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ABSTRACT Neuromorphic or bioinspired computational platforms, as an alternative for von-Neumann
structures, have benefitted from the excellent features of emerging technologies in order to emulate the
behavior of the biological brain in an accurate and energy-efficient way. Integrability with CMOS technology
and low power consumption make ferroelectric field-effect transistor (FEFET) an attractive candidate to
perform such paradigms, particularly for image processing. In this article, we use the FEFET device to make
energy-efficient oscillatory neurons as the main parts of neural networks for image processing applications,
especially for edge detection. Based on our simulation results, we estimated a significant energy efficiency
compared with other technologies, which shows roughly 5-120x reduction, depending on the design.

INDEX TERMS CMOS technology, coupled oscillator, ferroelectric field-effect transistor (FEFET) device,

frequency modulation, neuromorphic computing.

I. INTRODUCTION

RAIN-INSPIRED neuromorphic computing provides a

strong platform to implement computationally intensive
operations, such as associative memory, recognition, and
classification, in which traditional von-Neumann paradigms
lack computational efficiency due to higher power con-
sumption, big area, reduced accuracy, and poor parallelism
[1]-[17]. A variety of computing strategies have been demon-
strated in this regard to implement such non-Boolean comput-
ing systems. Cellular neural networks (CNNs) and oscillatory
neural networks (ONNs) are some examples [7]. Among
them, ONNs earn us significant area reduction, simpler
structures, fast recognition speed, and high energy effi-
ciency [1], [4], [9], [10], [14]. Over the last few decades,
CMOS technology has been the basis of both traditional
Boolean computing and modern oscillatory networks. How-
ever, the implementation of ONNs in CMOS technology
becomes a looming challenge since each oscillator comprises
tens of transistors, and a large number of oscillator arrays
are needed for ONNSs. This issue is more challenging when
we are close to the end of the silicon road map. Nev-
ertheless, novel beyond-CMOS technologies are emerging,

with characteristics suited for new computing architec-
tures [1], [2], [4], [5], [8], [10]-[13], [15], [18]-[21].
Coupled-oscillator neurons have become critical parts
of ONNs with the possibility of performing low-power
computations and offering interesting features, such as syn-
chronization dynamics. To date, modern oscillatory neu-
rons have been physically implemented using the emerging
nanoscale technologies, such as spin-torque (ST), memris-
tors, and metal-insulator transitions (MITs) oxides, because
of their unique properties where even the most advanced
CMOS nodes are left behind [1]-[14], [22], [23]. Both ST
and MIT technologies show hysteretic behavior, synchroniza-
tion capabilities, and acceptable sensitivity to image contrast
compared with the CMOS-based implementation. Consider-
ing these features, arrays of coupled oscillators comprised
by MIT and MOSFET devices are used to perform visual
saliency [4], [S], compare the images of faces and handwritten
numbers (pattern recognition) [1], [5], [6], [9], and generate
locomotion gait patterns [23] and spoken vowel recogni-
tion [22]. In [14], it is shown that scaling the number of
oscillators can implement a variety of image processing appli-
cations, including salience detection (two oscillators), color
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interpretation (three oscillators), morphological operation
(five oscillators), and pattern matching (nine oscillators). The
coupled ST oscillators (STOs) are also considered for edge
detection, pattern, and spoken digit recognition in [7], [8],
[11]-[13], and [24]. Neurons are designed to operate at realis-
tic/biologic time constants (a few milliseconds) or accelerated
biological time scales (i.e., 10° times faster than the biosys-
tems) [25]. Although the ST- and MIT-based neurons are
implemented for accelerated processing speed, integrability
with CMOS is not currently available in these technologies.
Note that the hysteretic behavior of MIT oxide is static
and cannot be controlled by the physical parameters [10].
This causes fewer degrees of freedom to perform computing
operations.

The aim of this work is to explore the potential of the
ferroelectric field-effect transistor (FEFET) in the design of
coupled oscillators for image processing applications. The
FEFET-based oscillators can be integrated with the traditional
CMOS flow with ease while providing simple circuit topolo-
gies with comparable power consumption to ST and MIT
devices and presenting biologically realistic time constants to
mimic the functionality of the biological brain. In addition,
the hysteresis loop in FEFET devices can be dynamically
controlled by its input bias, which is a unique feature of these
devices [10]. When configured with MOSFET, this control-
lability can also be tuned via the MOSFET gate voltage, thus
presenting the second degree of freedom [10]. We will use this
behavior to modulate the oscillation frequency required to
perform computing states. The rest of this article is organized
as follows. The device modeling and /-V characteristics of
the FEFET and the voltage controllability of the hysteresis
loop are presented in Section II. In Section III, the proposed
FEFET-based oscillator, the frequency modulation, and the
physical mechanism of this property are presented. Following
this, a detailed explanation about the design methodology of
the coupled oscillatory-based edge-detection structure along
with the simulation results is presented in Section IV. Finally,
the conclusions are drawn in Section V.

Il. DEVICE MODEL AND CHARACTERISTICS

The self-consistent compact model presented in [26]-[28]
is used here to model the FEFET device. The under-
lying baseline 14-nm FinFET device is modeled using
the industry-standard BSIM-CMG model. The ferroelec-
tric (Fe) physics part is modeled with experimentally cali-
brated Landau—Khalatnikov (L-K) formulations. This model
is based on the single domain Fe approximation. The L-K
formulations, the Fe model, and transistor behavior are then
self-consistently solved in this model.

Hysteresis behavior in NCFETs is exploited in the work to
create energy-efficient circuits. NCFET hysteresis is depen-
dent on the Fe thickness used in the device. A higher Tt
reduces the Fe negative capacitance causing hysteresis. The
model used here accounts for this behavior. In Fig. 1(a),
the transfer characteristics at the drain—source voltage
Vaa = 1.2 V is shown, while T§ is swept from 10 to 19 nm.
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NCFET does not show the hysteresis loop for T, lower
than 13 nm. Ensuring that there is no hysteretic behavior for
Tte < 13 nm, we did not show the characteristics for thick-
nesses lower than 10 nm. In addition, the width of the hys-
teresis loop becomes larger with T¥.

From these simulation results, we arbitrarily select
Tte = 15 nm for our designs. This guarantees the hysteretic
behavior, which is necessary for the design of the oscillator.
A thicker or thinner Fe layer will just affect the operation
frequency of the oscillator. The Fe thickness may also change
the allowable variations of NCFET gate voltage to modulate
frequency. This relation between the hysteresis loop and fre-
quency modulation will be explained in detail in Section III.
Fig. 1(b) shows the I;—V characteristics while sweeping the
drain voltage V;. We note that, as reported in [10], the NCFET
hysteresis in the I;—Vgs characteristics become narrower and
move to the right for higher V. This tunability of the hys-
teretic window is an NCFET feature, which is exploited in
our design.
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FIGURE 1. DC current-voltage characteristics of the NCFET
model for different (a) Fe layer thicknesses and (b) drain
voltages with Tz, = 15 nm.

lll. FEFET-BASED OSCILLATOR NEURONS

To evaluate the frequency behavior of Fe oscillator neu-
rons, we use the neuron circuit, reported in [21] and shown
in Fig. 2(a). An output capacitor C, is connected in parallel
with the drain—-source channel of the MOSFET device M;
that represents the membrane capacitor of the silicon neuron.
M, presents the FEFET device. Fig. 2(b) shows the load line
including both the output characteristic of M; for the FET
gate-voltage Ve setas 0.3,0.4, 0.5, and 0.6 V and the drain-
current waveform of My as a function of the neuron mem-
brane voltage Viyem for three values of Vgr equal to 0.2, 0.4,
and 0.6 V. The oscillatory operation of the proposed circuit
shown in Fig. 2(a) is adjusted by analyzing the load line
[10], [21]. For constant bias voltages Vyf = 0.2V and
Vem = 0.5V and before oscillating, Vinem is zero, and the
oscillator case corresponds to point A in Fig. 2(b). C, is
charged by M and reaches the voltage at points C. Due to
the abrupt FEFET transition here, drain current decreases
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FIGURE 2. (a) Circuit diagram of FEFET-based oscillator neuron
and (b) load-line of the combination of FEFET and FET devices
in (a).

suddenly, leading C, to be discharged by M. Viem, then,
reaches the voltage at point B, and the second abrupt transi-
tion in this part increases the current, which will force C, to
be charged again. This explains the oscillatory behavior of the
circuit. An interesting aspect is that the oscillation frequency
being dependent on hysteresis window can be tuned with V.
Fig. 3(a) and (b) illustrates such frequency modulation
once FEFET bias voltage is changed, for example, from
200 to 600 mV for Vg = 0.3V and C, = 1nF and with
the FET channel width and length of 20 um and 180 nm,
respectively. Values of C, and the FET dimension are kept
fixed for all simulations. The variation of oscillations fre-
quency as a function of Vgt is also plotted in Fig. 3(c). As seen,
the oscillation frequency approximately gets three times
greater when Vg rises from 100 to 650 mV. This provides
a near-linear input voltage to the output frequency operating
range.

Therefore, the oscillator in Fig. 2(a) is a voltage-controlled
oscillator (VCO). In this VCO, the oscillation frequency can
be controlled by its gate voltage. In addition, the proposed
oscillator dissipates the maximum averaged power, including
both static and dynamic powers, of 20 uW when Vg is set
to its maximum value (see Fig. 3). Based on our simula-
tion and analysis, this results in ~5-120 times reduction
of power consumption compared with some ST- and MIT-
based neurons reported in [1], [6], and [30]-[33]. The energy
efficiency of the proposed oscillator is also obtained by
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FIGURE 3. Membrane voltage for FEFET gate voltage equal to
(a) 500 and (b) 100 mV. (c) Oscillation frequency versus Vgt
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FIGURE 4. Schematic of the proposed coupled oscillator neuron.

averaged power dissipation and frequency [34]. Such a power
regime corresponds to the energy efficiency per cycle of
0.63 nJ/cycle for each oscillator.

IV. FEFET-BASED COUPLED OSCILLATOR FOR IMAGE
PROCESSING APPLICATIONS

There are different possible ways to connect oscillators
and create coupled oscillatory networks. Two regular cases
are the resistive and the capacitive coupling [5], [9], [10],
[35]-[38]. Here, we electrically connect two oscillator neu-
rons to a common node using a coupling capacitor Cg,
forming the proposed coupled-oscillator neuron, as shown
in Fig. 4. For image processing applications, the proposed
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FIGURE 5. Circuit implementation of XOR measure for image
processing. C¢c = 100 fF is, therefore, chosen to meet the need
for coupling only.

coupled oscillator should be sensitive enough to sense small
differences between incoming voltages as consequences of
the shift in pixels’ color or intensity [10]. As a result,
the coupling mechanism should not be as strong as it nec-
essarily synchronizes two oscillators even when the delta
between FEFET gate voltages of the oscillators is not
negligible.

Frequency modulation due to the voltage-controllable hys-
teresis of FeFET was evaluated in the previous section.
Here, we use this feature to design tunable oscillators for
edge detection. The intensity of each pixel can be mapped
to electrical voltages. Each voltage leads to a specific out-
put frequency, and the difference between those pixels will
be sensed through the frequency and/or phase differences
between oscillator neurons. Differences in pixels cause a
larger difference in oscillator frequencies. We apply this fea-
ture of the coupled oscillator to calculate the distance norm
or Euclidean distances through the averaged XOR measure for
the applications of image processing, such as visual saliency
and pattern recognition [4], [5], [39], [40]. Averaged XOR has
been shown to be a reliable vehicle to test whether the oscil-
lators are locked or not [4], [5]. This measure includes the
pixel intensity to frequency conversion, performed through
coupled oscillators, creation of binary values from the out-
put of oscillators that can be implemented by two inverters,
applying XOR operation on those binary values, and averaging
the XOR outputs. Fig. 5 shows an implementation of such a
measure [4], designed by using our proposed FEFET-based
coupled oscillator, which is used to evaluate the level of pixel
similarity. For each neighboring » pixels, a number of n — 1
testing circuits are needed, and each pixel is compared with
the reference one through a separated circuit. As long as pix-
els are similar in terms of intensity, the XORs will output logic
zero, as illustrated in Fig. 6(a). Here, Vipem1 and Vipemp are the
outputs of the oscillators, and Out; and Out, present output
waveforms of inverters in Fig. 5. A larger difference between
pixels yields longer logic one in the XOR output, indicating
how much the input pixels are different. An example of the
outputs of the oscillators, inverters, and XOR gate is shown
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FIGURE 6. Example of XOR measure when (a) similar pixels and
(b) two different pixels are compared. Averaging over the
outputs of all XORs in a segment of the image can be a criterion
to detect the edge. Such a measure is similar to the calculation
of the Euclidean distances.

in Fig. 6(b) when two different voltages are applied to the
oscillators.

Also, the variation of averaged XOR as a function of the
difference between input voltages AV, is presented in Fig. 7,
showing the operation of this XOR metric as a fractional
distance norm to evaluate pixels similarity. The averaging
over the whole XOR characteristics, for example, eight XOR
outputs for nine pixels, will be either high, which indicates an
edge, or low, meaning that there is no edge in the given neigh-
boring pixels. In addition to showing the promise of FEFET-
based oscillator in well-known average XOR implementation,
we propose a new design.

Fig. 8 simply shows the digital-to-analog conversion for
the implementation of the edge-detection mechanism. First,
the input image is divided into smaller segments of nine
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FIGURE 9. Proposed coupled-oscillatory network for edge
detection.

pixels (arrays of 3 x 3 pixels). The pixel’s intensity to
dc voltage conversion is performed in MATLAB, and all
corresponded dc voltages will be applied to the oscilla-
tory network for processing. The pixels’ intensities are also
subdivided into 55 ranges, correspondingly, relative to the
steps of 10 mV in the input voltages, which is the lowest
sensible voltage change in our proposed coupled-oscillatory
network. We design the circuit schematic of edge detec-
tion presented in Fig. 9 as the analog part of the Fig. 8§,
which is similar to the circuit reported in [11]-[13] for
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FIGURE 10. Output characteristics of the averager (blue) and the
comparator (red) when all oscillators are locked.

neuronal computing. The comparator and the integrator cir-
cuits are both implemented in CMOS technology. Voltages
Vet1-g represent the dc voltages over the gate terminals of the
FEFET devices in each oscillator (Vyf), corresponding to the
intensity of each pixel in a given segment. The minimum and
maximum possible values of these input bias voltages are set
based on the variation range of Vrin Fig. 3. Also, we consider
the minimum and the maximum voltages as absolute black
and white colors, respectively, and all color spectra of pixels
will vary between these two borders. The outputs of the
oscillators are, then, coupled capacitively using a capacitor
bank shown by red dash lines in Fig. 9. This capacitor bank
works as an averager to combine all output voltages to just
one characteristic, which passes through the comparator. The
relation between V,, and the membrane voltages Ve of all
oscillators can be obtained as follows by using KVL in the V,,
node:

> joCi(Va = Vinemi) = 0 (1

i=1

where w is the angular frequency, C;(i = 1, ...n) are capac-
itors of the capacitive bank in Fig. 9, and » is the number of
oscillators. Equation (1) is rewritten for V, based on Vipemi as

1 n
Vo= ; . Z Vinemi (2)
i=1

where V,, is the output voltage of the averager. Equation (2)
indicates how the averager behaves to combine the output
characteristics of the oscillators. The output of the com-
parator will be a digitized version of the averager voltage,
feeding the integrator to charge the output capacitor Coy;.
Fig. 10 shows the averager waveform V,, and the output of the
comparator V. once all oscillators are supplied by close input
voltages (locked case), corresponding to similar intensities of
all pixels in the segment. As seen, when oscillators operate
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TABLE 1. Comparison between our proposed NCFE-based oscillator neuron and other technologies reported in state of the art in

terms of power consumption.

References [ 6] 22] [41] Bor | 131 [42] 133] [43] [44] [45] This
Work
Technology TaOy NbO, VO, TSI\{IE GSI\"I"[F ST Vo, HfTaO, | TaOy 28 nm 180 nm | 350 nm | FEFET
CMOS CMOS CMOS
Supply 1 16 [ 07 ]| 07 | o001 1 0.8 1 1 1 1.8 33 1.2
Voltage (V)
Power (uW) <200 1600 32 50.6 2000 200 2400 50 <100 1900* 2-50 60 6.4—20
Energy per
nJ - - 2670 - - - - - - 2.3-30 - 30000 < 0.63
Cycle (cycle)

1. Reported for the whole stochastic IMT-based Oscillatory Neuron. 2. TMR-ST: Tunneling Magneto-Resistance Spin-Torque. 3- GMR-STNO: Giant
Magneto-Resistance Spin-Torque. 4. Energy per spike of the whole neuromorphic system.

10 12.5 15 17.5 20

0.2 . T v T T T
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17.5 20

FIGURE 11. Output characteristics of the averager (blue) and the
comparator (red) in the unlocked case.

at the same frequency, a fine and clear wave is created by
averager.

This waveform is able to exceed the reference voltage of
the comparator, set to the threshold voltage of the MOSFET
device as Vi = 180 mV, and activate it frequently. This will
cause the output capacitor to be changed faster toward the
highest value (so-called logic one or white color). Such an
output voltage indicates that the proposed segment does not
show an edge in the input image. On the other hand, if oscil-
lators sense different pixel intensities, they will oscillate at
a variety of frequencies (unlocked case), and consequently,
the averager will output an out of shape characteristic,
which rarely passes Vir. Therefore, Co, will be charged
less and slower than a locked case. We conclude that the
given segment represents an edge and decipher this min-
imum output voltage as a logic zero, equivalent to black
color. Fig. 11 shows an example of the averager and com-
parator outputs in the unlocked case. The normalized output
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FIGURE 12. Output characteristics of the edge-detection circuitry
in Fig. 8. The highest (logic 1) and lowest (logic 0) values
correspond to those segments of the image without (locked
case) and with (unlocked case) edge, respectively.

waveform Vi is also presented in Fig. 12 for some segments
with similar pixels (highest values) and those presenting edge
(minimum values). To show the ability of our FEFET-based
edge-detection topology, we have worked on a simple input
image presented in the top-left side of Fig. 13. The 2-D
frequency contour of this image is also shown in the top right.
The abovementioned process is applied to all the segments
(each has 3 x 3 pixels) of this picture, and the final result is
illustrated in the bottom left of Fig. 13. As seen, the proposed
topology in Fig. 9 can extract the edges of the input image
well with acceptable accuracy. Table 1 presents a comparison
between our FEFET-based oscillator with state of the art in
terms of the power consumption and energy per cycle. It is
clear that the performance of the proposed oscillator in this
report is comparable with literature. It must be noted that
this oscillatory behavior can be affected by the manufac-
turing process variations, which is not studied in this work.
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' E )
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FIGURE 13. Input image (top left) and its frequency 2-D contour
(top right). The bottom image is the output of edge detection
performed by our proposed FEFET-based edge-detection
structure in Fig. 8.

As shown in [36] for VO2-based oscillators, techniques for
simulation, analysis, and design will need to be developed to
address these challenges.

V. CONCLUSION

The benefits of the FEFET-based coupled oscillator neu-
rons in the implementation of non-Boolean computational
paradigms are elaborated in this article. Besides the inte-
grability with the CMOS technology and low power con-
sumption, the dynamically controllable hysteresis window
through input bias voltage is a unique feature of FEFETs.
This property makes FEFET an exciting device that can
help propel the next advances in neuromorphic computing.
We have, then, used this unique feature to approximate visual
saliency and detect the edges of a simple image. Simula-
tion results show that FEFET-based coupled oscillators are
able to sense the difference between pixel intensities well.
Also, they dissipate low power, which is comparable to the
MIT- and ST-implemented counterparts.
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