, energy, and area. In the case of systolic array-based ML
accelerators, this puts different constraints on processing element (PE) array dimensions and SRAM buffer
sizes. The 3-D integration packs more compute or memory in the same 2-D footprint, which can be utilized
to build more powerful or energy-efficient accelerators. However, 3-D also expands the design space of ML
accelerators by additionally including different possible ways of partitioning the PE array and SRAM buffers
among the vertical tiers. Moreover, the partitioning approach may also have different thermal implications.
This work provides a systematic framework for performing system-level design space exploration of 3-D
systolic accelerators. Using this framework, different 3-D-partitioned accelerator configurations are proposed
and evaluated. The 3-D-stacked accelerator designs are modeled using the hybrid wafer bonding technique
with a 1.44-µm pitch of 3-D connection. Results show that different partitioning of the systolic array and
SRAM buffers in a four-tier 3-D configuration can lead to either 1.1–3.9× latency reduction or 1–3× energy
reduction compared to the baseline design of the same 2-D area footprint. It is also shown that by carefully
organizing the systolic array and SRAM tiers using logic over memory, the temperature rise with 3-D across
benchmarks can be limited to 6 ◦C.

INDEX TERMS 3-D integration, energy efficient, systolic accelerators, thermal.

I. INTRODUCTION

MACHINE learning (ML) algorithms are composed of
both computationally and memory-intensive matrix

multiplication operations. Systolic array architectures [1]
achieve high throughput with modest bandwidth for matrix
multiplication operations and hence make a good choice for
ML acceleration. Systolic array-based ML accelerators have
seen deployment in data centers [2], [3] as well as in mobile
platforms [4], [5]. As the ML application space continues
to expand with big data and as the neural network (NN)
models continue to grow bigger to achieve higher accuracy,
the accelerators must scale to meet the increasing demands of
computation and energy efficiency.

At the same time, the typical gains in energy efficiency
that dimensional scaling has brought over the past several
decades are slowing down [6]–[8]. The 2-D enhanced archi-
tectures [9] place dies side-by-side and interconnect them
through media, such as a silicon interposer [10] or embedded
bridge [11], [12], to achieve higher interconnect densities
compared to mainstream packages. The 3-D architectures,
such as hybrid wafer bonding [13], [14], directly stack two
or more dies on top of each other without using the agency
of the package, further reducing distances and increasing
interconnect densities between dies. The 3-D architectures

may offer complementary gains to traditional dimensional
scaling for achieving high performance, low power, high
bandwidth, and fast time-to-market, all in a small footprint.
Larger 2-D dies can be replaced by a few smaller ones with
potentially higher manufacturing yields [15], [16]. Besides,
3-D allows heterogeneous integration of parts from different
technologies instead of having to redesign every component
for a specific process [17]. As 3-D technologies evolve,
increasingly finer pitches of 3-D connections become viable
[18], [19]. This opens interesting possibilities for designers to
partition and fold designs onto multiple tiers [20], [21]. Deep
neural network (DNN) processing is heavy in computation
and data movement [22]; 3-D makes it possible to pack more
compute or memory in the same 2-D footprint while reducing
interconnect delay and power by bringing the blocks closer.
Hence, 3-D provides an opportunity to build powerful and
energy-efficient accelerators.

Traditional 2-D systolic array design involves careful par-
titioning of the silicon real estate between the processing ele-
ment (PE) units and SRAM buffers to balance the throughput
and external memory transfer bandwidth. The 3-D acceler-
ator design additionally involves the optimal distribution of
the increased silicon real estate available in the same 2-D
footprint between the PE units and memory. Furthermore,
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FIGURE 1. (a) 2-D enhanced: side-by-side die stacked over
interposer (2.5-D). (b) 3-D: memory die stacked directly on the
logic die using hybrid WB technology.

the power density of systolic accelerators is high due to
their desired high computing capability and closely packed
PEs. This is exacerbated in 3-D due to higher logic inte-
gration density, which may lead to worse thermal character-
istics [23]. Hence, the designer must consider the thermal
implications when partitioning the accelerator components
among 3-D tiers. A systematic methodology for navigating
the 3-D systolic accelerator design space accounting for the
thermal issues is necessary. This article makes the following
contributions to address this issue.

1) Provide a systematic framework to navigate the design
space of 3-D systolic array-based ML accelerators
under different workload conditions.

2) Perform system-level analysis to evaluate and com-
pare different 3-D-partitioned accelerator approaches
for performance, power, and thermal characteristics.

3) Provide insights and takeaways for system design-
ers to perform thermal-aware design of such 3-D
accelerators.

The remainder of this article is organized as follows.
Section II provides the background and prior work on
3-D integration technologies and systolic architectures. Sec-
tion III describes the 2-D baseline design and different 3-D
partitioned configurations. Section IV delineates the simu-
lation framework used to perform performance, power, and
thermal analysis. Section V describes the experimental setup.
Section VI presents the results from a comparative analysis of
different 3-D accelerator configurations. SectionVII provides
concluding remarks.

II. BACKGROUND AND PRIOR WORK
This section provides a brief overview on various 3-D inte-
grated circuit (IC) technologies. A refresher is also pro-
vided on the basic principles of systolic array-based DNN
accelerators.

A. OVERVIEW OF 3-D INTEGRATION TECHNOLOGIES
Traditionally, two or more dies are flip-chip attached to an
organic package substrate and interconnected with the agency
of the package. Certain 2-D enhanced (also referred to as
2.5-D integration) utilizes an interposer made of silicon,
glass, or ceramic for high-density communication between
separate dies mounted side-by-side [see Fig. 1(a)]. The inter-
poser may contain through-silicon vias (TSVs) [24] that are
essentially holes etched out in the siliconwafer and then filled
with a conductive metal such as copper.

The 3-D stacked ICs involve a die containing TSVs
attached to the package substrate using conventional flip-chip
technology and a second die, fabricated separately and
bonded to the first die using microbumps [25] or hybrid
wafer bonds (WBs) [13]. This leads to a back-to-face (B2F)

FIGURE 2. Typical systolic array-based accelerator system.

configuration, as the back of the first die is bonded to the face
of the second die [see Fig. 1(b)]. Similarly, other configu-
rations, such as back-to-back (B2B) and face-to-face (F2F),
are possible, especially when multiple dies are stacked in
this manner. Compared to 2.5-D (lateral) integration, 3-D
stacking worsens thermals due to increased power density
with die overlap, and heat dissipation from tiers away from
the heat sink is a challenge [26].

Monolithic 3-D ICs consist of multiple device layers fab-
ricated sequentially on the same die and connecting using
monolithic inter-tier vias (MIVs) that are essentially the same
size as intra-tier vias [27]. MIVs offer better parasitics and
a higher integration density compared to TSVs due to their
smaller size [28]. Since monolithic 3-D enables the finest
pitch of 3-D connection, it holds the most promise. How-
ever, more breakthroughs in low-temperature processing to
fabricate transistors in the upper layers while preserving the
transistors and back end of line (BEOL) of the lower layer
are desired [29]. Monolithic 3-D suffers from limited lateral
thermal conductivity due to the absence of substrate on upper
layers. Besides, high device integration density and thin lay-
ers lead to strong tier-to-tier thermal coupling [30].

This work uses 3-D stacked ICs using the hybrid wafer
bonding technology to model the design of 3-D ML acceler-
ators. Nonetheless, some of the ideas discussed in this article
around efficient partitioning of an ML accelerator design into
3-D tiers can be helpful to design for other 3-D IC technolo-
gies as well. Next, we will discuss the basic principles of
operation of a systolic array-based ML accelerator system.

B. SYSTOLIC ML ACCELERATORS
A systolic array consists of a simple and regular grid of
PEs wired together using the nearest neighbor interconnect
[31], [32]. Data from banked scratchpad memory made of
SRAMs are injected from the edges of the array in a rhythmic
pipelined manner (similar to a systolic beat). The PEs per-
form the same operation on their inputs, typically multiply-
and-accumulate (MAC), and pass the intermediate results or
the original inputs to adjacent PEs. The key idea is to exploit
data reuse so that fewer data transfers from memory are
needed. Furthermore, purely local data movement (neighbor
to neighbor) means simpler interconnect and control. PEs
operating in parallel achieve high computational concurrence.
Moreover, systolic architectures are modular making them
easy to floorplan and scale. Fig. 2 shows a high-level dia-
gram of a typical systolic system with an array of PEs and
scratchpad memory for storing input, filter, and output.
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DNN computation is a highly parallel workload of dense
matrix multiplication operations between the input matrix
(or the output of the previous layer) and the filter matrix.
Systolic array architectures can effectively leverage the abun-
dant data reuse opportunity in DNNs by using their local
data shifting movement and keeping the PEs busy to provide
high throughput. Each PE performs a simple MAC operation,
while data are streamed through the array in a predefined
synchronized dataflow. An example of dataflow is weight
stationary where weights of the filter matrices corresponding
to each DNN layer are preloaded from the filter memory into
the systolic array before any matrix multiplication operation
is performed. Input data are then streamed in from the input
memory, and the array elements perform matrix multipli-
cation with the weights already stored in them. The output
data are continuously accumulated, passed through activation
and/or quantization functions before eventually being stored
in the output memory. The cost of fetching data frommemory
is amortized over several compute cycles leading to high
energy efficiency. The systolic array has been utilized as the
underlying fabric to achieve orders of magnitude gains in
performance and energy efficiency over traditional CPUs and
GPUs for DNN acceleration [2], [3], [5].

III. 2-D AND 3-D SYSTOLIC ARRAY ACCELERATORS
Traditional 2-D systolic array design involves selecting an
appropriate size and dimension of the PE array as well as
the size of memory, which would store the NN input feature
maps (IFMAP SRAM), filters (FILTER SRAM), and output
feature maps (OFMAP SRAM). In theory, a designer can
choose an arbitrary number of PEs. One would expect that a
large number of PEs improves the local data reuse, especially
for compute-limited (or large) networks. This may lead to an
increase in the throughput of operations, thereby reducing
the number of total cycles (latency) needed to process the
network. However, for applications targeting small networks,
a large PE array can increase the latency of NN computation
as inputs have to traverse the entire length and height of
the array before the output is ready. Regarding buffer sizing,
a larger SRAM would minimize expensive data transfers to
main memory (DRAM). However, again, overprovisioned
SRAMs can lead to area and cost inefficiencies. In summary,
designers must consider the aforementioned tradeoffs for
both the PE array and SRAM buffer sizes, keeping in mind
the target application workload to achieve an optimal design.
For this study, the baseline 2-D accelerator was selected to
have a 32 × 32 PE array and 128 kB of filter, IFMAP, and
OFMAP SRAM each, which is representative of common
DNN inference use case [4].

The 3-D systolic accelerator design further involves dis-
tributing the additional silicon real estate available within
the same 2-D footprint between PE elements or SRAM
buffers to balance network throughput and external mem-
ory transfers. Moreover, the partitioning method of the PE
array and SRAM buffers among the vertical tiers may have
thermal implications. In order to evaluate and compare 3-D
accelerators with different partitioning styles, design points
described in Table 1 are selected. The 3-D configurations
considered were limited to four stacks of PE array or SRAM.
Increasing SRAM stacks has diminishing returns in energy
reduction, and increasing PE stacks leads to worsening

TABLE 1. List of 2-D and 3-D accelerator configurations.

FIGURE 3. High-level floorplan showing different approaches of
partitioning SRAM buffers (blue) and PE array (yellow) in the
2-D and 3-D accelerator configurations.

FIGURE 4. (a) Example PE array in 2-D. (b) PE array folded in 3-D
with vertical connections between PEs across tiers
(configurations 2 and 6). (c) Separate smaller PE arrays
operating independently (configuration 7).

thermals, as explained in Section VI. It must be noted that
while a 4× larger 2-D design with increased compute or
memory resources is possible, a four-tier 3-D system packs
equivalent resources in the same footprint as the baseline 2-D
accelerator. A 3-D system will incur lower 2-D interconnect
delay and power due to shorter distances and fewer buffers
compared to a 4× larger 2-D system but may incur an addi-
tional penalty in 3-D interconnects.

The 3-D configurations selected for further analysis
include multiple PE array tiers (configuration 2) or multiple
SRAM tiers (configurations 3–5), a scaled-up version (con-
figuration 6), and a scaled-out version (configuration 7) of the
2-D baseline accelerator. The floorplans for all design points
are shown in Fig. 3. It should be noted that configurations
3–5 have the same amount of overall compute and memory
resources but differ in the method of how these resources are
partitioned among vertical tiers. Scaling-up simply means a
larger system folded into multiple tiers, whereas scaling-out
means multiple smaller systems in separate tiers [33]. In con-
trast to configuration 6, the different tiers in configuration 7
do not share the same SRAM and only share an off-chip
DRAM. As shown in Fig. 4(c), the scale-out version does
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FIGURE 5. Simulation framework for 3-D systolic accelerators.

not require any connections in the vertical direction between
PE elements in different tiers as the four systolic arrays oper-
ate independently in this configuration. Vertical connections
would still be needed to transfer the data from DRAM to
SRAM in different tiers and for power and ground lines.

IV. SIMULATION FRAMEWORK
The simulation framework developed and used in this work
is shown in Fig. 5. It comprises two flows that are explained
in this section.

A. POWER AND PERFORMANCE ANALYSIS FLOW
An open-source simulator SCALE-Sim [33] is chosen for the
power and performance analysis. Accelerator design param-
eters, such as PE array dimensions, SRAM buffer sizes, and
dataflow, can be selected andmapped to a list of configuration
files. Simulation benchmarks are translated to topology files
having a layerwise description of the network. The simulator
runs a stall-free DNN inference and, after processing the
entire network, reports the latency in cycles, array utilization,
SRAM accesses, DRAM accesses, and DRAM bandwidth
requirements.

The power of different configurations is computed from
the layerwise average utilization of the PEs and average
bandwidth for SRAM and DRAM reads/writes provided by
SCALE-Sim in conjunction with the technology data from
[34] (see Table 2). DRAM accesses can contribute a major
part of the total energy [35]. For 3-D accelerators, the DRAM
transfers may incur an additional energy overhead in trans-
ferring data to accelerator components in different tiers. The
energy per bit overhead for F2F is reported as 0.013 pJ at
nominal voltage [14]. The energy overhead of F2B over F2F
is reported as 12× [36]. Hence, to incorporate an average case
impact of vertical interconnect energy on the overall DRAM

TABLE 2. Technology data from [34] used in conjunction with
SCALE-Sim outputs for power calculations.

access energy of a four-tier system, 1.35 pJ/byte (one F2F and
one F2B) is added to all DRAM transfers of 3-D accelerator
configurations.

Power consumed in the PE array is calculated using the
following equation:

PPE =

∑n
i=1(util(i) ∗ arr_h ∗ arr_w ∗ e_mac ∗ cyc(i))

cycles ∗ 1
freq ∗ 100

(1)

where n is the number of layers in the network, util(i) is
the average utilization of the PE array for computing layer i
(between 0 and 100), cyc(i) is the number of cycles taken for
computing layer i, arr_h and arr_w are the PE array height and
width, respectively, freq is the frequency of operation, and
(e_mac) is the energy consumed per 8-bit MAC operation.
e_mac of 0.3 pJ (Table 2) is per cycle energy consumed in
the PE at 1 GHz based on a place-and-routed design of an
8-bit precision MAC in 16-nm process node [34].

SRAM power is calculated using the following equation:

PSRAM

=

∑n
i=1((srd_bw(i) ∗ e_srd+ swt_bw ∗ e_swt) ∗ cyc(i))

cycles ∗ 1
freq

(2)

where n is the number of layers in the network, srd_bw(i)and
swt_bw(i) are the average SRAM read andwrite bandwidth in
bytes per cycle for the execution of layer i, respectively, cyc(i)
are the number of cycles taken for computing layer i, and
(e_srd) and write (e_swt) are the SRAM energy consumed in
access of byte-wide data. e_srd of 1.1 pJ and e_swt of 1.5 pJ
(Table 2) is based on 32-kB SRAMmacros generated from an
industry-standard memory compiler at 16 nm and takes both
dynamic and static energy into account [34].

DRAM power is calculated using the following equation:

PDRAM

=

∑n
i=1((d_if(i)+ d_filt(i)+ d_of(i)) ∗ e_mem ∗ cyc(i))

cycles ∗ 1
freq

(3)

where n is the number of layers in the network, d_if(i),
d_filt(i), and d_of(i) are the average bandwidth to access
input feature map, filter, and store output feature map in
DRAM for the layer i, respectively, and (e_mem) is the
DRAM energy consumed per byte access. e_mem of 120 pJ
(Table 2) is based on off-chip DRAM accesses energy per
byte assuming an LPDDR3 interface [35].

Performance in terms of latency of different 2-D and 3-D
configurations is computed from the layerwise cycle count
provided by SCALE-Sim. For configurations 1–6, the total
number of cycles to complete the entire benchmark is com-
puted by summing the cycles taken to complete each network
layer. Since the computation in the vertical tiers is parallel in
configuration 7, the sum of cycles per network layer can be
directly computed by simulating a single tier. Performance
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FIGURE 6. Tile-based power map used for thermal analysis.

in terms of throughput can be calculated in teraoperations
per second (TOPS) using the following equation:

TOPS =
util ∗ arr_h ∗ arr_w ∗ 2

1
freq ∗ 100

(4)

where util is the average utilization of the PE array for
computing the NN (between 0 and 100), arr_h and arr_w
are the PE array height and width, respectively, and freq is
the frequency of operation. The factor of 2 in the numera-
tor represents the separate MAC operations of MAC. This
definition is theoretical systolic accelerator throughput with
no memory-bandwidth limitations, i.e., with stall-free oper-
ation. The delay overhead of 3-D F2F vertical interconnect
can be ∼5 ps at nominal voltage [14]. An F2B connection
(through TSVs) has a delay overhead of 3.2× over an F2F
connection [36]. Hence, to incorporate a worst case impact of
the vertical interconnect delay on the frequency of a four-tier
system, 42 ps (two F2Fs and two F2Bs) is added to the cycle
time (1/freq) of 3-D accelerator configurations.

B. THERMAL ANALYSIS FLOW
To the first order, the temperature rise in 3-D IC is primarily
proportional to the effective power density in the 2-D foot-
print [23]. Floorplan dimensions of different 2-D and 3-D
configurations are calculated based on the PE and SRAM
area at 14-/16-nm technology node from Table 2. A spatial
tile-based power map is created for each tier by using the
power data computed for PE and SRAM regions in conjunc-
tion with the respective floorplan dimensions. Fig. 6 shows a
typical tile-based power map, which is essentially a division
of the entire tier into equal-sized tiles. The power of each tile
is the sum of the power associated with the blocks within the
tile. The power map contains the metal density and thermal
conductivity properties of all the layers in the BEOL stack.
Abstracting the power consumed by the PEs and SRAM in
terms of per-tier power maps allows us to mix and match
different tiers and build and analyze thermal characteristics
for different 3-D configurations with relative ease.
Cadence Celsius Thermal Solver: The work [37] is used to

run static thermal simulations. The tool uses the power map
file along with a complete physical description of the package
stack-up, bumps, molding compound, lid, thermal-interface
material (TIM), and a detailed description of the vertical
stack, i.e., devices, interconnects, and dielectrics along with

FIGURE 7. Reduction in total energy by sweeping SRAM stacks
of configuration 3 for different NN benchmarks (log scale).

their thermal conductivity properties. The package comprises
ten build-up layers with overall dimensions of 10 × 10 mm2

with an 11 × 11 mm2 copper lid on top. TSVs of diameter
5 µm are modeled at every 50 µm in the die stack-up.
Thermal simulations are run for different benchmarks with
the same package and die size assumptions maintained for
all the configurations for a fair comparison. However, as a
significant change in package thermal design power (TDP)
(for instance, configurations 2–7 versus configuration 1),
the heat spreader dimensions may need to be redesigned,
and boundary conditions may have to be recalibrated. Setting
up realistic boundary conditions for the tool is critical for
getting accurate results. Thermal boundary conditions cali-
brated with actual hardware measurement data using on-die
temperature sensors are sourced from [38]. The tool generates
thermal heat maps and maximum temperature data of differ-
ent dies in each configuration.

V. EXPERIMENTAL SETUP
SCALE-Sim is configured with microarchitecture features,
such as PE array dimension, aspect ratio, and memory buffer
sizes for different 2-D and 3-D accelerator configurations
listed in Table 1. The simulator, by default, only supports a
2-D systolic configuration. The 3-D design points of con-
figurations 2–6 can be mapped to SCALE-Sim using their
respective PE and SRAM sizes, as specified in Table 1.
Configuration 7 is equivalent to four separate systolic systems
and can be mapped to SCALE-Sim with PE and SRAM size
of configuration 1 with the benchmarks split four ways along
their output channels. The dataflow is set to weight stationary.
Although this limits the design space explored, it still enables
for a like-to-like comparison between different 3-D acceler-
ator configurations. The topology files having a layerwise
description of the networks, such as input and filter dimen-
sions, input channels, number of filters, and strides, are set up
for SCALE-Sim for some common NN benchmarks such as
AlexNet [39], AlphaGo Zero [40], Deep Speech 2 [41], Faster
R-CNN [42], GoogLeNet [43], neural collaborative filtering
(NCF) [44], ResNet-50 [45], Sentiment Seq-CNN [46], and
Transformer [47]. The geometric mean of results from all
benchmarks is included to illustrate the overall difference
between configurations across all benchmarks. The metric
for performance is the number of cycles required to process
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FIGURE 8. Energy comparison among configurations for different NN workloads. The DRAM energy split includes the vertical
interconnect energy overhead for the 3-D configurations.

FIGURE 9. Latency comparison among configurations for different NN workloads.

the benchmark (measure of latency) and TOPS (measure of
throughput). The metric for energy efficiency is TOPS/W.
The metric for thermal is the maximum temperature increase
in ◦C relative to the coolest point of the 2-D baseline.

VI. RESULTS
This section presents the simulation results comparing dif-
ferent 3-D accelerator configurations. Insights are drawn for
optimal partitioning strategy for energy, performance, and
thermal for different network workloads.

A. ENERGY
Intuitively, it can be said that stacking multiple SRAM tiers
would lower the DRAM transfers bringing down the total
energy (see Fig. 7), especially for memory-limited networks.
Fig. 8 compares the total energy of configurations 1–7 listed
in Table 1 across different benchmarks and also shows the
breakdown of energy between computations, SRAM, and
DRAM transfers. As expected, configurations 3–6 that con-
tain four-stack SRAM reduce the total energy to process
the network compared to configuration 1 (2-D baseline).
However, the energy reduction factor varies widely between
benchmarks from 1.0× for NCF to 3.8× for Deep Speech 2.
NCF being relatively small already fits within a single SRAM
stack and additional SRAM stacks in 3-D bring no benefit.
Configuration 6 (scale-up) achieves the lowest energy since

TABLE 3. Comparison of accelerator configurations for geomean
of all benchmarks.

it also contains four stacks of PEs along with four stacks
of SRAMs increasing the local data reuse within the PEs,
hence minimizing both SRAM and DRAM transfers. Config-
uration 7 (scale-out) operating on partitioned output channel
requires input feature maps to be duplicated in the SRAMs,
causingmultiple DRAM accesses to fetch the same input data
leading to high total energy.

B. PERFORMANCE
The number of cycles taken to complete a benchmark should
decrease with the increase in the number of PEs, especially
for compute-limited (large) networks. As expected, Fig. 9
shows that configurations 2, 6, and 7 that contain four-stack
PE arrays take fewer cycles to process the network compared
to configuration 1 (2-D baseline). However, the speedup
varies widely between benchmarks from 1.1× for NCF to
3.9× for AlexNet. NCF has much smaller layer features such
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FIGURE 10. Heat maps under the ResNet-50 benchmark for (a) configuration 2 (four-stack array) and (b) configuration 3 (four-stack
SRAM). The tier dimensions are in mm. All temperatures are relative to the coolest point on configuration 1 (2-D baseline) for
ResNet-50.

TABLE 4. Maximum system temperature for different configurations across all benchmarks relative to the coldest point in 2-D baseline
for sentimental Seq-CNN benchmark.

as IFMAP dimensions compared to AlexNet and is unable to
utilize the additional PE tiers to achieve any more compute
parallelism. Configuration 7 (4× scale-out of 2-D) shows
slightly better performance than configuration 6 (4× scale-up
of 2-D) for some benchmarks, such as AlexNet, AlphaGo
Zero, and ResNet-50. This is due to fewer cycles for filling
up the smaller independent PE arrays of configuration 7 com-
pared to a single larger folded PE array of configuration 6,
which suffers from this overhead at the start of computation
of each layer. For other benchmarks such as Deep Speech 2,
which contains a small number of output channels and large
input feature maps, configuration 7 loses its advantage and
suffers from low PE utilization. The power–performance in
TOPS and TOPS/W (including the delay and energy over-
heads of the vertical interconnects for 3-D configurations) is
presented in Table 3.

C. THERMAL
Fig. 10 shows the steady-state heat maps of configuration 2
(four-stack PE array) and configuration 3 (four-stack SRAM)
to highlight the difference in thermal characteristics of logic-
over-logic and memory-over-memory. Both configurations
are running the ResNet-50 benchmark. The temperature val-
ues are relative to the coolest point on configuration 1 (2-D
baseline). The heat maps clearly emphasize that the PE array
part of the die runs hotter by around 5 ◦C. It can be further
observed that the maximum temperature of configuration 2 is
about 13 ◦C higher than configuration 3. This is because the
average power density of the 3-D stack of PE array is higher
compared to the SRAM stack. Table 4 compares the maxi-
mum temperature rise of different configurations across all
benchmarks. The benchmarks have a varied size of underly-
ing NN model, leading to different average array utilizations
and SRAM accesses causing different rise of temperatures.
Configurations 2, 6, and 7 that employ 3-D stacking of the

FIGURE 11. Effect of temperature rise on the ON-state current
(black line) @SS/VNOM-10% and ON-state current (red line)
@FF/VNOM+10% of a transistor with standard VTH option at
14/16 nm (0.8-V VNOM).

PEs (logic-over-logic) suffer from a temperature rise of up to
24.8 ◦C relative to the coolest point on configuration 1.
The increase in temperature can have an impact on the

overall energy of the accelerator. For example, assuming the
coolest point on the 2-D baseline to be 75 ◦C, an increase
in temperature by 25 ◦C has a marginal effect on transistor
ON-state current but increases the OFF-state current by 1.9×
(see Fig. 11). Configuration 7 partially avoids overlapping
hotspots by staggering the PE array and SRAM between tiers
but fares only slightly better. Configurations 3 and 4 that
stack multiple tiers of SRAM are only up to 7.2 ◦C hotter.
Furthermore, changing the ordering and stacking the PE array
on top of the SRAM stack as in the case configuration 5
(logic-over-memory) limits the temperature rise to only up to
5.6 ◦C making it the best choice from a thermal standpoint.
The reason behind this is that the tier containing PE array is
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significantly hotter than ones containing SRAM and placing
it on top reduces its relative proximity to the heat sink.

In summary, 3-D stacking of PE arrays (configurations 2,
6, and 7) can reduce the latency of the network computation,
but the speedup depends on the network size. Furthermore,
these configurations suffer from the worst thermal charac-
teristics due to logic-over-logic stacking. On the other hand,
stacking multiple SRAM tiers (configurations 3–6) lower the
DRAM transfers making them a good choice where energy
efficiency is important. Furthermore, stacking PE array on top
of the SRAM stack (configuration 5) in a logic-over-memory
fashion can not only achieve low energy but also mitigate the
thermal impact of 3-D.

VII. CONCLUSION
Systolic accelerators have been deployed for training and
inference on edge devices as well as on the cloud for a wide
variety of workloads. These use casesmay constrain accelera-
tor requirements for latency, energy, and area differently. The
3-D integration packs more compute or memory in the same
2-D footprint allowing more powerful and energy-efficient
accelerators. However, it also presents more options to the
designer for partitioning the PE array and memory among
3-D tiers. Since different choices may have different perfor-
mance, power, and thermal implications, it becomes impera-
tive for designers to understand the tradeoffs under different
application workload conditions. In this work, a system-
atic methodology for navigating the 3-D systolic accelera-
tor design space is presented. Using this framework, 3-D
configurations with different partitioning styles are evalu-
ated and compared providing several insights and takeaways
for designers. This work can pave the pathway for future
thermal-aware 3-D systolic accelerator designs.
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