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ABSTRACT Data-intensive computing applications, such as object recognition, time series prediction, and
optimization tasks, are becoming increasingly important in several fields, including smart mobility, health,
and industry. Because of the large amount of data involved in the computation, the conventional von Neumann
architecture suffers from excessive latency and energy consumption due to the memory bottleneck. A more
efficient approach consists of in-memory computing (IMC), where computational operations are directly
carried out within the data. IMC can take advantage of the rich physics of memory devices, such as their
ability to store analog values to be used in matrix–vector multiplication (MVM) and their stochasticity that is
highly valuable in the frame of optimization and constraint satisfaction problems (CSPs). This article presents
a stochastic spiking neuron based on a phase-change memory (PCM) device for the solution of CSPs within
a Hopfield recurrent neural network (RNN). In the RNN, the PCM cell is used as the integrating element of
a stochastic neuron, supporting the solution of a typical CSP, namely a Sudoku puzzle in hardware. Finally,
the ability to solve Sudoku puzzles using RNNs with PCM-based neurons is studied for increasing size of
Sudoku puzzles by a compact simulation model, thus supporting our PCM-based RNN for data-intensive
computing.

INDEX TERMS Phase change memory (PCM), artificial synapses, hopfield neural network, stochastic
process, optimization.

I. INTRODUCTION

OPTIMIZATION problems are among themost intensive
computing tasks for several application fields, such as

industry, finance, and transport. In general, optimization is
carried out by several iterations to identify the global mini-
mum of a certain cost function. In each iteration, a conven-
tional digital system must access the memory to fetch input
data and upload the temporary output, which is time and
energy consuming. To enable a more efficient optimization,
a non-von Neumann architecture can be adopted to eliminate
the latency and energy spent for shuttling the data between

the memory and the central processing unit (CPU) [1].
An example of non-von Neumann computing architecture is
the concept of in-memory computing (IMC) where the com-
putation is executed directly within the memory array. For
instance, IMC can efficiently accelerate the typical multiply–
accumulate (MAC) operation, which is the foundation for
modern digital accelerators for artificial intelligence (AI)
and optimization [2]. Emerging memory devices, such as
phase-change memory (PCM) [3], [4] and resistive random
access memory (RRAM) [5], [6], offer scalable, efficient, and
CMOS-compatible solutions to store analog information as
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the conductance value. Several IMC demonstrators have thus
been reported for accelerating neural network training [7],
[8], inference [9], image processing [10], and the solution of
algebraic problems [11]–[14].

In a constraint satisfaction problem (CSP), the objective is
to find a set of states satisfying a collection of constraints.
Typical CSPs include Max-SAT, Max-Cut, graph coloring,
and the Sudoku puzzle [15]. The latter is indicated as an
NP-complete problem in its generic form where the time
complexity for solving the problems rapidly increases with
the size [16]. CSPs can be implemented by the Hopfield
recurrent neural networks (RNNs) where the constraints are
mapped with synaptic weights, whereas the electrical stim-
ulation allows minimizing the energy cost function to find
the solution of the optimization problem [17], [18]. Note
that the solution of a CSP in a Hopfield RNN becomes
increasingly difficult when the number of the local min-
ima increases because the network state can be trapped
within a local minimum [17]. To circumvent this limitation,
the stochastic computational annealing is generally adopted,
where the external stimulation is suitably mixed with ran-
dom noise to help the system escape from local minima
[19], [20]. Various solutions have been proposed for practical
hardware implementation of computational annealing with
CMOS circuits [22]–[26], FPGA [27], quantum computing
[28], [29], photonic computing [30], and IMC [31]–[33].
The IMC implementation facilitates two key operations in
the computational annealing: 1) the matrix–vector multipli-
cation (MVM) among neuron output signals and synaptic
weights, which is accelerated in the crosspoint memory array
[2] and 2) the random network stimulation, which can take
advantage of the stochastic memory behaviors, such as ran-
dom telegraph noise (RTN) [34] and 1/f noise [35]. While
the intrinsic memory noise has been shown to be fruitfully
adopted as an entropy source for hardware-based true random
number generators (TRNGs) [36], [37], the same approach is
not easily applicable to computational annealing, especially
where a fine control of the annealing temperature is needed
for dynamic cooling [38]. In fact, resistive memory devices
suffer from resistance broadening [35], namely, the spread of
read noise increases with time, which makes the control of
stochasticity less controllable. The adoption of a nonphysical,
pseudorandom number generator (PRNG), such as the linear-
feedback shift register (LFSR), was previously proposed for
providing the entropy source in stochastic annealing [40].
However, a physics-based entropy source, such as the PCM
can provide true, tunable stochastic input with a higher qual-
ity of the random noise [41]. Tunable stochastic properties of
the memory device, such as the stochastic switching [2], [39],
[41], [43]–[45], may also be explored to solve CSPs with an
IMC approach.

In this article, we propose a Hopfield RNN for computa-
tional annealing based on stochastic spiking neurons, in anal-
ogy with the biological brain [46]. The PCM device acts as
the source of noise for generating random spikes [35]. First,
we show an experimental demonstration of a PCM-based

FIGURE 1. (a) Operation principle of the proposed stochastic
neuron. A train of synchronous spikes applied to the neuron
leads to a stochastic gradual increase of the internal potential
Vint. When Vint reaches a threshold Vth, a spike is generated
and Vint is restored to zero. (b) Sketch of the gradual
crystallization process in PCM devices.

stochastic neuron with a tunable output frequency of the
generated spikes. After characterizing the integrating neuron
element, we implement a Hopfield RNN with PCM synapses
[48]. The stochastic RNN is demonstrated for the solution of
a 2× 2 Sudoku puzzle in hardware. Finally, the convergence
of the solution for various annealing algorithms and puzzle
sizes up to 16× 16 is studied by simulations to allow for the
comparison with other types of hardware Sudoku solvers.

II. STOCHASTIC NEURON
A stochastic spiking neuron can act as computational primi-
tive for solving complex CSP problems. Fig. 1(a) shows the
operation concept of the proposed stochastic spiking neuron.
A deterministic train of spikes of frequency fclk (top) is
accumulated by the neuron. The membrane potential Vint,
representing the input integral, is stored as a suitable state
variable of the neuron device, such as the device conductance
in the case of the PCM (center). As a threshold potential Vth
is reached, the neuron releases a spike (bottom), whereas the
membrane potential is reset to zero to reinitialize the integra-
tion process. Due to the stochastic integration of the memory
device [43], where the state variable update is affected by
variations, the output spikes are randomly generated in time,
thus providing the fundamental basis of the stochastic neuron.

A. STOCHASTIC PCM CRYSTALLIZATION
The neuron integration function was implemented by a PCM
device, where each applied pulse causes a partial crystal-
lization in the amorphous volume. Among the two-terminal
nonvolatile memories, the PCM is one of the most promising
concepts because of many ideal properties, including high
switching speed, low current operation, and tunable analog
resistance [3], [4]. PCM devices exhibit two resistance states,
associated with the crystalline and amorphous phases of
the chalcogenide active material, e.g., Ge2Sb2Te5, or GST.
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To amorphize the GST, a reset voltage pulse is applied above
the melting voltage Vm, thus leading to a transition to the
liquid phase, followed by rapid freezing into the amorphous
phase, corresponding to the high-resistance state (HRS) or
reset state. To crystallize the GST, a set voltage pulse is
applied usually below Vm and above the threshold voltage
Vt for threshold switching [50]. The set pulse causes Joule
heating and consequent crystallization within the amorphous
volume, thus leading to the low-resistance state (LRS).

The crystallization process can also be executed gradually
by applying a train of voltage pulses, each inducing partial
crystallization within the amorphous volume. Fig. 1(b) shows
a schematic of the gradual crystallization of a PCM device,
starting from the HRS (top) corresponding to a complete
amorphous phase, to an intermediate state (center) with some
material already in the crystalline phase, until the LRS with
fully crystalline phase is reached (bottom). Applications of
the PCM as analog weight in neural network accelerators
have been widely demonstrated [7], [11].

A key issue for analog conductance update is the statisti-
cal variability of the PCM device, where the pulse-induced
increase in conductance changes from cycle to cycle due to
the stochastic nature of the crystallization process. As a result,
a PCM can also be used as a stochastic entropy source for
a PCM neuron [43]. To study the variation of gradual crys-
tallization dynamics, we characterized a PCM device with a
one-transistor-one-resistor (1T1R) structure. Fig. 2(a) shows
the measured conductance of a PCM device as a function
of the number of pulses of voltage VA, normalized with
the initial conductance G0. The measurement was repeated
100 times, and each time the device was reinitialized in the
HRS by a reset pulse to reach the initial conductance G0.
After an initial incubation phase where the applied pulse
causes no change of conductance,G/G0 steeply increases as a
result of the cumulative crystallization within the amorphous
volume and eventually saturates to a valueGsat/G0. The onset
of crystallization shows the statistical variation in the same
device, which can be attributed to the stochastic nucleation
and growth processes in the amorphous volume [51]. Fig. 2(b)
shows the average conductance change G/G0 for increasing
conductanceG0 of the initial HRS as a function of the number
of programming pulses. The initial conductance G0 impacts
on all the parameters of the update characteristics, including
the incubation number of pulses, the slope of the G increase,
and the Gsat value.

To study the stochastic variations of crystallization,
Fig. 2(c) and (d) show the mean value 〈NC 〉 and the deviation
σ (NC ), respectively, of the number of incoming set pulses
NC to reach a threshold conductance Gth = Gsat/2 as a
function of the applied Vset and the preprogramming Vreset
pulse to reach the different desired values of G0. The average
number of pulses to crystallization decreases with Vset since
a higher set voltage induces a more abrupt crystallization.
Conversely, the number of pulses to crystallization increases
with increasing Vreset because of the larger initial amorphous
volume that needs to be crystallized. Similarly, the deviation

FIGURE 2. (a) Relative PCM conductance G/G0 as a function of
NC for a given set and reset voltage. Both the individual
100 measurements and their average G/G0 are shown.
(b) Average G/G0 for increasing G0, i.e., decreasing initial
amorphous volume. As G0 decreases, the number of pulses in
the incubation phase increases. (c) Average number of cycles
NC to reach a given conductance threshold Gsat/2 and (d) its
standard deviation σ (NC). (e) Cumulative distribution function
of NC to reach the conductance threshold at increasing Vset.
(f) Measured conductance change G/G0 as a function of NC for
increasing Vset values, namely, 1.6 V (top), 1.7 V (center), and
1.8 V (bottom). The conductance is initialized to G0 every time
the threshold (dashed line) is reached, thus resulting in a
stochastic train of spikes.

of the number of pulses increases with increasing Vreset and
decreasing Vset, which correctly tracks the behavior of the
average number of pulses.

The statistical analysis is summarized in the cumulative
distributions of the number of crystallizing pulses at increas-
ing Vset for a fixed Vreset = 2.4 V in Fig. 2(e). All distribu-
tions show a Gaussian-like behavior. Note that the standard
deviation ofNC in Fig. 2(e) controls the statistics of the output
spikes of the stochastic neuron in Fig. 1(a) and hence the
annealing dynamics in the RNN. Therefore, the ability to tune
the average number and spread of NC in Fig. 2(e) is deeply
beneficial for the hardware solution of CSPs. Fig. 2(f) shows
the measured G/G0 as a function of the number of pulses for
Vset = 1.6 V (top), Vset = 1.7 V (center), and Vset = 1.8 V
(bottom). To reproduce the response of the integrate and fire
(I&F) neuron, the PCM device was reset every time G/G0
exceeded the threshold value, which is indicated as a dashed
line. It is possible to observe the variation of the number of
pulses between every fire event, which supports the stochastic
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FIGURE 3. Schematic of the neuron circuit with the stochastic
spike generator (left) and the I&F unit (right). Input deterministic
spikes with clock frequency fclk stimulate the PCM device that
is connected in series with a fixed resistance RA. As the voltage
across RA exceeds the comparator threshold VTH1, a stochastic
spike is emitted. The output spikes Xi stimulate a current across
resistance RB, which is summed with the feedback current from
the RNN and integrated by the I&F unit. As the internal potential
Vint exceeds the second comparator threshold VTH2, the I&F
unit generates a spike Yi , which is then propagated within the
synaptic network of the RNN.

behavior of the PCM neuron. Note that the PCM device
offers the unique physical property of stochastic integration
of Fig. 2, which would not be equally feasible in other types
of memory device, such as resistive switching memory of
magnetic spin-torque memory.

B. STOCHASTIC NEURON CIRCUIT
Fig. 3 shows a schematic of the stochastic neuron circuit that
includes two stages: 1) a stochastic spike generator based on
a PCM stochastic seed and 2) an I&F output stage. A deter-
ministic train of spikes with clock frequency fclk is applied
across the PCM in series with a load resistanceRA, thus acting
as a voltage divider. As the PCM conductance increases
from the initial value G0 because of gradual crystallization,
the voltage divider output VA evaluated at the PCM bottom
electrode (BE) between every input spike increases. The volt-
age VA is compared with the threshold VTH1 of a comparator.
As VA reaches VTH1, an output spike is generated and the
PCM conductance is restored toG0 by a feedback signal. The
correct voltage applied to the PCM device is synchronized
by a control logic circuit. The stochastic voltage spikes Xi
of average frequency finput are then converted into a spiking
current by the resistor RB and summed with the feedback
column current spikes Ij collected from the RNN. The total
current is then integrated on a capacitor Cint, thus causing the
membrane potential Vint to increase spike after spike. As Vint
reaches the threshold VTH2 of the second comparator, a spike
is generated and applied to the ith row of the RNN. The
neuron response was implemented by a Monte Carlo (MC)
model of the stochastic PCM device using the parameters
extracted from Fig. 2 and as a stochastic primitive for solving
CSP problems. The MC simulations were carried out in a
MATLAB environment.

FIGURE 4. Schematic of the Hopfield RNN. Neurons Ni represent
the I&F units of the stochastic neuron of Fig. 3. The input Xi is a
stochastic signal generated by the stochastic spike generator
of Fig. 3. Synapses consist of 1T1R PCM devices organized in
excitatory (blue) and inhibitory (red) paths. The neuron output
is applied to the gates of the 1T1R in the same row, whereas the
synaptic source currents are collected along the same columns
and fed back to the neurons. The TEs of the excitatory and
inhibitory synapses are biased at Vexc and Vinh, respectively.

III. HARDWARE RNN
Fig. 4 shows the hardware implementation of a Hopfield
RNNwith PCM-based synapses and neurons [48], [49]. Each
neuronNi represents the I&F unit of Fig. 3, while the stochas-
tic unit to generate stimulating signal Xi is not shown. The
input stimulation to every neuron Ni is thus the stochastic
signal Xi generated by the stochastic spike generator block
of Fig. 3. Each synaptic unit consists of two PCM devices
with 1T1R structure, acting as the excitatory synapse and the
inhibitory synapse, respectively. In each synaptic element,
the gate terminals of the excitatory and inhibitory synapses
are tied together, as well as shared with all other synaptic
elements along the same row in the RNN. The source ter-
minals are also connected and shared among all the synaptic
elements in the same column of the RNN. Finally, the top
electrodes (TEs) of the excitatory and inhibitory synapses
are all biased to a positive read voltage Vexc and a negative
read voltage Vinh, respectively, to induce the corresponding
column currents. As a result, the overall synaptic weight Gij
can be obtained from the difference between the excitatory
conductance G+ij and the inhibitory conductance G

−

ij , accord-
ing to Gij = G+ij − G

−

ij . The neuron output signal Yi controls
the synaptic gates along the row, whereas the source currents
along each column are collected and applied back to the
neurons for integration. For instance, N1 controls all gates in
the first row of the RNN, while the synaptic currents in the
first column are all collected by Kirchhoff’s law, forming the
internal signal I1, which is applied back to N1. The synaptic
current Ij of column j induced by the output spike voltage Vi
of neuron Ni is given by Ij =

∑
i GijVi, thus accelerating the

physical MVMwithin the RNN by IMC. Note that, according
to the Hopfield topology of the RNN, synapses in all diagonal
positions are omitted to prevent self-excitation/inhibition in
any neuron.
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FIGURE 5. (a) Schematic of the synaptic connectivity to solve a
2× 2 Sudoku puzzle, with inhibitory connections (red dashed
arrows) and excitatory connections (blue solid arrows). A 2× 2
Sudoku solver needs N3 = 8 neurons and N6 − N3 = 56
synapses connecting every neuron to each other (without
self-connection). (b) Map of synaptic conductance for a 2× 2
Sudoku programmed in a PCM array. (c) Experimental solution
of a 2× 2 Sudoku, including spikes Xi of the external
stimulation, corresponding to the initial condition of number
‘‘2’’ in position (2,1), and spikes Yi , reflecting the spiking
activity of each neuron in the RNN. The solution is achieved
after about 2 ms of stimulation. (d) Experiments (squares) and
MC simulations (lines) of the solution time for a 2× 2 Sudoku
puzzle as a function of the stimulation amplitude Iinput and
average frequency finput.

IV. HARDWARE SOLUTION OF A SUDOKU PUZZLE
To implement a certain problem with the RNN, the con-
straints need to be correctly mapped in the synaptic weights,
i.e., the conductance valuesGij. Considering a Sudoku puzzle
of size N , the constraints can be mapped in N layers of
N × N neurons, where each neuron corresponds to a certain
number in a certain position of the puzzle (e.g., number ‘‘1’’
in position S(1, 1)). Each layer corresponds to a possible
number in the puzzle, e.g., ‘‘1’’ or ‘‘2’’ for the 2× 2 Sudoku.
The neurons can thus be rearranged in an N ×N ×N matrix
[23], where the entry corresponding to ‘‘1’’ indicates a firing
neuron and the entry corresponding to ‘‘0’’ indicates a silent
neuron.

Fig. 5(a) shows the constraints for a 2 × 2 Sudoku
problem, represented by two layers of four neurons
each. Every neuron represents the neuron circuit of Fig. 3.
Solid lines indicate excitatory connections, where a number
in a certain position is exciting the same number in a different
row/column or the other number in the same row/column.
Dashed lines instead indicate inhibitory connections, where a
number inhibits the same number in the same row/column or
the other number in the same position. In larger Sudoku puz-
zles, there are also excitatory connections from any neuron to
any possible other neuron that does not violate the constraints.
For example, in a regular size Sudoku (with N = 9),

the number ‘‘1’’ will excite any neuron on the same
row/column with the numbers ‘‘2’’–‘‘9.’’

Fig. 5(b) shows the conductance map for a 2× 2 Sudoku,
which was implemented in two 8 × 8 PCM arrays of Fig. 4:
one for excitatory and one for inhibitory synapses. In this
RNN, the neuron spikes are applied to its corresponding row,
while the currents are collected on the columns and fed back
according to the schematic in Fig. 4.

A. EXPERIMENTAL SOLUTION OF A SUDOKU PUZZLE
We carried out experiments for the solution of a 2 × 2
Sudoku puzzle with the stochastic spiking RNN. The 2 × 2
Sudoku solution can only contain numbers 1 and 2, each
appearing only once in each row/column, i.e., only solu-
tions (1,2;2,1) and (2,1;1,2) are possible. Fig. 5(c) shows
the measured train of spikes Xi and Yi, namely, the stochas-
tic stimulation and the neuron spiking output, respectively,
in Fig. 4. An initial guess S(2, 1) = 1 is given as external
stimulation, corresponding to neuron N3 being externally
stimulated by a stochastic spiking train X3 at a relatively
high average frequency, whereas all other neurons are only
subject to random spikes at lower average frequency. Random
spiking in nonstimulated neurons is necessary to prevent
trapping in a local minimum of the cost function in the RNN.
Note that a stochastic implementation is not necessary to
solve a 2× 2 Sudoku; however, the simplicity of the Sudoku
puzzle allows to clearly illustrate the solution algorithm and
the spiking signals in Fig. 5(c). The stochastic spikes were
generated with the MC model by assuming a stimulation of
the PCM with a deterministic train of spikes, where fclk and
fclk/10 were used to generate the stochastic stimulation of
average frequency finput and finput/10 and then uploaded on a
microcontroller (µC). The latter was programmed to serve as
I&F neuron, with the output connected to the gates of 1T1R
PCM synapses. The synaptic currents were collected, con-
verted into voltage signals by a transimpedance amplifier
(TIA), digitalized with an analog-to-digital converter (ADC)
and fed back into the µC . The system was temporized by
a clock with frequency fclk = 10 kHz, which also limits
the maximum finput. The experimental results show that after
about 2 ms, neurons N2, N3, N5, and N8 start to regularly fire
at high frequency, whereas all other neurons remain silent.
This corresponds to a stable attractor [48] of the RNN and to
the minimum of the cost function, thus yielding the hardware
solution of the Sudoku puzzle. The configuration of spiking
neurons was sustained even after the external stimuli have
been removed, thus indicating the stability of the attractor
state.

The solution can be easily accelerated by increasing the
clock frequency and the stimulating currents. This is shown
in Fig. 5(d), which reports the computing time to solve
Sudoku as a function of the input current Iinput of the stim-
ulating stochastic spikes Xi for increasing spiking frequency
finput. Data points represent the average over five experiments
conducted on our RNN. The solution becomes faster as Iinput
and finput increase since the activated neurons generate ran-
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FIGURE 6. Probability Psol to solve Sudoku puzzles for increasing size. (a) 6× 6, (b) 9× 9, (c) 12× 12, and (d) 15× 15 as a function of
the probability Pinput of generating an input spike and the probability Pnoise of generating a noise spike. The maximum Psol is
marked, indicating that more stochasticity is needed to solve the problem at increasing N.

dom spikes at higher average frequency. It should also be
noted that the solution can be further accelerated by opti-
mizing the neuron threshold, which was set to Vth = 1 V
in the experiment of Fig. 5(c), considering an equivalent
capacitor of Cint = 100 pF. Simulation results from an MC
model of the network, including PCM variability in neurons
and synapses, are also shown in Fig. 5(d). The simulation
results clearly show a staircase behavior of the computing
time, where the step change corresponds to Iinput being a
submultiple of Ith = Vth ·Cint ·fclk, and steps are in fact clearly
visible in correspondence of Iinput = 10 µA or Iinput = 5 µA.

V. TEMPERATURE OPTIMIZATION
With the developedMCmodel, we simulated various Sudoku
problems with increasing size from 4 to 16, to study the RNN
performance and the correct tuning of the random spikes,
which can be viewed as an equivalent temperature in the
simulated annealing process to reach the global minimum of
the cost function. To properly solve the puzzles, we assumed
an RNN with N 3 neurons and N 6

− N 3 PCM synapses
encoding all constraints of the Sudoku. We then ran MC
simulations to evaluate the success probability Psol, namely
the probability of reaching the right solution, for a fixed
iteration number and variable input and noise frequency to
study the optimal tuning of the stochastic neurons. Fig. 6
shows the calculated Psol for increasing size, namely, 6 × 6,
9 × 9, 12 × 12, and 15 × 15. Psol is shown as a function of
the probability Pinput of generating an input spike, namely,
the ratio between the number of stimulating stochastic spikes
Xi and the number of deterministic spikes of frequency fclk
in Fig. 3, and the probability Pnoise of generating a noise
spike, which is defined similar toPinput but referred to random
noise spikes. Each simulation was run for 1000 cycles and
was repeated 100 times. The position of the maximum Psol
moves to lower Pinput and higher Pnoise for increasing N , thus
indicating an increasing need for stochasticity for increasing
Sudoku size. This can be explained by the number of local
minima increasing with N , thus resulting in a higher noise
contribution, hence temperature, to prevent trapping within a
local minimum. On the other hand, an excessive temperature
may instead lead to an unstable result, where the RNN can
escape also from the global minimum. Note that this method

combines the stochastic spike timing and the stochastic PCM
conductance variations as entropy sources of the stochastic
annealing, whereas previous works only considered stochas-
tic conductance variations [31]–[33]. The simulation results
suggest that a tunable source of stochastic spikes is essential
for an efficient solution of CSPs in hardware.

VI. EFFICIENCY AND SCALING
To study the impact of Sudoku size on CSP complexity,
we ran MC simulations to evaluate the error probability
Perr = 1 − Psol for increasing N . Fig. 7(a) shows the
calculated error probability Perr as a function of the number
of computing cycles for increasing N between 4 and 16. The
error probability increases with N for a given computational
cycle. Conversely, the computing speed to solve the Sudoku
problem with sufficiently low Perr decreases for increasing
N . While the system becomes more unreliable for bigger
problems, computation can be parallelized on more than one
memory array to enhance the probability of reaching a correct
solution [33].

The algorithm can also be improved to reduce Perr and
accelerate the annealing process by properly considering con-
flicts among constraints at the hardware level. For instance,
Fig. 7(b) shows possible conflicts within the first row of a
4 × 4 Sudoku. An initial condition, namely S(1, 1) = 1,
promotes with excitatory synapses all the other numbers on
the same row, namely, S(1, j) = [2, 3, 4], for j 6= 1. At the
same time, a random noise spike could activate the neuron
coding for digit 2 on the same cell, thus conflicting with the
initial condition and leading to escape from the correct global
minimum [18]. To avoid this, the neurons coding for digits
directly conflicting with initial condition should be inhibited
from firing. This can be achieved by properly transforming
the initial condition such that an excitatory stimulation is
provided to neurons coding for givens, whereas an inhibitory
stimulation is provided for neurons coding for digits conflict-
ing with the givens following the Sudoku constraints.

To this purpose, we propose a double-layer (DL) network
as shown in Fig. 7(c), where a feedforward layer is added as
an input layer to the RNN for filtering the input conditions
and inhibit wrong stimulations. Noise is only injected in
the second layer, while the inhibitions given by the input
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FIGURE 7. (a) Error probability Perr as a function of the number
of cycles for increasing Sudoku size. (b) Schematic of the
possible conflict while solving a Sudoku puzzle, where neurons
can be excited and inhibited at the same time by spiking
neurons. (c) Schematic of the DL network to prevent conflicting
excitation/inhibition and improve the convergence. (d) Matrix of
the synaptic weights of the feedforward input layer. (e) Perr as a
function of the number of cycles for increasing Sudoku size for
the DL network. (f) Performance of the Sudoku solver, namely
number of iteration cycles for the solution as a function of size,
for the SL RNN and the DL RNN, compared with other solvers
from the literature.

layer also control the annealing temperature by acting as a
cooling effect when the correct solution is reached. In fact,
if noise stimulates a neuron Ni that is in contrast with the
input condition, the first layer will inject a negative current
to Ni to prevent its activation. Fig. 7(d) shows the synaptic
weights of the input layer for a 9 × 9 Sudoku indicating all
the inhibitions to the recurrent layer.

Fig. 7(e) shows the error probability Perr as a function
of the number of cycles for increasing size of the Sudoku
size by adopting the DL network of Fig. 7(c). Fig. 7(f)
summarizes the computing speed, evaluated as the number of
cycles to reach Perr = 1%, for the single-layer (SL) RNN
and the DL network, indicating that the computing speed
is clearly improved by the DL network. The performance
of the RNN is compared with state-of-the-art systems for
solving Sudoku with FPGA implementations [52], [53] and
software approaches [52]. The results indicate that the IMC
approach allows accelerating the solution of CSP by about
four orders of magnitude compared with FPGA and seven
orders of magnitude compared with software-based solvers.
This is due to the compact implementation of stochastic

spikes generator and the low-latency MAC operation of IMC
compared with other techniques [54]. Moreover, the novel
DL network further improves the performance of the CSP
solver and takes full advantage of the compact MAC core.
Our implementation shows a reduced number of cycles to
solution also compared with state-of-the-art analog neuro-
morphic processor [26], which takes about 50 cycles to solve
a 4 × 4 Sudoku, compared with just 14 cycles of our DL
network. These results support the use of the PCM technology
for computational annealing techniques.

VII. CONCLUSION
We have developed a brain-inspired spiking RNN for solv-
ing CSP problems with stochastic PCM neurons and PCM
synapses. First, the stochasticity behavior of the PCM device
was experimentally studied during gradual crystallization.
Then, the PCM-based stochastic neuron was implemented in
an RNN for solving Sudoku puzzles that were experimentally
validated on a small scale (2× 2). An MC model was devel-
oped to describe the network stochastic behavior and predict
multiple experimental results as a function of stimulating
current and frequency. The model was then used to scale
the system and study the error probability as a function of
the problem size. Finally, a DL spiking neural network was
designed to further reduce the error probability. The results
demonstrate the superior performance of our system com-
pared with the state-of-the-art implementations, confirming
IMC as a promising approach to accelerate the hardware
solution of CSPs.
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