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ABSTRACT In this article, we perform a uniform benchmarking for the convolutional neural net-
work (CoNN) based on the cellular neural network (CeNN) using a variety of beyond-CMOS technologies.
Representative charge-based and spintronic device technologies are implemented to enable energy-efficient
CeNN related computations. To alleviate the delay and energy overheads of the fully connected layer, a hybrid
spintronic CeNN-based CoNN system is proposed. It is shown that low-power FETs and spintronic devices
are promising candidates to implement energy-efficient CoNNs based on CeNNs. Specifically, more than
10× improvement in energy-delay product (EDP) is demonstrated for the systems using spin diffusion-based
devices and tunneling FETs compared to their conventional CMOS counterparts.

INDEX TERMS Beyond-CMOS technology, cellular neural network (CeNN), convolutional neural
network (CoNN), spintronics, tunnel FETs (TFETs).

I. INTRODUCTION

CMOS technology scaling faces major challenges as
we approach sub-10-nm technology nodes [1]. Steep-

threshold devices, such as tunneling FETs and negative
capacitance FETs (NCFETs), as well as low-voltage spin-
tronic devices have been proposed to augment or even replace
the CMOS technology. Despite major research efforts on
these beyond-CMOS devices, limited performance/energy
improvements have been projected compared to their CMOS
counterparts for Boolean computation [2], [3]. Because many
emerging beyond-CMOS devices have fundamentally differ-
ent physics and offer unique characteristics, it is critically
important to find novel and nontraditional circuit applications
to realize their full potential.

Neuromorphic circuits have become an attractive alterna-
tive non-Boolean computing platforms in recent years, and
they are shown to effectively utilize beyond-CMOS charge-
based and spintronic device technologies [4]–[9]. Computing
circuits that are biologically inspired has been shown to

be highly efficient for tackling many complex tasks, espe-
cially in the areas of image and video processing. Massive
parallel low-power computing blocks can be taken advan-
tage of to enable energy-efficient computation [10]–[14].
Many existing proposals have investigated the neuromor-
phic computing systems based on beyond-CMOS devices.
These systems are expected to provide significantly lower
energy per operation compared to the conventional CMOS
technology [9], [12]–[15].

Recently, multiple efforts have investigated the cellular
neural network (CeNN) in the context of emerging infor-
mation processing technologies. As representative examples,
CeNNs based on graphene devices, spintronic devices, and
tunnel FETs (TFETs) [16]–[22] have been studied. A variety
of applications, such as noise filtering, associative memory,
pattern recognition, tactile sensing, and image processing
application engines have been considered [17]–[20]. Promis-
ing results were shown for these applications using emerging
technologies compared to their CMOS counterparts.
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A CeNN is an analog array processor architecture
[23], [24] that can improve the power and performance of
various computation-intensive information processing appli-
cations [25]. The underlying mathematics of a CeNN was
proposed by Chua and Yang [23], and the dynamic state
equation of each cellular neuron cell circuit is written as
follows:

Cf
dxij
dt
= −

1
Rf
xij +

∑
kl∈Sij

Aij,klykl +
∑
kl∈Sij

Bij,klukl + Iij (1)

where xij is the cell state voltage, Rf is the linear feedback
resistance, Cf is the linear feedback capacitance, ykl are the
output of the neighboring cells, and ukl are the inputs of
the neighboring cells. The output of each cell is defined as
ykl = f (xkl), where f (x) is the sigmoidal function. Akl and
Bkl are the kernels of each cell. The kernel values are equal to
the synapse weights connecting two nearby cells, and Iij is the
input cell bias current. CeNNs are attractive as: 1) each cell is
connected to only its neighbors, making the interconnections
between cells local and 2) the cells and their synaptic inter-
connections are usually space-invariant, whichmakes CeNNs
very suitable for CMOS very large scale integration (VLSI)
implementation [26]–[29]. CeNN has shown great potential
for convolutional neural network (CoNN) type of computa-
tions [30], with 8.7× and 4.3× energy-delay product (EDP)
improvements compared with the state-of-the-art deep neural
network (DNN) acceleration system in MNIST and CIFAR-
10 data set, respectively. The CeNN architecture is well suited
for the convolution operation, which is the most expensive
operation in a typical CoNN. The reasons are: 1) the architec-
ture can perform the convolution operation within one feature
map all in parallel, which greatly improves the processing
time; 2) the CeNN architecture supports analog computations
well, which can be used to reduce energy when operating in
a limited precision; and 3) the architecture is easy to realize
in VLSI.

In this article, we adopt a recent architecture-level work
to implement a novel way of employing cellular opera-
tions to perform the convolution, which constitutes the core
computations in CoNNs [31]. This creates a unique oppor-
tunity to develop a low energy/delay mixed-signal system
composed of CeNNs for realizing widely adopted CoNNs.
The CeNN-based CoNN benchmarking framework presented
here is generic and applicable to a wide range of beyond-
CMOS charge- and spin-based devices. Comparisons among
promising device choices provide insights into how to bet-
ter utilize emerging technologies for energy-efficient high-
performance machine learning applications. In addition, for
spintronic-based systems, a hybrid CoNN design scheme is
proposed to alleviate the delay and energy overhead asso-
ciated with the fully connected layer in a CoNN. MNIST
data set [32] is used for the benchmarking effort, but
more complex data sets, such as CIFAR-10, can also be
incorporated by building a wider and deeper CeNN-based
CoNN.

FIGURE 1. CeNN cell implemented with analog circuits.

The main contributions of this article are listed as follows.
1) We adapt a CeNN-based CoNN architecture and further

improve the energy and delay per operation by using
binary output states.

2) We perform a uniform benchmarking study for a wide
range of charge- and spin-based devices for the first
time based on the CoNN application.

3) We propose a hybrid system that uses spintronic
devices for the convolution layer and charge-based
devices for the fully connected layer to better utilize
the advantage of spintronic devices.

The organization of this article is listed as follows.
Section II illustrates two types of CeNN cell designs for
charge- and spin-based devices. Section III describes the
CeNN-based CoNN architecture implementation, including
convolution, activation, pooling, and fully connected lay-
ers. Section IV demonstrates the functionality of the pro-
posed CeNN-based CoNN for spintronic devices as well as
the benchmarking results for both charge- and spin-based
technologies. In addition, a hybrid design using CMOS and
spintronic devices is also proposed and benchmarked for the
spintronic implementation to alleviate the delay and energy
overhead associated with the fully connected layer. Conclu-
sions are summarized in Section V.

II. CeNN CELL DESIGN USING EMERGING
TECHNOLOGIES
In this section, we describe two types of CeNN cell designs
that are implemented with a variety of beyond-CMOS
devices, including charge-based FETs and spintronic devices.
In [44], the digital CeNN implementation is shown to be
more energy- and time-consuming due to the fact that each
convolution operation requires reading data, multiple stages
of summation, and storing data in the registers. Therefore,
in this work, the same CeNN implementation for CoNN is
briefly discussed in the Supplementary material.

A. CHARGE-BASED CeNN CELL IMPLEMENTATION
For the charge-based implementation, we use analog cir-
cuits illustrated in Fig. 1 to achieve the CeNN dynamics in
(1). The first-order differential equation is implemented by
using an analog opamp-based integrator. The opamp design
follows a standard differential-input single-ended output
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TABLE 1. Charge-based device characteristics.

seven-transistor operational amplifiers [45]. The synapse
weights, namely kernels A and B in (1), are achieved by
using operational transconductance amplifiers (OTAs) [46].
We used OTAswith quantized tail transistor widths to achieve
digitally programmable synapses. Memory cells, such as
SRAM, are used to control the gates of the tail transistors to
achieve a variety of functionalities.

The bias of the amplifier is assumed to beVout/Rf to ensure
desired output swing, where the feedback resistance, Rf ,
in the CeNN needs to be set properly to achieve the correct
functionality of the CoNN. For a general CoNN operation,
the desired output, y, is written as follows:

y =
∑

w · u+ i (2)

where u is the input from the previous layer, w the kernel
weight, and i the input bias. To map CoNN operation to the
CeNN dynamic in (1), the kernel B can be written as w · gm,
where gm is the transconductance of the OTA, and I = i · gm.
At a steady state, the cell voltage x is expected to reach the
desired output y, and the gradient of the cell voltage should
reach 0, which gives

0 = −
1
Rf
y+

∑
w · gm · u+ i · gm. (3)

With (2) and (3), the feedback resistance, Rf , should be set
as 1/gm so that the cell voltage x settles to y. The feedback
capacitance, Cf , is the summation of the input capacitances
of nearby OTAs, which is written as follows:

Cf = COTA · Nb(2Ns + 1) (4)

where COTA is the output capacitance of the OTA, Ns is the
weight kernel size of 9, and Nb is the number of bits of the
synapse, which is assumed to be 4 in this work.

In this article, 13 representative charge-based FET devices
are investigated. The characteristics of emerging devices as
well as two baseline CMOS devices, namely, CMOS HP
and CMOS LV devices, are listed in Table 1. Many of the
beyond-CMOS charge-based FETs have an advantage in

terms of the steep subthreshold thanks to their distinct oper-
ation principles, such as the negative capacitance effect in
NCFET [41], Klein tunneling effect in graphene p–n junction
FET (GpnJ) [52], and band-to-band tunneling effect in TFET.
Note that the variability effects for analog circuits, such as
the threshold voltage variation, have not been considered.
The main purpose of this article is to give an upper bound
on the potential of each emerging technology and investigate
its energy and delay per operation. This helps us to identify
promising device candidates so that a more thorough investi-
gation can be done for those devices in the future.

B. SPINTRONIC CeNN CELL IMPLEMENTATION
For the spintronic implementation, we use magnetic compo-
nents complemented with CMOS peripherals to create a com-
plete driving and sensing circuitry. Three types of spintronic
CeNN cell designs are adopted from the previous work and
illustrated in Fig. 2, including spin Hall effect devices, spin
diffusion devices, and domain wall devices [44].

The dynamic switching behavior of magnets in the neuron
is captured by solving the Landau–Lifshitz–Gilbert (LLG)
equation with an added spin-transfer-torque term [53], [54].
The magnet magnetization, Em, can be written as follows:

d Em
dt
= −γµ0[ Em× EHeff]+ α

[
Em×

d Em
dt

]
+
EIS,⊥
eNs

(5)

where µ0 is the permittivity, EHeff is the effective magnetic
field, γ is the gyromagnetic ratio, α is the damping fac-
tor of the magnet, e is the elementary charge, Ns is the
number of magnetons, and EIS,⊥ is the perpendicular spin-
polarized current. This spin-polarized current is expressed as
i0 · (

∑
kl∈Sij Aij,klykl +

∑
kl∈Sij Bij,klukl + Iij), where i0 is the

unit spin-polarized current when the kernel value in A or B
is unity. The output and input voltages of nearby CeNN cells
and the weights of synapses connecting those cells determine
the amplitude and the direction of the spin-polarized current.

The inputs of the CeNN cell, Vin and V̄in, are received
from inputs, ukl , of nearby CeNN cells. These inputs are
connected to n-type driving transistors with various driving
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FIGURE 2. CeNN cell implemented with magnetic synapses and neurons based on (a) spin diffusion, (b) spin Hall effect, and
(c) domain wall motion as the writing mechanisms.

TABLE 2. Spintronic device and cell characteristics.

sizes that are determined by the absolute values of kernels,
Bij. The input voltage turns on one of the driving MOSFET,
which generates a charge current. For the spin diffusion-based
CeNN cell design shown in Fig. 2(a), the charge current
flowing through the fixed magnet gets spin-polarized. The
injected spins diffuse toward the free magnet in the neuron.
Both the direction of the magnetization the magnet and the
charge current determines the polarity of the spin current.
For the spin Hall effect-based CeNN cell design shown
in Fig. 2(b), the charge current flowing through the heavy
metal insert spin-orbit torque to the cell magnet and deter-
mine the magnetization direction. For the domain wall-based
CeNN cell design shown in Fig. 2(c), the charge current drives
the domain wall and determines the MTJ state. The read-
out circuitry for three spintronic implementations is identical
and designed by using two MTJs [17]. If the bottom MTJ is
at parallel (or antiparallel) configurations, the voltage at the
input of the inverter becomes low (or high) accordingly. Then,
the complementary voltages are generated with two inverters
to drive the synapses in nearby CeNN cells. The magnet
dynamics in each cell is simulated numerically by solving the
LLG equation shown in (5). In this article, six representative
spintronic devices with different materials are investigated.
The driving voltage and switching characteristics of different
devices are listed in Table 2.

III. BENCHMARKING FRAMEWORK: CeNN-BASED
CoNN CIRCUIT AND ARCHITECTURE
In this section, we describe the benchmarking framework by
introducing a CeNN-based CoNN that can be widely used for
general machine learning applications.

A. NEURAL NETWORK DESIGN
Using the CeNN cell building blocks described in Section II,
we have developed a CeNN-friendly CoNN for the MNIST
recognition task [55], where the system classifies each hand-
written digit (0–9) that is represented by a 28 × 28 pixel
image. All computational kernels are restricted to a CeNN
friendly size of 3× 3. Although larger kernels are consistent
with CeNN theory (a neighborhood’s radius r can be >1),
large kernels are infrequently utilized to avoid connectivity
challenges. Also, Szegedy et al. [56] suggest that smaller
kernels can lead to fewer parameters/higher accuracy during
training—which maps well to CeNN hardware. The resulting
network is shown in Fig. 3 and consists of four channels,
where different convolution kernels are employed in each
channel (highlighted in blue). In this work, we do not reuse
the CeNN cell across different kernels or layers. Each con-
volution operation has a dedicated CeNN cell. For more
complex tasks and data sets, one can store the weight in
the memory and load the weight each time before reusing
the CeNN cells. To train the synapse weights of the neural
network, we used the Caffe toolsets [57].

B. LAYER IMPLEMENTATIONS IN CeNN-BASED CoNN
We show in this section that the core CoNN computation
can be readily mapped to a CeNN hardware. In the previous
work, the analog implementation of a CeNN-based CoNN
has been demonstrated by using CMOS devices to perform
energy-efficient non-Boolean computation [30], where the
bit precision of the synapse weights is 4. In this section,
we describe a fewmajor changes to the activation and pooling
layers and apply it to both charge-based analog and spintronic
implementation.
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FIGURE 3. CeNN-based CoNN architecture for the MNIST application.

1) CONVOLUTIONAL LAYER
Convolutional layers are used to detect and extract features
on the input data by convolving the input with convolutional
kernels. One CeNN can implement a convolutional operation
in a straightforward manner by simply setting the values of
the B-kernel to be the values of the convolutional kernel.

2) ACTIVATION LAYER
In the previous work, the activation layer used a rectified
linear unit (ReLU) operation because it is the most commonly
used nonlinearity activation function in deep learning appli-
cations. For the CeNN-based CoNN, the ReLU operation
requires two linear operations that first shift all values down
by one followed by shifting up by one. This method is effec-
tive but induces two extra steps. In addition, for the spintronic
implementation, because the CeNN cell design illustrated
in Fig. 2 has binary output features due to the bistability of
magnets, the ReLU activation function cannot be achieved by
using the aforementioned two-step CeNN operations. There-
fore, in this work, we modified the activation function from
ReLU to a sigmoidal-like function with a steep transition to
match the output characteristic of spintronic devices. For a
fair comparison, the analog implementation uses comparators
to achieve the same activation function.

3) POOLING LAYER
Pooling operations are employed in-between successive lay-
ers to reduce the spatial information so that the network
parameters are reduced. Here, we discuss the implementation
of a widely used pooling function in CoNN—max pooling.
We compare the value of the center pixel with all its neigh-
bors. If the center pixel is larger, we keep the center pixel; if
the center pixel is smaller, we replace the center pixel with its
neighbor pixel. In the previous work, we developed a series
of CeNN kernels to realize the max pooling operation, which
requires 16 steps. Due to the fact that we binarize the output
after the activation layer, the max-pooling function can be
achieved by simply using or operations.

4) FULLY CONNECTED LAYER
The operation of the fully connected layer can be defined
as a pixelwise dot product between a weight matrix and a

feature map. The result can be used as a classification result.
For weight matrix sizes larger than 3 × 3 (which is typical
in CoNN implementation), the fully connected layer cannot
be efficiently implemented by CeNN. To overcome this chal-
lenge, one can leverage digital circuits, such as adders and
multipliers, to perform the fully connected layer function. In
this article, we have adopted the arithmetic logic unit (ALU)
from previous work to perform Boolean addition and multi-
plication for the fully connected layer [2].

IV. SIMULATION AND BENCHMARKING RESULTS
In this section, a variety of beyond-CMOS devices are bench-
marked using the same simulation framework described
in Section III. For magnetic devices, we perform detailed
numerical LLG simulations to demonstrate the functionality
of the spintronic CeNN-based CoNN for the MNIST digit
recognition problem. One of the key nonideal effects, ther-
mal noise, is taken into account in the simulation. For the
charge-based devices, due to limited inputs from different
research centers, we did not investigate the nonideality of
each type of device and its impact on the overall application-
level accuracy. The main purpose of this article is to give an
upbound of the potential of each emerging technology and
investigate its energy and delay per operation. This helps us to
identify promising device candidates so that a more thorough
investigation can be done for those devices in the future. In the
end, a hybrid scheme is proposed to better utilize the potential
of spintronic-based implementation.

A. FUNCTIONALITY DEMONSTRATION
Based on the CeNN cell design and neural network design
presented in Sections II and III, we perform the benchmarking
for a generic CoNN. In this article, we perform a benchmark-
ing for the MNIST digit recognition problem as a case study.
The same benchmarking framework is applicable to all DNN
architectures for various applications.

As we discussed in Section III, the spintronic activation
layer uses the sigmoidal-like function to take into account the
binary switching characteristics of the magnets. The activa-
tion function can be expressed as 1/(1 + e−αx). Based on
the modified CoNN, retraining is performed to obtain the
updated weights using Caffe [57]. We use a relatively large α
of 20 to capture the binary characteristics of the magnets used
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FIGURE 4. Functional demonstration of spintronic CeNN-based
CoNN system for the MNIST application.

in spintronic implementations. After the retraining, the recog-
nition accuracy of the modified network reaches 97%. Then,
the corresponding weights are exported to MATLAB, and
detailed numerical LLG simulations are performed to pre-
cisely capture the magnet dynamics in each CeNN cell under
the influence of the thermal noise. Due to the time-consuming
numerical simulations, 100 samples are taken to demonstrate
the functionality of the spintronic CeNN-based CoNN. The
average output values after softmax for ten digits versus the
input pattern is shown in Fig. 4, where strong correlations
between the normalized output values and input labels are
observed. The overall recognition accuracy also reaches 97%.

B. PERFORMANCE BENCHMARKING
In this section, based on the validated weight information,
we perform a thorough benchmarking of key performance
metrics of the systems implemented by a variety of beyond-
CMOS charge- and spintronic devices. The modeling of
energy and delay per CeNN operation under given weights
are adopted from [44]. For spintronic devices, different writ-
ing mechanisms are investigated, such as spin diffusion, spin
Hall effect and domain wall motion, corresponding to the
schematics shown in Fig. 2.

Fig. 5 shows the overall energy dissipation and delay
per image recognition task for five categories of beyond-
CMOS devices. In general, tunneling FETs, shown as red
dots, dissipate less energy compared to other charge- and
spin-based devices. Themain reason is the steep subthreshold
slopes of TFETs, which allows ultralow supply voltages as
shown in Table 1. In addition, a steep subthreshold slope
leads to a larger gm at a small bias current, which reduces
the required feedback resistance, Rf , based on (3). A small
Rf helps us to reduce the delay constant and improve the
settling time of the cellular operation. Among five TFETs
being investigated in this article, the system implemented by
ThinTFET stands out and achieves the best EDP due to its
large driving current under a small supply voltage. The low

FIGURE 5. Comparison of energy and delay per MNIST
recognition task among various beyond-CMOS technologies
with analog and spintronic implementations. Green, red, yellow,
and blue dots represent charge-based devices, whose
expansion of each device is listed in Table 1. Cyan points
represent spintronic devices, whose expansion of each device
is listed in Table 2. The details of each device flavor are
described in the previous benchmarking article [2]. The red star
at the bottom left shows the preferred corner.

energy systems technology (LEAST) center provides the
current–voltage characteristics, which are obtained through
atomistic simulations [2].

In Fig. 5, one can also observe that the systems using
spintronic devices (light blue points) are located at the top
right corner, which is away from the preferred corner. This
is mainly because the energy and delay associated with the
last fully connected layer are prohibitively large. As described
in Section III, due to the limited number of inputs in each
CeNN cell, we use digital Boolean logic circuits with adders
and multipliers to perform multiplications and additions in
the fully connected layer, assuming the number of output
bits is 12. Because of the relatively slow response time of
a magnet compared to the delay of charging or discharging
the gate of an FET, spintronic devices are very inefficient in
performing Boolean logic functions.

To better visualize the computation cost associated with
the fully connected and convolutional layers, we broke down
the delay and energy dissipation of the two parts for various
device options as shown in Fig. 6. The six spintronic imple-
mentations are located on the top right corner of Fig. 6(a),
indicating the large computation cost of the Boolean oper-
ations. For the convolution layer shown in Fig. 6(b), spin-
tronic systems are more competitive, and over one order of
magnitude improvement can be observed for spin diffusion-
based devices using Heusler alloy (SD-HA) magnets. This is
because: 1) a single magnet can accomplish the functionality
of a neuron, and the convolution operation can be achieved
in a fast and efficient way through a single cellular opera-
tion and 2) the spintronic device operates at a low supply
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FIGURE 6. Energy versus delay for (a) fully connected layer and
(b) convolution layers in a CeNN-based CoNN system for a
variety of beyond-CMOS technologies.

voltage, which further improves the energy efficiency of the
computation.

For the system implemented by charge-based FETs,
the energy dissipation per operation associated with the
convolutional layers is higher compared to the energy for
fully connected layer due to a large number of convolution
operations involved. For the delay, similar to the spintronic
systems, the delay of charge-based systems is limited by the
fully connected layer. Here, we assume there are 100 multi-
pliers available for the Boolean computation. If we allocate
more resources for the multiplier, the delay associated with
the fully connected layers can be further reduced, but this will
come with a larger footprint area overhead.

FIGURE 7. Energy versus delay of CeNN-based CoNN performing
MNIST digit recognition task for a variety of beyond-CMOS
technologies. Here, cyan dots represent the hybrid design
using a combination of CMOS HP devices for implementing the
fully connected layer and spintronic devices for the convolution
layers in the CoNN.

For charge-based FETs with an extra ferroelectric switch-
ing time (yellow dots), such as FEFET, MITFET, and
NCFET, their relative positions in the convolutional layer plot
[Fig. 6(a)] shift largely toward the preferred corner compared
to the ones shown in the fully connected layer plot [Fig. 6(b)].
This is mainly because of the extra ferroelectric polarization
switching time. This extra delay can be much larger than the
intrinsic switching delays of FETs during the Boolean logic
computation; however, for the CeNN-based CoNN applica-
tion, the product of the feedback resistance and capacitance,
Rf Cf , dominates the settling time, which overshadows the
extra ferroelectric switching delay.

C. HYBRID CONFIGURATION FOR SPINTRONIC
CeNN-BASED CoNN IMPLEMENTATION
To further improve the performance of spintronic systems
(cyan points in Fig. 5), we propose to implement a hybrid
configuration. The proposed hybrid system uses CMOS HP
devices to perform the Boolean computation in the fully
connected layer, and for the rest of the layers, the same
spintronic CeNN cells are used. Because each spintronic
CeNN cell implementation has voltage output characteristics
as described in Section II, the output of the pooling layer can
be directly connected with the fully connected layer using
charge-based CMOS devices.

To quantify the potential improvement offered by the pro-
posed hybrid system, the updated energy versus delay com-
parison for various emerging technologies is shown in Fig. 7.
One can observe that compared with the data in Fig. 5,
the hybrid systems using spintronic and CMOS HP devices
show promising results. Their positions shift significantly
toward the bottom left preferred corner. Multiple hybrid
spintronic systems outperform their counterparts using
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FIGURE 8. Percentage of delay and energy dissipation
associated with the fully connected layer for a variety of
beyond-CMOS technologies.

conventional CMOS HP devices. For the system using SD-
HA material, it provides a 4× EDP reduction because of
the low critical current requirement of the magnetic material.
With the continuous improvement of spintronic devices and
the discovery of new materials, the performance of spintronic
circuits is expected to be further improved.

To identify the limitation and bottleneck of the proposed
hybrid CeNN-based CoNN system, Fig. 8 shows the percent-
age of delay and energy associated with the fully connected
layer. One can observe that the delay and energy cost of the
Boolean computation in the hybrid spintronic-CMOS sys-
tems decreases significantly compared to the results shown
in Fig. 6. However, for ultralow-power systems, such as the
ones using SD-HA and SHE-YIG, the delay and energy are
still dominated by CMOS HP devices in the fully connected
layer. The main reason SHE device has a much smaller
percentage of energy dissipation associated with the fully
connected layer is because this device consumes a lot of
energy during the convolution operation, as can be seen from
Fig. 6(b). Therefore, the overall energy dissipation is more
dominated by the convolution layer instead of the fully con-
nected layer. One possible option to alleviate the overhead
is to use low-power charge-based devices, such as TFETs,
to replace the CMOSHP devices in the hybrid systems, which
will further improve the overall EDP of the spintronic system.

V. CONCLUSION
This article presents a uniform benchmarking for non-
Boolean computation for the CoNNs based on CeNNs.
A variety of charge-based and spintronic beyond-CMOS
device technologies are used to implement an energy-efficient
CeNN cell. The functionality of the spintronic CoNN sys-
tem is demonstrated through numerical simulations for
the MNIST application. A hybrid spintronic CeNN-based
CoNN system is proposed to alleviate the delay and energy

overheads of the fully connected layer implemented by
spintronic devices. It is shown that spintronic devices
have the potential to efficiently implement CoNNs, where
4× improvement in EDP is projected for the system using
SD-HA or ThinTFETs compared to its conventional CMOS
counterpart.
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