
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

Received 2 March 2020; revised 26 April 2020; accepted 11 May 2020.
Date of publication 15 May 2020; date of current version 6 July 2020.

Digital Object Identifier 10.1109/JXCDC.2020.2995123

Memristor-Based Analog Recursive
Computation Circuit for Linear
Programming Optimization

LIUTING SHANG (Student Member, IEEE), MUHAMMAD ADIL (Student Member, IEEE),
RAMTIN MADANI (Member, IEEE), and CHENYUN PAN (Member, IEEE)

Department of Electrical Engineering, The University of Texas at Arlington, Arlington, TX 76019 USA

CORRESPONDING AUTHOR: L. SHANG (liuting.shang@mavs.uta.edu)

ABSTRACT Linear programming optimization is central to engineering designs, logistics management,
and decision-making in every sector of the economy. Traditional hardware using CPU and GPU platforms for
this purpose is severely limited by the scaling of the transistor technology. In this article, we design an analog
in-memory computation circuit for accelerating linear programming optimization problems. The scheme
includes a memristive crossbar array and analog peripheral circuits that do not require DAC/ADC between
each algorithm iteration. In addition, several key parameters related to nonideal device characteristics and
interconnect parasitics are discussed for providing practical guidelines. Furthermore, three design schemes
are proposed to alleviate the computation error caused by the interconnect resistance for a large-scale crossbar
array implementation. Optimal design parameters are quantified under a given number of array size and
memristive resistance. Finally, the proposed hardware accelerator and error mitigation techniques are applied
to six real-world power system optimization problems. The results show that the average error of generator
power and the overall cost is less than 3%. It is demonstrated that the proposed accelerator achieves area,
delay, and energy consumption reductions of ∼151×, ∼33×, and ∼21×, respectively, compared with the
CMOS digital circuits at the 16-nm technology node for a 1000 × 1000 array with 6-bit precision.

INDEX TERMS Accuracy, delay, energy, in-memory computation, linear programming optimization, mem-
ristor, performance.

I. INTRODUCTION

A RECENT surge of research on data-driven applications,
such as nonconvex optimization and machine learning,

has raised a great demand for energy-efficient and high-
performance computation hardware. Among various applica-
tions, the optimization algorithm plays an important role in a
wide range of fields, including engineering designs, logistics
management, and decision-making [1]. These applications
are extremely computationally intensive for a large problem
size with considerable iterations. With the traditional CMOS
technology approaching the end of Moore’s law scaling and
the growing challenge of the Von-Neumann memory bot-
tleneck [2], conventional CPU- and GPU-based computing
platforms cannot keep up with the ever-increasingly com-
plex scenarios of real-world optimization applications. Novel
computing paradigms, such as the ‘‘compute by physics’’ [3],
[4], i.e., compute in resistive networks through Ohm’s law
and Kirchhoff’s current law, have regained much attention
from researchers. Benefited from the emerging nonvolatile
memristor technologies [5], [6], ‘‘compute by physics’’ can

significantly improve the energy efficiency and alleviate
the memory bottleneck by utilizing the analog computation
paradigm and in-memory computation architecture.

Recently, a lot of works have presented memristor-based
in-memory computation applications, such as the dot prod-
uct engine, recursive neural network, and linear system
solver [7]–[10]. One previous work [9] has also proposed
a memristor-based crossbar architecture for solving con-
vex optimization problems. However, it uses an analytical
approach to evaluate the algorithm without the consideration
of actual circuit design, assuming that a system of linear equa-
tions can be solved with unique solutions. As suggested in
this work, the nonideality of memristor parameters, transistor
variation, and, most importantly, the interconnect resistance
at small technology nodes could impose substantial impacts
on the application-level accuracy. Therefore, it is imperative
to consider key device and interconnect parameters to under-
stand the true value of a large-scale analog-based comput-
ing circuit for solving optimization problems. Regarding the
optimization algorithm, traditional optimization techniques

VOLUME 6, NO. 1, JUNE 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

53

https://orcid.org/0000-0001-8149-8696
https://orcid.org/0000-0002-5624-2071
https://orcid.org/0000-0001-9246-2357
https://orcid.org/0000-0001-9161-1728

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

run serial streams of calculations to obtain an optimal solu-
tion for a problem, in such a way that only one operation
is done at a time and the outcome of the previous step is
needed for the next one. As a result, these algorithms perform
poorly when handling large problems and cannot leverage
analog computing architectures. Although several memristor-
crossbar-based recursive circuits [11]–[14] that have compar-
atively simple structure with parallel computing capability
have been developed for Hopfield neural networks and eigen-
vector solver, there aremany differences between these works
and the proposed work in terms of optimization algorithms.
None of theseworks targets for constrained optimizations; the
design purpose, delay/error source, and the rule/complexity
of the recursive process are very different; and the circuit-
level design for the nonconvex optimization algorithm is still
absent. To enable efficient real-time execution of such an
optimization algorithm on a hardware solution, a wide range
of low-complexity algorithms has gained popularity in recent
years [15]–[17].

In this article, we adopt a first-order method that divides
the computational task of each algorithmic step into several
smaller ones, which can be carried out in parallel [15], [18].
This feature of the proposed approach offers unprecedented
scalability in solving the broad class of real-world optimiza-
tion problems. Compared with the standard alternating direc-
tion method of multipliers (ADMM) approach adopted by
previous work [9], themethod in this article requires a smaller
size of crossbar array, which improves the overall accuracy
as well as the delay and energy dissipation. In addition,
the optimization method can be easily extended to solve
a more complex second-order cone program (SOCP). The
high level of parallelism also makes the proposed algorithm
fit well with the proposed analog computing circuits. Fur-
thermore, the proposed optimization algorithm only requires
simple operations during each iteration, such as the absolute,
summation, and vector-matrix multiplication, which signif-
icantly reduces the complexity of the peripheral circuits.
We are, in part, motivated by the application of this work
to mixed-integer linear programming (MILP) that is central
to the operation of the electricity markets. Solving MILP
problems using state-of-the-art branch-and-bound algorithms
may involve a large number of linear programs with similar
structures. Hence, it is beneficial to leverage analog hardware
for this purpose.

On the hardware design side, with complete analog periph-
eral components, the proposed analog computing platform
does not require ADC/DAC between each iteration, which
could save up to 50% energy in the application based on
in-memory dot-product engine [19]. In addition, three solu-
tions are proposed to reduce the impact of nonideal wire
resistance and alleviate the accuracy degradation. Further-
more, we develop a fast and accurate circuit-level simulation
framework to perform a large design space exploration with
the consideration of circuit designing parameters and process
variation of mismatched memristors/transistors in the analog
peripheral circuits. The results presented are generic and can
be applied to other in-memory computing applications based
on the crossbar architecture, such as deep neural network
accelerators. Finally, the proposed schemes are applied to six
real-world power system optimization problems. The major
contributions of this work are highlighted in the following.

1) We design an analog in-memory computation circuit
platform to accelerate large-scale recursive linear pro-
gramming algorithms for solving constrained opti-
mization problems with a complete analog peripheral
circuit. To the best of our knowledge, this is the first
full circuit implementation for this type of optimization
problem.

2) We develop a fast and accurate simulation framework
for performing large-scale design space explorations to
address key design tradeoffs among device-, circuit-,
and system-level parameters.

3) Three solutions are proposed to alleviate the accuracy
degradation due to the wire resistance existed in the
proposed circuit as well as in the generic crossbar-
based in-memory computing circuits.

4) The results from this work can provide valuable
insights to material researchers and technologists to
understand the requirement and better design analog
integrated circuit and devices for memristor-based in-
memory computation applications.

II. LINEAR PROGRAMMING OPTIMIZATION PROBLEMS
In this section, we introduce the optimization algorithm that
can be efficiently implemented with the proposed analog
computing platform in Section III. This article is concerned
with the class of linear programming optimization problems
of the form

minimize c>x (1)
s.t. Ax = b (2)

x ≥ 0 (3)

where the vector x ∈ Rn represents the unknown decision
variable, and A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are given.
The goal is to determine an optimal solution xopt ∈ Rn that
minimizes the linear objective function (1) while satisfying
the affine equality constraint (2) and inequality constraint (3).

In order to solve the problem (1)–(3) on analog platforms,
we adopt a computationally cheap first-order algorithm from
[15] and [18]. The algorithm is outlined as follows:

s ← 0n (4)
l ← +∞ (5)

while l ≥ tolerance

q ← |s| (6)
r ← Mq (7)

s ←
s
2
−
r
2
+ h (8)

l ← ‖2d − s− r‖2 (9)

x ←
s+ q
2

(10)

where M , 2A†A − In×n and h , A†b − (η/2)(c − Mc).
In the above mentioned algorithm, we represent an error, and
once it is below a certain tolerance level, then the convergence
is achieved. This convergence process requires up to 300 iter-
ations in the cases that we are going to set as examples. In the
worst situation, each iteration requires 60× [1560, 1560]
vector-matrix multiplication and thousands of extra sum,
multiply, and absolute operations. Here, we use n, i.e., the size
of matrix M , to denote the problem size in the rest of this
article.

54 VOLUME 6, NO. 1, JUNE 2020

Shang et al.: Memristor-Based Analog Recursive Computation Circuit for Linear Programming Optimization

FIGURE 1. (a) Overall schematic of the proposed circuit.
(b) Absolute module. (c) Analog Register.

Variables ‘‘s’’ and ‘‘q’’ in the abovementioned algorithm
account for x + λ and x − λ, respectively, where λ is the
dual vector associated with the inequality constraint (3). The
surrogate variables s and q in the proposedDouglas–Rachford
(DR) framework allow us to consider a memristor crossbar
of size n × n to perform (7). Alternatively, the standard
ADMM approach requires a crossbar of size (n + m) ×
(n + m), which is not practical for the application targeted
in this work. In addition, the proposed approach relies on
an absolute value operator as opposed to projection into
a nonnegative orthant. The proposed DR approach can be
readily applied to a broader class of convex/nonconvex opti-
mization problems via substitution of (6) with other map-
pings. It should be noted that as an alternative to the off-line
calculation of matrixM , we can adapt the approach proposed
in work [20] to further streamline the process.

III. CIRCUIT SCHEME AND MODELING FRAMEWORK
In this section, we propose a hardware accelerator and aim to
significantly speed up the recursive computation. Because of
the slow SPICE circuit simulation for a large problem size,
we develop a modeling framework to efficiently explore a
large crossbar array size, including peripheral circuits with
a minimum accuracy penalty.

A. PROPOSED RECURSIVE CIRCUIT SCHEME
The scheme includes a memristive crossbar-based dot prod-
uct engine for the core vector-matrix multiplication and
peripheral circuits for the other operations, including the
addition and absolute function. As shown in Fig. 1(a),
the memristive crossbar-based vector-matrix dot product
engine consists of the memristive crossbar array, drivers,
and current-to-voltage converters. We adopt the CMOS high-
performance Arizona State University Predictive Technology
Model at the 16-nm technology node to design all compo-
nents and interconnect in the circuit.

In the memristive crossbar array, the multilevel memris-
tors are used to store signed weight in the matrix M in
(7). We linearly map the weight values to the conductance
of two memristors. Each weight value corresponds to two
memristors, which presents positive and negative values,
respectively. When one memristor stores the magnitude of
a positive or negative value, the other memristor is set to
the cutoff state to approximate the disconnection. The input
voltages provided by the driver module present the vector q
shown in (6). To multiply the input vector q with the matrix
M stored in memristor array, we pass input voltages that
present s in (6) through the analog absolute module. Then,
the positive signals are connected to the memristors that
store positive values, and an inverted voltage is generated
after the absolute and connected to the memristors storing
negative values. Consequently, the overall current flowing to
the output of each column is the sum of the product of all
input voltages and memristor conductance. Once the signed
multiplication is achieved, the output current is converted to a
voltage by using an inverting amplifier. Next, the summation
in (10) is achieved by a three-input analog inverting summing
amplifier. The intermediate results at the end of each iteration
are stored in capacitor-based analog registers. During the next
clock cycle, the stored voltages are passed as input voltages
to the next iteration. The initial voltages on the capacitors
at the first iteration are set to be d in (8). Note that due to
the limitation of the highest available memristance, we tune
the memristance to compensate for the leakage current flow
through the cutoff memristors during the programming stage.
The memristance is tuned based on the following equations:

Rp =
Rp0 × Rmax

Rp0 + Rmax
, Rn = Rmax, if W > 0 (11)

Rn =
Rn0 × Rmax

Rn0 + Rmax
, Rp = Rmax, if W < 0 (12)

whereW presents the weight to be stored, Rp0 and Rn0 are the
corresponding memristance that is mapped into ‘‘positive’’
and ‘‘negative’’ valueswithout tuning, respectively,Rp andRn
are the memristance updated by (11) and (12), respectively,
and Rmin and Rmax are the minimum and maximum mem-
ristor resistances, respectively. Fig. 1(b) and (c) shows the
schematic of the analog absolute module and analog register
module. The op-amp design follows standard differential-
input single-ended output seven-transistor operational ampli-
fiers with a supply voltage of 1.2 V.

B. MODELING FRAMEWORK
The accurate circuit-level behavior can be precisely sim-
ulated by the SPICE simulator. However, running SPICE
simulations is very time-consuming, especially for large-
scale circuit applications, which makes it impractical to per-
form a large design space exploration with multiple design
parameters across device and circuit levels, especially some
parameters require a large number of resampling. Therefore,
we create a fast and accurate numerical modeling framework
to emulate the behavior of the proposed circuit without the
need for detailed SPICE simulations. Such a framework is
able to evaluate circuit variation, calculation error of the
algorithm, component delay, area, and energy. Here, the error
is calculated for the whole linear programming optimization

VOLUME 6, NO. 1, JUNE 2020 55

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

problem, and it takes iterations, transient delay, matrix mul-
tiplication, and nonideal circuit components, such as transis-
tors and op-amps into account. The final output of the circuits
is the vector s in (8), which is shown as s1 to sn in Fig. 1(a).
All the errors in this article present the average difference
between s calculated from the circuit and the ideal s. The
definition of error is expressed as

Error (%) = 100%×
n∑
i=1

|scircuit(i)− sideal(i)|
sideal(i)× n

(13)

where scircuit(i) is the simulated output of the ith path of the
proposed circuit, sideal(i) is the ith value in ideal s vector, and
n is the crossbar array size.

The modeling framework includes two parts, namely, the
current/voltage calculation for the crossbar array and input–
output voltage transfer characteristic modeling for peripheral
circuits with op-amp circuit modules.

In terms of the crossbar array, we adopt a modeling frame-
work to simulate the node voltages by creating a conduc-
tance matrix based on Ohm’s law and Kirchhoff’s current
law [21]. All wire resistance and memristance are included
during the construction of the conductance matrix, and we
assume that each output node is ideal virtual grounded. With
given input voltages and memristance, the output current to
the converter module can be calculated efficiently. We also
validate the numerical results with standard circuit SPICE
simulation results, and a negligible difference is observed.
For the peripheral voltage transfer characteristic modeling,
we obtain fitting functions by sweeping the input voltages and
gathering the output voltages of the converter, adder, register,
and absolute modules. Furthermore, we include the impact of
process variation, such as the transistor mismatch, by gener-
ating a sufficient fitting database. To validate the modeling
approach, we simulate a 100 × 100 crossbar array under the
3σ transistor width variation of 30% of the feature size F .

According to Fig. 2(a), the transient s (iterated parame-
ter) generated from the modeling method and SPICE has
a similar magnitude of error from ideal curves. From the
comparison results shown in Fig. 2(b), the error distribu-
tion of the modeling method matches well with accurate
SPICE simulation results. More details about the source
of the error for the framework itself are discussed in the
Supplementary Material. The framework achieves ∼1000×
speed improvement compared with SPICE simulation when
generating Fig. 2. Similar to the transistor variation, the fitting
object of circuit delay is also integrated into the framework
by taking interconnect resistance and capacitance, memristor
resistance, and op-amp intrinsic delay into account. Based
on the delay, the corresponding energy dissipation is calcu-
lated, which is dominated by the peripheral op-amp circuits.
An example of delay and energy per iteration is shown in
Table 1, indicating that the framework can well capture the
performance of delay and energy.

IV. SIMULATION RESULTS, ANALYSES,
AND SOLUTIONS
A. IMPACT FROM NONIDEAL PARAMETERS
AND PROCESS
Due to the nature of the analog computation, it is critical
to quantify the impact of nonideal parameters on the over-

FIGURE 2. (a) Simulated transient s curves based on the
modeling framework for a 100 × 100 array size, where s is the
iterated parameter defined in (4). (b) Comparison of the error
probability density function of the proposed modeling
framework and a full SPICE circuit simulation under the 3σ

transistor width variation of 30% of the feature size F (16 nm) for
a 100 × 100 crossbar array.

TABLE 1. Comparison of delay and energy per iteration between
the results from the proposed framework and SPICE simulation.

all computation error. In this section, we investigated the
interconnect-, transistor-, and memristor-related parameters,
such as conductance levels, minimum memristance, ON/OFF
ratio, and memristance drift/variation. The metric of the com-
putational error is calculated by taking the geometric mean
of the difference between the circuit simulation outputs and
ideal outputs. Note that most of the results presented in this
section are applicable to a broad field of crossbar-based in-
memory computation circuits using memristor devices.

1) IMPACT OF INTERCONNECT RESISTANCE
As the technology scales down, the interconnect resistance
increases significantly due to the reduced cross section area
and the size effect [22]. For a large crossbar array, the long
interconnect leads to a substantial voltage drop and lowers the
actual voltage across the memristor, which causes the output
current of the crossbar array to be smaller than the expected
value.

To quantify the impact of interconnect resistance,
Fig. 3 shows that the error increases considerably with the
increase of interconnect wire resistance. In addition, a large
ON/OFF ratio of the memristor device increases the average
memristance, which helps the circuit to tolerate a larger inter-
connect resistance. In this article, we fix the ON-memristance
as 100 K� to efficiently compare the effect of changing
average memristance with the ON/OFF ratio.

2) IMPACT OF TRANSISTOR VARIATION
For all analog circuits, the process variation due to the transis-
tor mismatch is a major concern. Therefore, we quantify the
impact of transistor width variation on the computation error,
as shown in Fig. 4. We vary the size of the crossbar array,
and the influence of transistor width variation decreased with
the increase in the array size. It can be observed that the

56 VOLUME 6, NO. 1, JUNE 2020

Shang et al.: Memristor-Based Analog Recursive Computation Circuit for Linear Programming Optimization

FIGURE 3. Relationship between error and memristor ON/OFF ratio
for different interconnect segment resistances between
neighboring memristors for a crossbar array size of
1000 × 1000.

FIGURE 4. Relationship between error and transistor width
variation for a crossbar array size of 1000 × 1000.

process variation has a smaller impact on a larger array. That
is because the impact of transistor variation on op-amp can
be almost canceled by each other when the array size is large
enough.

3) IMPACT OF MEMRISTOR PARAMETERS
Computation error caused by resistance/conductance
variation has been well discussed in other works [23]–[25],
showing that the programming process and inherent device
manufacturing error are both determine the device perfor-
mance. In Fig. 5, device-to-device and cycle-to-cycle conduc-
tance variation magnitude varies with a standard deviation up
to σ/w = 20% of the normal memconductance value. For a
small problem size of 50 × 50 shown in the inset of Fig. 5,
the error significantly increases with the increase of memris-
tor variation. For example, the error almost doubles when a
20% device-to-device variation is considered compared with
the baseline case without the variation. However, this trend
does not apply to large array size. For example, the error only
increases less than 8% with the same variation for the array
size of 1000× 1000. This is because when the crossbar array
size is large enough, the output errors caused by memristor
variation are averaged during the summing among hundreds
of branch currents in the same column in a crossbar array.
On the other side, the levels of the conductance of the
memristor dominated the calculation error, and the curve
becomes flat when the memristor has more than 64 levels.

The conclusion from Figs. 4 and 5 reveals a potential
variation tolerance of the analog dot product engine, indi-
cating that some methods for reducing device variation,

FIGURE 5. Relationship between error and memristor levels and
memconductance variation for a crossbar array size of
1000 × 1000. The inset is a comparison under an array size of
50 × 50. Conductance variation means the standard deviation
of normal distribution σ . Levels of memristor mean how many
levels of conductance can be achieved in a memristor. Each
point in the figure is the average error of 150 samples.

FIGURE 6. Three proposed solutions for alleviating the
interconnect wire resistance problem, where colored bar
indicates memristor. (a) Solution 1 scales down the
memristance to compensate for the interconnect resistance.
(b) Solution 2 adds wider interconnects on upper layers to
connect nodes on two sides of the array. (c) Solution 3 adds
wider wires to connect two sides as well as internal nodes of
the crossbar array.

such as a complex auxiliary circuit and repetitive program-
ming/correcting, may not be cost-effective for solving large-
scale linear optimization problems.

B. SOLUTIONS FOR MITIGATING THE IMPACT
OF WIRE RESISTANCE
Due to the large impact of the interconnect resistance, we pro-
pose three solutions in this section to alleviate the accuracy
degradation, as shown in Fig. 6. In Solution 1, we propose to
scale down the memristor weights during the programming
stage to compensate for the wire resistance based on the
physical position of the memristor. In Fig. 6(a), the impact of
the voltage drop due to the wire resistance on each memristor
is presented by the color. A darker bar indicates a longer

VOLUME 6, NO. 1, JUNE 2020 57

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

distance from input to output nodes and results in a larger
error. In Solution 1, we set the memristor with a darker color
to a smaller memristance by a scaling factor, which is pro-
portional to the distance between the input and output nodes.
As a result, the output current can be increased to compensate
for the interconnect resistance. Note that Solution 1 cannot
fully compensate for the interconnect wire resistance, but it
helps to reduce the overall error in general, and the scaling
coefficient is dependent on the application.

In Solution 2, we propose to add wide interconnects
(10× F) above and underneath the row and column inter-
connects, respectively (for example between c1–c5 or
r1–r5). Such interconnect gives a resistance per unit length
of 2.65 �/µm based on the interconnect resistance model
presented in [26], which is ∼40× smaller compared with the
minimumwirewidth of 2×F . As can be observed in Fig. 6(b),
the worst case voltage drop due to the interconnect resistance
exists is in the center of the crossbar array. By combining
Solutions 1 and 2, the error due to the interconnect can be
effectively reduced for most array sizes that are smaller than
1000× 1000.

For solving even larger optimization problems with large
array sizes, Solutions 1 and 2 may still be unable to suffi-
ciently compensate worst case voltage drops in the center
of the array. Therefore, we propose Solution 3 to use wide
wires not only to connect two sides of the array but also
to connect nodes (red crosses) inside the array so that the
crossbar array can be divided into several smaller blocks,
as shown in Fig. 6(c). A tradeoff exists in terms of the number
of blocks, which is due to the fact that each connection to
the node inside the array requires a via and a segment of
narrowed wire [as shown in Fig. 6(b) and (c)], which induces
a resistance overhead.

Note that there is an existing method that mitigating the
wire resistance problem by calibrating the memconductance
[27]. This calibration method can reduce the impact of
the wire resistance substantially. However, it relies on a
very complex procedure that requires fitting functions and
weight computations with multiple full-size vector-matrix
multiplications, which means that the result of the accurate
vector-matrix multiplication comes at the cost of a heavy
computation burden, especially when the weight needs to be
frequently updated. Such complex weight calculations would
need CPU and cannot be easily implemented by specialized
hardware in many applications, such as the resource/energy-
constrained edge-computing or the IoT systems. Regarding
the low-cost calibration algorithm proposed in this article,
i.e., the memristance scaling (Solution 1), the calculation of
a scaled weight is based on its distance from the input and
output of the crossbar array, as shown in Fig. 6(a). Since this
scaling method is based on the physical position, it does not
require complex calculations and can be implemented by the
peripheral circuit.

One overhead of the proposed Solutions 2 and 3 is the addi-
tional fabrication cost due to the extra metal layers. However,
the additional cost is relatively small because the wires on the
upper layers are much wider than those minimumwidth wires
at the bottom. The other overhead of the proposed solution is
the extra area due to the added vias. The area overhead can
be expressed as nb×0.4%, where nb is the number of blocks.
The last overhead of the proposed methods comes from the

FIGURE 7. Relationship between error and scaling factor for
different numbers of blocks for a crossbar array size of
1000 × 1000.

FIGURE 8. (a) Optimal scaling factor to achieve optimal
performance versus different numbers of blocks for different
minimum memristances for a crossbar array size of
1000 × 1000. (b) Optimal error versus different numbers of
blocks for different minimum memristances for a crossbar array
size of 1000 × 1000.

extra parasite capacitor, which slightly increases the delay
and energy based on our simulation results. The increment of
delay is <4% when ON-memristance is 100 K�, the ON/OFF
ratio is 103, and the number of blocks is 10.

Similar to Solution 2, Solution 3 can be applied along
with Solution 1. To verify the benefit of the combination,
we explore how the number of blocks interacts with the
memristance scaling factor. In Fig. 7, as the number of blocks
increases, the optimal memristance scaling factor decreases
to reach the minimum error because each block contains
shorter interconnect wire. Meanwhile, the best number of
blocks and scaling factors is also determined by the charac-
teristics of the memristor device, such as the minimum resis-
tance or ON/OFF ratio, because a larger memristor resistance
helps to reduce the impact from the interconnect resistance.
As a result, the array using memristors with a smaller mini-
mum memristance prefers to have a large number of blocks
and the scaling factor. In Fig. 8(a), the result shows that lower
Rmin requires a larger scaling factor to achieve the best error
even with the help of Solution 3. Similarly, Fig. 8(b) shows
that if we decrease Rmin, the circuit still needs to increase
the number of blocks to achieve the best error even Solutions
1 and 3 are applied at the same time.

As shown in Fig. 9, when the number of blocks is one,
circuits with different wire resistances have a comparative

58 VOLUME 6, NO. 1, JUNE 2020

Shang et al.: Memristor-Based Analog Recursive Computation Circuit for Linear Programming Optimization

FIGURE 9. (a) Relationship between error and scaling factor for
different interconnect resistances for a crossbar array size of
1000 × 1000. (b) Relationship between error and the number of
blocks for different interconnect resistances for a crossbar
array size of 1000 × 1000.

FIGURE 10. Optimal error versus wire segment resistance using
different solutions with the optimal number of blocks and
scaling factors for an array size of 1000 × 1000.

large error difference. With increasing the number of blocks
by using Solution 3, the accuracy improves significantly,
especially for the case when the interconnect resistance is
relatively large. At the optimal number of blocks, the mini-
mum errors tend to be consistent, indicating that the impact
of wire resistance is small, and themajority of the error comes
from the peripheral circuits. If we continually add blocks,
the circuit error increases again due to the overhead of vertical
vias resistance connecting to wide interconnects above or
underneath the array.

In Fig. 9(a), it reveals that if the resistance of interconnect
increased, the circuit requires a larger scaling factor to reach
the smallest error, and the increased error cannot be fully
compensated by this method. As shown in Fig. 9(b), by divid-
ing the array into blocks, Solution 3 can always reduce the
error to a similar level, and the error ramps up again if we
keep increasing the number of blocks.

Results shown earlier quantify the impact of the minimum
memristance, interconnect resistance, number of blocks, and
scaling factor on the trend of the overall accuracy of the
optimization algorithm. To compare the effectiveness of three
solutions for a large-scale problem, we perform an exhaustive
search to find the optimal parameters to achieve the minimum
error, as shown in Fig. 10. Compared with the baseline case
without applying the solution, using memristor resistance
scaling (Solution 1) helps to reduce the error for an array

TABLE 2. Performance benchmarking between proposed circuit
and CMOS ASIC design.

with relatively small interconnect resistance. As the wire
resistance increases, the scaling method shows a limited error
reduction. Regarding Solution 2, adding interconnect con-
nections above/underneath the array achieves a better error
reduction compared with Solution 1, especially when the
interconnection resistance is large. By combining Solution
1 and adding extra connection via inside the array (Solution
3), we achieve the best error reduction, and up to 50% of
the error is eliminated under a relatively large interconnect
resistance. The majority of the remaining error comes from
the peripheral circuit.

C. PERFORMANCE BENCHMARKING
In this section, we perform a performance benchmarking
between the proposed hardware accelerator and the CMOS
ASIC-type accelerator in terms of the computation accu-
racy, delay, and energy dissipation. Here, we consider an
optimization problem size of 1000 × 1000. For the pro-
posed analog computing circuit, we assume that a minimum
memristance of 100 K�, an interconnect segment resistance
of 2 �, and both Solution 1 and 3 are applied with an optimal
memristance scaling factor. The CMOS circuit performance
is evaluated based on the beyond-CMOS benchmarking
methodology [28]. Due to the SRAM area and the complex
multiplier structure, the layout area of the CMOS scheme
is much larger than the proposed analog computing circuit.
We determine the SRAM read time and area according to
a state-of-the-art work [29]. Since multiple digital array
multipliers and Kogge–Stone carry look-ahead adders have
been used in parallel to accelerate the vector-matrix opera-
tion, the SRAM access time dominates the overall delay for
the CMOS circuits, and the leakage energy dominates the
overall energy dissipation. More details about the ASIC-type
digital implementation and the delay and energy breakdown
charts are provided in Section II in the Supplementary Mate-
rial. To achieve a similar computation error of the proposed
accelerator, the CMOS ASIC accelerator is designed based
on a 6-bit precision. From the comparison shown in Table 2,
the proposed analog accelerator provides ∼151×, ∼33×,
and ∼21× reductions in terms of the area, delay, and energy
dissipation per iteration, respectively. The proposed com-
puting hardware is benefitted by the compact structure of
the crossbar array, leading to a significant area saving. The
major advantages of energy and delay come from the fast
and efficient vector-matrix operation as well as the avoided
ADC/DAC usage.

V. CASE STUDY FOR A REAL-WORLD APPLICATION
AND COMPARISON
A. CASE STUDY ON POWER SYSTEM OPTIMIZATION
In this section, we consider the well-known problem of
DCOPF as a case study to evaluate the merits of the proposed

VOLUME 6, NO. 1, JUNE 2020 59

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

hardware accelerator in Section III [30]. Consider a power
grid with N nodes, L lines, and G generators. The goal is to
determine the level of commitment by each generator and the
flow of power throughout the network to meet the demand
for power as economically as possible. This problem can be
formulated as follows:

minimize o>p (14)

s.t. H>p− Y θ = d (15)∣∣∣EY θ + Ef ∣∣∣ ≤ f max (16)

pmin
≤ p ≤ pmax (17)

e>refθ = 0 (18)

where p ∈ RG is the vector of power injections by gener-
ators across the network and o ∈ RG is the vector of cost
coefficients.

The lower and upper limits of generator powers are
enforced via constraint (17), where pmin, pmax

∈ RG are
given. The incidence matrix H ∈ {0, 1}G×N contains
locations of generators, i.e., Hgn = 1 if and only if the gen-
erator g is located at node n. In addition, Y ∈ RN×N denotes
the network susceptance matrix, and θ and d ∈ RN represent
the vectors of nodal voltage angles and nodal demand val-
ues, respectively. The nodal power balance (15) enforces the
conservation of power at each node. In addition, EY ∈ RL×N

denotes the network branch susceptance matrix, and the vec-
tor Ef ∈ RL accounts for the effect of transformers and phase
shifters. The constraint (16) enforces the thermal limits of
transmission lines, where f max

∈ RL is given. Finally, one of
the nodes is marked as the reference node, at which the volt-
age angle is equal to zero. This is enforced via constraint (18),
where all of the elements of eref ∈ RN are equal to zero except
the element corresponding to the reference bus that is equal
to 1. To evaluate the proposed approach in solving real-world
DCOPF problems, we have used data from the MATPOWER
package [31].

B. OPTIMIZED SOLUTION FOR APPLICATION
Based on the findings from Section IV, we select a certain set
of numbers of blocks and scaling factors, as well as minimum
memristance, ON/OFF ratio, and device variation to simulate
six real-world data set. One of the transient simulation results
of generator power is shown in Fig. 11; it can be observed
that the power of each generator from the circuit simulation
matches well with the ideal power.

By implementing the proposed solutions, the optimal num-
bers of blocks and scaling factors are determined in Fig. 12.
When the problem size is comparatively small (cases 1–4,
smaller than 300× 300), the block dividing technique (Solu-
tion 3) is not required. However, when the problem size is
larger, such as cases 5 and 6, with array size 716 × 716 and
1560 × 1560, respectively, using multiple blocks helps to
lower the overall error. This observation is consistent with the
conclusion from Section IV. As shown in Fig. 12, by using the
optimal scaling factor and number of blocks, the overall cost
from the circuit simulation matches well with the ideal cost,
and the average error of the generator power is controlled

FIGURE 11. Comparison between the ideal power of generators
and the simulated power based on the proposed circuits. Here,
the number of memristor levels is 128, and the 3σ variation of
the transistor width is 5% of the feature size F .

FIGURE 12. Ideal cost, cost calculated by the circuit, and the
average error of generator power that can be achieved from
case 1 to case 6.

under 3% (the definition is similar to the (13) by replacing
s with the power).

VI. CONCLUSION
In this article, a memristor crossbar array-based analog
in-memory computation circuit for accelerating large-scale
linear programming recursive optimization problems is pro-
posed. To accelerate simulation, a numerical modeling frame-
work is developed to fast and accurately capture circuit-level
simulations. Key device- and circuit-level parameters are
investigated, including memristor variation, levels, minimum
memristance, memristor ON/OFF ratio, transistor width varia-
tion, and interconnect wire resistance, to optimize accuracy,
delay, energy, and area. To minimize the accuracy degrada-
tion, three solutions based on memristance scaling and inter-
connect routing are proposed. The results from simulations
demonstrate that the proposed solutions significantly reduce
errors due to the wire resistance. After applying the solution,
the remaining error is mainly determined by the number of
memristor levels, transistor variation, and array size. Finally,
we apply the proposed framework for solving optimiza-
tion programs for real-world power systems. Based on the
optimal results, the proposed hardware accelerator provides
∼151×, ∼33×, and ∼21× reductions than CMOS bench-
mark in terms of the area, delay, and energy dissipation,
respectively.

60 VOLUME 6, NO. 1, JUNE 2020

Shang et al.: Memristor-Based Analog Recursive Computation Circuit for Linear Programming Optimization

REFERENCES
[1] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization. Cam-

bridge, U.K.: Cambridge Univ. Press, 2004.
[2] N. Lorente and C. Joachim, Eds., Architecture and Design of Molecule

Logic Gates and Atom Circuits: Proceedings of the 2nd AtMol European
Workshop. Springer, 2013.

[3] H. Kobayashi, J. L.White, and A. A. Abidi, ‘‘An active resistor network for
Gaussian filtering of images,’’ IEEE J. Solid-State Circuits, vol. 26, no. 5,
pp. 738–748, May 1991.

[4] G. Liebmann, ‘‘Solution of partial differential equations with a resistance
network analogue,’’ Brit. J. Appl. Phys., vol. 1, no. 4, p. 92, 1950.

[5] X. Zhu et al., ‘‘Observation of conductance quantization in oxide-based
resistive switching memory,’’ Adv. Mater., vol. 24, no. 29, pp. 3941–3946,
Aug. 2012.

[6] Z.Wang et al., ‘‘Engineering incremental resistive switching in TaOxbased
memristors for brain-inspired computing,’’ Nanoscale, vol. 8, no. 29,
pp. 14015–14022, 2016.

[7] M. Hu et al., ‘‘Memristor-based analog computation and neural network
classification with a dot product engine,’’ Adv. Mater., vol. 30, no. 9,
Mar. 2018, Art. no. 1705914.

[8] Y. Kim, Y. Zhang, and P. Li, ‘‘A digital neuromorphic VLSI architecture
with memristor crossbar synaptic array for machine learning,’’ in Proc.
IEEE Int. SOC Conf., Sep. 2012, pp. 328–333.

[9] S. Liu, Y. Wang, M. Fardad, and P. K. Varshney, ‘‘A memristor-based opti-
mization framework for artificial intelligence applications,’’ IEEE Circuits
Syst. Mag., vol. 18, no. 1, pp. 29–44, Feb. 2018.

[10] E. Giacomin, T. Greenberg-Toledo, S. Kvatinsky, and P.-E. Gaillardon,
‘‘A robust digital RRAM-based convolutional block for low-power image
processing and learning applications,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 66, no. 2, pp. 643–654, Feb. 2019.

[11] Y. Zhou et al., ‘‘Associative memory for image recovery with a high?
Performance memristor array,’’ Adv. Funct. Mater., vol. 29, no. 30, 2019,
Art. no. 1900155.

[12] M. R. Mahmoodi, M. Prezioso, and D. B. Strukov, ‘‘Versatile stochastic
dot product circuits based on nonvolatile memories for high performance
neurocomputing and neurooptimization,’’ Nature Commun., vol. 10, no. 1,
pp. 1–10, Dec. 2019.

[13] F. Cai et al., ‘‘Harnessing intrinsic noise in memristor hopfield neural net-
works for combinatorial optimization,’’ 2019, arXiv:1903.11194. [Online].
Available: http://arxiv.org/abs/1903.11194

[14] Z. Sun, E. Ambrosi, G. Pedretti, A. Bricalli, and D. Ielmini, ‘‘In-
memory PageRank accelerator with a cross-point array of resistive mem-
ories,’’ IEEE Trans. Electron Devices, vol. 67, no. 4, pp. 1466–1470,
Apr. 2020.

[15] S. Boyd, ‘‘Distributed optimization and statistical learning via the alternat-
ing direction method of multipliers,’’ Found. Trends Mach. Learn., vol. 3,
no. 1, pp. 1–122, 2010.

[16] S. Wang and N. Shroff, ‘‘A new alternating direction method for linear pro-
gramming,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 1480–1488.

[17] R. Madani, A. Kalbat, and J. Lavaei, ‘‘A low-complexity parallelizable
numerical algorithm for sparse semidefinite programming,’’ IEEE Trans.
Control Netw. Syst., vol. 5, no. 4, pp. 1898–1909, Dec. 2018.

[18] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone
Operator Theory in Hilbert Spaces. Springer, 2011.

[19] A. Shafiee et al., ‘‘ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,’’ ACM SIGARCH Comput.
Archit. News, vol. 44, no. 3, pp. 14–26, Oct. 2016.

[20] Z. Sun, G. Pedretti, E. Ambrosi, A. Bricalli, W. Wang, and D. Ielmini,
‘‘Solving matrix equations in one step with cross-point resistive arrays,’’
Proc. Nat. Acad. Sci. USA, vol. 116, no. 10, pp. 4123–4128, Mar. 2019.

[21] A. Chen, ‘‘A comprehensive crossbar array model with solutions for line
resistance and nonlinear device characteristics,’’ IEEE Trans. Electron
Devices, vol. 60, no. 4, pp. 1318–1326, Apr. 2013.

[22] A. Nieuwoudt and Y. Massoud, ‘‘Evaluating the impact of resistance in
carbon nanotube bundles for VLSI interconnect using diameter-dependent
modeling techniques,’’ IEEE Trans. Electron Devices, vol. 53, no. 10,
pp. 2460–2466, Oct. 2006.

[23] H. Wang, H. Li, and R. E. Pino, ‘‘Memristor-based synapse design and
training scheme for neuromorphic computing architecture,’’ in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), Jun. 2012, pp. 1–5.

[24] B. Liu, H. Li, Y. Chen, X. Li, Q. Wu, and T. Huang, ‘‘Vortex: Variation-
aware training for memristor X-bar,’’ in Proc. 52nd Annu. Design Autom.
Conf. (DAC), 2015, pp. 1–6.

[25] A. Grossi et al., ‘‘Experimental investigation of 4-kb RRAM arrays pro-
gramming conditions suitable for TCAM,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 26, no. 12, pp. 2599–2607, Dec. 2018.

[26] C. Pan andA. Naeemi, ‘‘Interconnect design and benchmarking for charge-
based beyond-CMOS device proposals,’’ IEEE Electron Device Lett.,
vol. 37, no. 4, pp. 508–511, Apr. 2016.

[27] F. Zhang and M. Hu, ‘‘Mitigate parasitic resistance in resistive crossbar-
based convolutional neural networks,’’ 2019, arXiv:1912.08716. [Online].
Available: http://arxiv.org/abs/1912.08716

[28] C. Pan and A. Naeemi, ‘‘Beyond-CMOS device and interconnect technol-
ogy benchmarking based on a fast cross-layer optimization methodology,’’
ECS Trans., vol. 72, no. 3, p. 93, 2016.

[29] H. Fujiwara et al., ‘‘A 64 kb 16 nm asynchronous disturb current free
2-port SRAM with PMOS pass-gates for FinFET technologies,’’ in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2015,
pp. 1–3.

[30] R. Madani, J. Lavaei, and R. Baldick, ‘‘Constraint screening for security
analysis of power networks,’’ IEEE Trans. Power Syst., vol. 32, no. 3,
pp. 1828–1838, May 2017.

[31] R. D. Zimmerman and C. E. Murillo-Sanchez. (2019). MATPOWER (Ver-
sion 7.0). [Online]. Available: https://matpower.org

VOLUME 6, NO. 1, JUNE 2020 61

