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ABSTRACT Nonvolatile computing-in-memory (nvCIM) exhibits high potential for neuromorphic com-
puting involving massive parallel computations and for achieving high energy efficiency. nvCIM is especially
suitable for deep neural networks, which are required to perform large amounts of matrix–vector multi-
plications. However, a comprehensive quantization algorithm has yet to be developed, which overcomes
the hardware limitations of resistive random access memory (ReRAM)-based nvCIM, such as the number
of I/O, word lines (WLs), and ADC outputs. In this article, we propose a quantization training method
for compressing deep models. The method comprises three steps: input and weight quantization, ReRAM
convolution (ReConv), and ADC quantization. ADC quantization optimizes the error sampling problem by
using the Gumbel-softmax trick. Under a 4-bit ADC of nvCIM, the accuracy only decreases by 0.05% and
1.31% for the MNIST and CIFAR-10, respectively, compared with the corresponding accuracies obtained
under an ideal ADC. The experimental results indicate that the proposed method is effective for compensating
the hardware limitations of nvCIM macros.

INDEX TERMS Compression, computing-in-memory (CIM), deep learning, quantization, resistive random
access memory (ReRAM).

I. INTRODUCTION

DEEP neural networks (DNNs) have highly flexible
parametric properties, and these properties are being

exploited to develop artificial intelligence (AI) applications
in various domains ranging from cloud computing to edge
computing. Transferring a DNN to an edge device remains
challenging because of the high requirements for storage,
computing, and power. To overcome this challenge, numer-
ous high-throughput, low-power devices have been proposed
in recent years to reduce the time complexity ofmatrix–vector
multiplications [1], [2]. Moreover, an increasing number
of studies have attempted to break the memory wall and
reduce the transmission overhead by providing memory with
computational ability [3]–[5]. Meanwhile, customized model

compression algorithms are essential for the DNNs to be
effectively deployed on AI edge devices.

Devices based on the Von Neumann architecture are
required to transfer massive amounts of data across hierar-
chical memory layers and the system bus when inferenc-
ing models. As Moore’s law ebbs, the energy efficiency of
memory approaches saturation, and the power consumption
of memory access is difficult to reduce [6]. To break the
Von Neumann bottleneck, many studies have investigated
nonvolatile computing-in-memory (nvCIM), such as resistive
random access memory (ReRAM). nvCIM is expected to
improvemultiply-and-accumulate (MAC) operations through
highly parallel computing, low standby power consumption,
and reducing the data transfer time from memory to the
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AI processor. However, nvCIM is associated with critical
challenges. Due to the limitations of I/O, word lines (WLs),
and ADC outputs, a tradeoff exists between throughput
(TOPS/W) and data precision when performing MAC opera-
tions. Some works focus on how to split the weight matrix
to reduce the ADC resolution requirement. Kim et al. [7]
improved the ReLU function to reduce the ADC resolution
requirement from 8 to 4 bit [7]; however, this article did
not consider ADC variation [8] and used a very large cross-
bar (512 × 512), which may cause considerable accuracy
degradation. Tang et al. [9] proposed to deploy a trained
BNN network by splitting weights and mapping to multiple
crossbar array with a 4-bit ADC [9]. Sun et al. [8] described
how to optimize the accuracy and chip area when mapping
the weights to different crossbar sizes and different ADC
precisions; however, these works did not consider partial sum
quantization during training, which may cause accuracy loss
in silicon realization.

In this article, we explore the advanced techniques involved
in the design of the structure of nvCIM macro. According to
the analysis of nvCIM, we propose a quantization scheme that
accounts for the hardware limitations of nvCIM. Our main
contributions are as follows.

1) An overall analysis of the hardware limitations
of ReRAM-based computing-in-memory (CIM) chip
design.

2) A proposed quantization training algorithm that
involves input/weight quantization, ReRAM convolu-
tion (ReConv), and ADC quantization.

3) To examine the effectiveness of various network archi-
tectures, the proposed method is applied to different
benchmark data sets (MNIST and CIFAR-10).

The remainder of this article is organized as follows.
Section II introduces the hardware limitations of the current
nvCIMdesigns. Section III introduces an nvCIM-aware quan-
tization method based on hardware limitations. Section IV
presents the experimental results. The concluding remarks are
presented in Section V.

II. ReRAM-BASED CIM
In recent years, many ReRAM-based CIM chips have been
proposed, with attempts made to balance between accuracy
and efficiency while achieving higher precision. A trend to
increase the number of I/O and precision of weights has
been observed for operations ranging from 1b-input, ternary-
weight, 3b-output [3] and 1b-input, 8b-weight, 1b-output [4]
to 2b-input, 3b-weight, 4b-output [5] (see Fig. 1). More bits
can be used to represent a value for improving the precision
and complexity of operation. The techniques for achieving
these improvements involve the design of the entire nvCIM
macro, physical characteristics of ReRAM, and precision of
ADC outputs. Consequently, the accuracy of each chip is
improved continuously, and more complicated inferencing
work can be performed. However, increasing the numbers
of I/O, WL, and ADC outputs brings new challenges and

FIGURE 1. Hardware complexity and accuracy of nvCIM in recent
works.

FIGURE 2. (a) IBL increases proportionally with the # of ReRAM
in HRS. (b) Narrow and wide distributions of IBL in the HRS and
LRS, respectively. (c) Fixed reference and different sensing
results.

hardware limitations. In this section, these limitations are
explained, highlighting the need for hardware and software
codesign.

A. INPUT LIMITATIONS
To overcome the limitation of input precision on WLs, two
critical factors must be considered: the input pattern variation
and process variation of ReRAM. In the case of input pattern
variation, the bitline current (IBL) is highly influenced by
the current (IHRS) through the number of ReRAM cells in
the high-resistance state (HRS) [see Fig. 2(a)]. In particu-
lar, when the R-ratio (RH /RL) is small, IHRS is significant.
Fig. 2(b) shows the different distributions of IBL correspond-
ing to HRS and low-resistance state (LRS) due to the process
variation of ReRAM. Fig. 2(c) shows the different input
patterns of multibit MAC values. Each row represents the
number of turned-on WLs. H or L represents weight 0 or 1.
If the reference is fixed for different turned-on WLs, differ-
ent sensing results might be obtained, resulting in incorrect
outputs. To solve this problem, Mochida et al. [4] proposed
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FIGURE 3. (a) Conductive filament of ReRAM. (b) Narrower
sensing margin due to input pattern and process variation.

a dynamic IREF generation scheme. However, this scheme
requires a large area when the required precision of WL
increases.

In the HRS, IBL passing through the ReRAM cell is stable
and has low variation. However, in the LRS, IBL is widely
distributed due to different widths and numbers of conductive
filaments, which are generated during the SET stage in the
middle layer of ReRAM [see Fig. 3(a)]. Considering the input
pattern and process variation discussed earlier, achieving a
higher precision of input would lead to very close distribu-
tions of IBL when the MAC value is high [see Fig. 3(b)].
Therefore, the MAC precision of hardware is limited. The
inputs precision should be optimized with software codesign
to maintain inference accuracy.

B. WEIGHT LIMITATIONS
For the MAC operation on a macro, the higher number of bits
used to represent a weight value, the higher is the inference
accuracy. Two methods can be used to meet the required
weight precision. One is to simply use multiple single-level-
cell (SLC) ReRAM to represent one weight value. However,
this increases the area cost and complexity of the MAC
operation, which is related to the power and latency of the
entire input process. The larger the size of the memory,
the longer the metal wire. Moreover, the problem of IR
drop and latency may occur. Therefore, simply increasing the
number of ReRAM cells is not a practical way. The number
of ReRAM cells should be optimized with software codesign.

The other method involves making a multilevel cell (MLC)
ReRAM to represent the weight value with more than one
bit. In [4], a ReRAM with eight levels that achieve 256 times
higher precision of weight is proposed. However, due to the
process variation in ReRAM, precisely controlling the resis-
tance of ReRAM with 256 levels is difficult. The reported
accuracy of MNIST with MLC ReRAM is 90.8%, less than
the reported accuracy using SLC ReRAM [3], [5].

FIGURE 4. (a) Relation between IBL, IOS, and SA accuracy.
(b) Limited width for the SA schematic. (c) Influences of
large IBL.

C. ADC OUTPUT PRECISION LIMITATIONS
Increasing the precision of ADC outputs involves many chal-
lenges related to the input offset, area, parasitic capacitance,
and sense margin. First, with increasing IBL due to multibit
MAC operations, the input offset of ADC increases, which
reduces the accuracy of the sensing output [see Fig. 4(a)].
Second, to meet the precision requirement, the number of
ADC outputs must be increased. Consequently, the area of
the ADC becomes too large [see Fig. 4(b)]. Moreover, when
IBL is large, a wide metal wire and large MOS are required,
resulting in increased parasitic capacitance on the read path,
thus decreasing the speed of the ADC sensing process [see
Fig. 4(c)]. Last but not least, achieving a large sensing margin
is always a circuit design challenge. With the process varia-
tion of ReRAM and the input pattern, ADC has a very small
sensing margin for obtaining a correct output.

Due to the challenges mentioned earlier, the precision of
ADC outputs is considerably limited.Moreover, the precision
of ADC outputs limits the precision of the entire MAC oper-
ation. Therefore, how to do quantization in software become
critical to compensate for the limited precision of ADC and
to improve the inference accuracy for CIM.

III. nvCIM QUANTIZATION TRAINING
Considering the hardware limitation mentioned in Section II,
the proposed nvCIM quantization comprises three steps:
input and weight quantization, ReConv, and ADC quantiza-
tion. The mathematical details of the proposed method are
introduced in this section.

A. INPUT AND WEIGHT QUANTIZATION
The ReLU function is widely used as the activation function
in DNNs. To satisfy the input limitation of nvCIM, the acti-
vation function is modified for quantization of the inputs as
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Algorithm 1 ReRAM Convolution, ReConv
Input: At l− th layer, a minibatch of bA-bit quantized inputs
Aql−1, bW -bit quantized weightsWq

l , ADC precision bAD-bit,
NWL, filter size f .
Output: Full-precision group convolution result Al .

1: K←
(
input channels of Wq

l ,A
q
l−1

)
·f 2

NWL
2:Wq

l,k ,A
q
l−1,k ← split(Wq

l ,K), split(A
q
l−1,K)

3: for k = 1 to K inWq
l,k ,A

q
l−1,k and set Al = 0 do

4: Al,k ← Convolution(Aql−1,k ,W
q
l,k )

5: Aql,k ← QAD
(
Al,k

)
6: Al ← Al + A

q
l,k

7: end for

follows:

QA(Al) =
round(min(max(0,Al),1) · (2bA − 1))

(2bA − 1)
(1)

where Al denotes the inputs (or activations) of the lth layer in
the DNN and bA denotes the bit of input.

Due to the limitation of a ReRAM cell andmodel accuracy,
the proposed weight quantization focuses on the design of
SLC ReRAM. The SLC ReRAM structure usually uses dif-
ferent groups of BLs to represent integer weight values. Thus,
the quantization level must follow asymmetric quantization.
The weight quantization is defined as follows:

QW(Wl) =
round( tanh(W̄l) · (2bW−1 − 1))

(2bW−1 − 1)
(2)

whereWl denotes the weight matrix of the lth layer in DNN.
The normalized W̄l = tanh(Wl)/max(abs(tanh(Wl))) and bw
denotes the weight bit.

B. ReRAM CONVOLUTION
Considering the features of the crossbar architecture,
the strategy of weight reuse has considerable benefits for
accelerating convolutional computation by operating nvCIM.
However, because of the low resolution of ADC, the pre-
diction accuracy would degrade. Therefore, the proposed
quantization-aware training algorithm focuses on overcom-
ing this drawback.

The proposed ReConv is summarized in Algorithm 1.
ReConv simulates the behavior of ADC and the range of IBL.
Moreover, the behavior in ReConv is maintained the same as
that in the original convolution. First, the inputs and weights
are split into several groups. The number of split groups, K ,
is determined by the number of inputs and the number ofWLs
(NWL). Second, the grouped weights and inputs perform the
convolution computation. The convolution results are then
transferred to perform the proposed ADC quantization (see
Section III-C). The final step of ReConv takes the quantized
result into partial summation.

C. ADC QUANTIZATION
ADC quantization is included in ReConv to control the
range of IBL in the training algorithm. Two types of

FIGURE 5. Distribution of IBL. Blue bars: simulation data for
different input/weight patterns and variations. Blue line:
distribution of data with KDE. Red line: logistic distribution
corresponding to the data.

ADC quantization methods are proposed for the nvCIM
quantization training algorithm. The first method, ReRAM
quantization (R2Q), involves clip-based ADC quantization.
The second method, ReRAM relaxed quantization (R3Q),
involves concrete-based ADC quantization. R2Q focuses on
controlling the range of IBL, while R3Q optimizes the effect
of noise through a probability model.

1) CLIP-BASED ADC QUANTIZATION
The first ADC quantization method involves clipping IBL
within a suitable range and then performing quantization. The
mathematical formula of clip-based ADC quantization is as
follows:

QAD(Al,k ) =
round(Al,k · (2bAD−1 − 1))

(2bAD−1 − 1)
(3)

where bAD denotes the ADC bit and Al,k denotes the inputs
clipped into a suitable range. In practice, we set Āl,k =
min(max(Al,k ,−1), 1). Only the overload IBL is considered in
ADC quantization performed using the clipmethod; however,
the sensing margin problem mentioned in Section II-C still
needs to be solved.

2) CONCRETE-BASED ADC QUANTIZATION
In [10], a relaxed quantization (RQ) technique is proposed,
in which random noises are introduced to disturb the quan-
tization process and then replace the sampling process with
the Gumbel-softmax trick [11], [12]. This method provides
a noise-aware strategy; however, the ADC sampling noise
needs to be established through probability distribution in the
nvCIM system.

With regard to the process variation of ReRAM discussed
in this article, Fig. 5 shows the measured IBL distribution,
which closely follows the logistic distribution. Therefore,
the logistic distribution can be utilized for training. As men-
tioned in Section II, the sensing margins of ADC are very
small, which leads to a sampling error between multiple
distributions.

Unlike RQ [10], in this article, the sampling noise is
applied to every quantized value ri. The noise distribution is
p(r̃i), where r̃i = ri+ε and ε ∼ L(0, σ ), and p(r̃i) = L(ri, σ ).
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Algorithm 2 Concrete-Based ADC Quantization During
Training
Input: Input a,, temperature λ, variation of noise σ .
Output: Quantized outputs aq.
1: r = [r0, . . . , rN−1] = [−2bAD+1, . . . , 0, . . . ,2bAD−1]

2: πi =

 1− sigmoid
(
a−ri
σi

)
; if a > ri

sigmoid
(
a−ri
σi

)
; if a ≤ ri

3: si ∼ Concrete(πi, λ)
4: aq =

∑
i siri

FIGURE 6. Categorical probability of the ADC quantization.
(a) Shaded area corresponds to the tail probability of each
representative distribution in which a falls. (b) Categorical
probability over the quantized values. Each probability of the
quantized values ri is equal to the tail probability of a
corresponding to p(a = r|r, σ ).

Algorithm 3 R2Q Training With L-layers Network
Input: A minibatch of bA-bit quantized inputs Aq, current
weightsW , weight precision bW -bit, ADCprecision bAD-bits,
number of word-line NWL, learning rate η.
Output: update weightsWupdated .
1: for l = 1 to L do
2: Wq

l ← QW (W l)

3: Al ← ReConv
(
Aql−1,W

q
l , bAD,NWL

)
4: Aql ← QA(Al)
5: Optionally apply pooling
6: end for
7: gAL ← STE( ∂C

∂AqL
,Wq

l )

8:Wupdated
← UpdateParameters(W , gAL , η)

According to the aforementioned assumption, the second
ADC quantization method in Algorithm 2 consists of two ele-
ments: the categorical probability and the Gumbel-softmax
trick. The categorical probability is determined by the tail
probability of each distribution corresponding to input data a,
as shown in Fig. 6. The Gumbel-softmax trick (also known as
a concrete distribution) replaces the discrete part in DNNwith
the concrete distribution. With the temperature parameter in
the softmax function that approaches zero during training, the
procedure makes the softmax function become the argmax
function.

TABLE 1. Test error (%) with R3Q for MNIST.

The proposed ReRAM-based nvCIM quantization training
algorithm is summarized in Algorithm 3. By following the
proposed approach, the trained weights of a DNN can meet
the specifications of state-of-the-art nvCIM chips [3]–[5].
Moreover, the number of I/O, WLs, and ADCs can
change arbitrarily before training to assist in future tape-out
simulation.

IV. EXPERIMENTAL RESULTS
A. SOFTWARE EXPERIMENTAL SETUP
The proposed algorithm is based on the hardware
specifications of [5]. The initial hyperparameters setting of
concrete-based ADC quantization in R3Q follows the instruc-
tion introduced in [10]. We initialized the parameter α in
QAD according to the first batch of maximum and minimum
values of the input Al and divided α by b2AD. To represent the
zero value of the quantized value, the bias β was not used.
Moreover, we initialized λ of the Gumbel-softmax trick to 1.

We applied a variant of the LeNet-5 network with
the 32C3-MP-64C3-MP-512FC-Softmax architecture to the
MNIST data set. The learning rate was maintained constant
at 1 over all 200 epochs. In the case of the CIFAR-10 data set,
we considered a small VGG network [15] with the 2x(16C3)-
MP-2x(32C3)-MP-2x(64C3)-MP-128FC-Softmax architec-
ture and ResNet18 [5] and trained them with a mini-batch
size of 100 and 400 epochs, respectively. The learning rate
was divided by 10 after every 100 epochs. All the exper-
iments were trained from scratch and implemented using
Tensorflow [14]. LeNet-5 and small VGG were optimized
using Adam [13] with a learning rate of 10−4. ResNet18 was
optimized using SGD with a learning rate of 10−1.

B. EXPLORING THE QUANTITY SPACE OF WL
AND ADC QUANTIZATION
The ideal resolution of a MAC operation is the sum of bW
and bA.Moreover, a convolution operation consisting ofmany
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TABLE 2. Test error (%) with R3Q for CIFAR10.

FIGURE 7. (a) Different precision of the ADC when NWL is ideal.
(b) Different NWL of ReRAM convolution when ADC
precision = 4 bits.

MAC operations requires a floating-point representation. The
proposed ReConv can decrease the size of the set of MAC
operations. However, the ideal resolution of ReConv must be
reduced to satisfy hardware limitations. Thus, ADC quan-
tization in the inference process must be simulated. In this
section, we explore the reconfigurable nature of R3Q. The
testing results are reported in Tables 1 and 2, and the results
can be divided into three parts.

In the first part, R3Q exhibits flexibility for different bits
of weight and activation. R3Q supports weight/activation
quantization in the range of binary/ternary bit to 8 bit.
To meet the I/O limitations of the SOTA ReRAM chip such
as [3], we explore the precision space of QAD by consid-
ering 2-bit weights and 2-bit activations. The results are
reported in the second part of Tables 1 and 2. The bench-
mark error rates of LeNet, the small VGG network, and
ResNet18 are 0.65%, 16.64%, and 10.38%, respectively.
The network error rate only increases by 0.08% for the
MNIST task and 0.72% (0.98%) for the CIFAR-10 task,
with bAD = 8. The error rate for CIFAR-10 degrades to
less than 2.5% at bAD = 4; however, the network per-
formance deteriorates at extremely small ADC resolutions.
Moreover, the condition bAD = 4 is suitable for the SOTA
ReRAM CIM.

TABLE 3. Performance comparisons (test error %).

TABLE 4. Generalization comparisons.

The third part of Tables 1 and 2 indicates the relation-
ship between NWL and the error rate. The results suggest
that as NWL increases, the test accuracy decreases. There-
fore, the design of nvCIM should consider the NWL with
a precision-limited ADC. Moreover, the error rate can be
reduced by quantizing the output values.

As shown in Table 1, the accuracy under the specifi-
cation 2-2-4-9 is lower than that of ideal nvCIM (2-2-32-
ideal) by only 0.05% for the MNIST. For the CIFAR10 in
Table 2, small VGG and ResNet18 are lower than the ideal
case by 1.31% and 6.25%, respectively. The results indi-
cate that the proposed algorithm can effectively maintain the
accuracy.

C. COMPARISON OF R2Q AND R3Q
The major difference between R2Q and R3Q is the quantiza-
tion modeling for ADC. The performance of R3Q is superior
to that of R2Q for every hardware limitation (see Fig. 7).
In contrast to QRN [16], R3Q supports not only weight
quantization but also input quantization, ADC quantization,
and I/O limitation. Thus, the proposed method outperforms
QRN, as presented in the top half of Table 3.

To verify the general scalability of the proposed method,
different precisions of input, weight, and ADC are shown in
the lower half of Table 3. The proposed method still demon-
strates very good performance and outperforms QRN. How-
ever, R3Q requires a long training time, as shown in Table 4.
The training time of R3Q is 27.6 times greater than that of
QRN [16] because the computation is slowed down by the
concrete-based quantization.

V. CONCLUSION
This article thoroughly discusses the hardware limitations
of ReRAM-based CIM. According to these limitations,
a novel quantization training method is proposed for the
ReRAM-based CIM system. The proposed method involves
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three steps: input and weight quantization, ReConv, and ADC
quantization. Moreover, two ADC quantization methods are
introduced: R2Q and R3Q. Compared with previous training
methods, the R3Q method proposed in this article is more
robust and comprehensive. The simulation results indicate
that the R3Q method can avoid the sampling errors occur-
ring in ADC in nvCIM. The accuracy of R3Q is lower than
that of ideal nvCIM (2-2-32-ideal), whose I/O limitation and
ADC are ideal, by only 0.05% and 1.31% for the MNIST
and CIFAR-10 data sets, respectively, under the specification
2-2-4-9. The proposed training method can meet the spec-
ifications of state-of-the-art nvCIM chips; the number of
I/O, WLs, and ADCs can also be changed arbitrarily before
training to assist future tape-out simulation.
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