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ABSTRACT Floating-gate silicon-oxygen-nitrogen-oxygen-silicon (SONOS) transistors can be used to
train neural networks to ideal accuracies that match those of floating-point digital weights on the MNIST
handwritten digit data set when using multiple devices to represent a weight or within 1% of ideal accuracy
when using a single device. This is enabled by operating devices in the subthreshold regime, where they
exhibit symmetric write nonlinearities. A neural training accelerator core based on SONOS with a single
device per weight would increase energy efficiency by 120×, operate 2.1× faster, and require 5× lower area
than an optimized SRAM-based ASIC.

INDEX TERMS Analog, flash, floating gate, memristor, neural network (NN), neuromorphic, silicon-
oxygen-nitrogen-oxygen-silicon (SONOS), training.

I. INTRODUCTION
Analog accelerators promise to improve the energy and
latency of training a neural network (NN) by more than a
100× over an optimized ASIC [1]. Analog matrix operations
are used to process each memory element in parallel and
thereby eliminate data movement, as illustrated in Fig. 1 [2].
However, this requires devices with high resistance, lowwrite
variability, and low write nonlinearity [3]. Resistive memory
devices have been used to represent synaptic weights, but the
write variability and asymmetric write nonlinearity in cur-
rent resistive memory device technology prevent the weights
from being learned to high accuracy [3], [4]. Algorithmic
and circuit techniques help improve accuracy [5], [6], but
NN accuracy is not ideal. Novel lithium [7] and polymer
[8] based devices with excellent analog properties have been
demonstrated but will require continued work to integrate
into modern CMOS foundries. In this paper, we show that
a conventional floating-gate memory, commonly available
in foundries, can be used train an NN to within 1% of that
achieved with floating-point weights on MNIST data set
(ideal accuracy). It has been shown that floating-gate mem-
ories can be used to create accurate inference accelerators
[9], [10]. We extend this to online training. Furthermore, the
recently demonstrated periodic carry technique with multiple

cells per weight [5] enables training to ideal accuracy.We also
estimate that an 8-bit floating gate-based accelerator will have
training energy, latency, and area advantages of 120×, 2.1×,
and 5×, respectively, versus performing the same training
tasks with an optimized SRAM-based ASIC.

In order to accelerate NN training using backpropagation,
three kernels need to be accelerated: vector–matrix multi-
plication (VMM), matrix–vector multiplication (MVM), and
outer product update (OPU) [2], as shown in Fig. 1. To accel-
erate both VMM andMVM, the source needs to be connected
to the rows and the drain connected to the columns (or vice
versa). During the OPU (parallel write), this configuration
requires an access transistor for each memory cell to dis-
connect the drain from the rows. The access transistor pre-
vents hot electron injection and junction breakdown. It also
prevents large currents from flowing between the source and
drain, which would cause unacceptable energy consumption
and parasitic voltage drops in an array.

II. DEVICE CHARACTERIZATION
The silicon-oxygen-nitrogen-oxygen-silicon (SONOS)mem-
ory cell illustrated in Fig. 2 was fabricated and character-
ized. The binary memory operation is illustrated in Fig. 3.
A reasonable I–V memory window is shown. Using longer
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FIGURE 1. (a) VMM is illustrated. A fixed read voltage is applied
to all gate terminals. Access transistors (drawn as a switch) are
biased on. Pulses of varying lengths are applied along the
rows, and the resulting current is integrated along the columns.
The transpose MVM can be performed by applying pulses to the
columns and reading along the rows. (b) Parallel write, or OPU,
for a 10 V write is shown with the corresponding biases labeled.
The access transistors are open circuited. Selected devices see
up to the full 10 V across VGS, while unselected devices see a
maximum of 7 V across VGS. The last column has a write
voltage of −1.4 V, applying 9.9 V across W2,3 resulting in
smaller state change than a full 10 V write. The amount written
can be controlled by varying the voltage or pulse length.

write pulses or higher voltages can give a larger memory
window. In Fig. 4, we characterize the analog properties
of the device for different write voltages. The write volt-
age used determines the number of analog states and write
linearity. Write pulses of VGS = −11 V for 10 µs and
VGS = +10 V for 10 µs were chosen as the lowest voltages
that give a reasonable Ghigh/Glow ratio and high linearity in
the conductance versus pulse characteristic. The threshold
shift during the analog write is illustrated in Fig. 5 and is
only about 200 mV. This is because only a ∼10×Ghigh/Glow
ratio is needed for analog operation.

To analyze the effect of drain bias while programing the
cell in an array, we investigated the effects of different
source–drain configurations, including VDS = 0 V, VDS =

FIGURE 2. (a) SONOS memory is schematically illustrated.
(b) Transmission electron micrograph of the gate-stack is
shown. The channel length of the device is 1.2 µm, and the
channel width is 7 µm. The oxygen-nitrogen-oxygen (ONO)
layer was grown in a tunnel oxidation furnace (VTR-20) in a
dilute nitrous oxide (N2O) atmosphere at 750 ◦C.

FIGURE 3. Binary memory window of the SONOS cell is shown.
Alternating −11 V, 2.5 ms erase pulses and 10 V, 2.5 ms program
pulses are applied. The pulse lengths can be increased to
further increase the memory window.

3 V, and floating/high-Z (Fig. 6). Ideally, VDS = 0 during
write. To achieve a condition close to this, an access transistor
is used to float the drain, resulting in the drain floating condi-
tion. To see what would happen without an access transistor,
VDS = ±3 was also applied across the drain. Fortunately,
changing VDS does not significantly affect the state written
as both the source and body are grounded. This indicates
that there is potential for writing without an access transistor
to float the drain. Nevertheless, we model an access device
in subsequent area projections to eliminate parasitic currents
during a write and to improve reliability by preventing hot
electron injection. Eliminating the transistor would require
redesigning the floating-gate cell to limit the on-state current
to limit the parasitic currents during a write.

It has also been verified that unselected devices do
not change state under partial gate-bias conditions, with
VGS = −8 V for erase and VGS = +7 V for program, as
illustrated in Fig. 7. The access transistor only must block
half the difference between the selected and unselected write
voltages, reducing the size requirement of this transistor.
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FIGURE 4. Alternating series of 50 erase pulses (gray shading),
followed by 50 program pulses (white shading) are applied for
different write voltages. VS = VB = 0 V and VD is floating. After
applying a write pulse, the conductance is measured at VGS = 2
and 2.4 V and VDS = 0.1 V. Write voltages of VGS = −11 and 10 V
give a reasonable on/off range and high write linearity.
Increasing the erase voltage to −14 V broke the device.

FIGURE 5. 50 10 V, 10 µs set pulses are applied, and an I–V is
measured after each pulse. During the analog write,
the threshold only shifts by about 200 mV, instead of the full
1–2 V of a memory write.

If the write voltage is VGS = 10 V and the unselected write
voltage is 7 V, the access transistor will have to hold off 1.5 V.

The key limitation in NN training accuracy is the asym-
metric nonlinearities during a write [3]. With an asymmetric
nonlinearity, alternating program and erase pulses that can
occur at the end of training cause the weight to decay to a
midpoint value. Nevertheless, NN can train to high accuracy
with symmetric write nonlinearities [3]. To optimize the write
nonlinearity, the gate read voltage needs to be optimized,
as shown in Fig. 8. Choosing the correct read gate voltage will
have a dramatic impact on the NN work accuracy. As VG,read
is lowered from 2.6 to 1.4 V, the nonlinearity changes from an
asymmetric nonlinearity to a symmetric linearity. By lower-
ingVG,read, the device is operating in the subthreshold regime.
In this regime, the magnitude of the change in conductance
after a write pulse primarily depends on the starting state and
not the sign of the write voltage. Achieving a symmetric non-
linearity is critical to enabling high-accuracy training of NNs.

FIGURE 6. Changing the drain bias during a write does not affect
the write properties. In all cases, Vbody = 0 V. The biased case
corresponds to the conditions without an access device: VS = 0
and VD = 3 V during program and −3 V during erase.

FIGURE 7. Alternating series of erase (gray shading) and
program (white shading) pulses are applied. Lowering the write
voltage from VGS = −11 and 10 to −8 and 7 V inhibits significant
state change.

FIGURE 8. 100 erase pulses (VGS = −11 V, 10 µs) followed by
100 program pulses (VGS = 10 V, 10 µs) are applied, and the
current is measured at different read gate voltages.
(a) Normalized current and (b) absolute value of the current are
shown. Decreasing VG,read significantly reduces the write
nonlinearity and changes the nonlinearity from an asymmetric
nonlinearity to a symmetric nonlinearity.

To characterize the analog statistics, a series of increas-
ing and decreasing pulses were applied, as illustrated
in Figs. 9–11. The conductance versus pulse number is
plotted in Fig. 9. In Fig. 10, the conductance change at
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FIGURE 9. Alternating series of 100 erase pulses followed by
100 program pulses are applied. The conductance after each
pulse is read at VDS = 100 mV, and the measurement is
repeated 50 times to collect statistics.

FIGURE 10. At VG,read = 1.4 V, the conductance change is
symmetric between program and erase (small changes at a low
initial state and large changes at a high initial state) leading to a
high training accuracy.

FIGURE 11. At VG,read = 2.6 V, the conductance change in
asymmetric between program and erase leading to lower
training accuracy.

VG,read = 1.4 V for different starting conductances is
extracted from the pulsing data shown in Fig. 9. We see the
symmetric write nonlinearity where the conductance change
is directly proportional to the starting state. In Fig. 11(a), at
VG,read = 2.6 V, this reverses resulting in an asymmetric non-
linearity. The asymmetric nonlinearity results in significantly
lower training accuracies.

A remaining challenge is to understand analog endurance
in a floating-gate device. A typical analog write pulse is
only 0.1% or less of the length of a digital memory pulse
[3], potentially increasing the endurance by three orders of
magnitude or more. Furthermore, NN training is also resilient
to occasional device failure [4]. If needed, it is also possible
to tradeoff retention for endurance.

TABLE 1. A/D and D/A converter properties.

FIGURE 12. The lower the read voltage is, the higher the training
accuracy is. A single device is used per weight.

TABLE 2. Data set properties.

III. NEURAL NETWORK SIMULATION
To simulate the accuracy of an NN based on this SONOS
device, a detailed system simulation was performed in Cross-
Sim [3], [7], Sandia’s analog crossbar simulator. We model
the general purpose neuromorphic system in [3] where cross-
bars are used to perform matrix operations in analog, and
the inputs and outputs are processed in digital. This requires
digital-to-analog (D/A) and analog-to-digital (A/D) convert-
ers at the inputs and outputs as specified in Table 1. The
bit precision and algorithmic input–output ranges used are
given. They have a negligible (0.2%) impact on accuracy [5].
In order to model negative weights, a single device per weight
is initially used, and a reference current is subtracted [3].
Two different two-layer NNs, summarized in Table 2, are
simulated [11], [12]. Simulation details are explained in the
supplementary information of [7]. It is assumed that write
voltages or pulse lengths can be scaled to vary the amount
written.

As shown in Fig. 12, by choosing the correct gate voltage, a
good accuracy of 96.9% is achievable on MNIST. Represent-
ing negative numbers by taking the difference between two
devices averages out some of the noise and increases the accu-
racy to 97.6% on MNIST. Using two devices per digit to rep-
resent negative numbers and two digits to represent a weight
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TABLE 3. Area comparisons.

FIGURE 13. Training an NN with the SONOS device can reach
good accuracies of around 96% on MNIST when using a single
device but can reach ideal accuracies when using multiple
devices with periodic carry. The one-device architecture uses a
single device to represent a weight and subtracts a reference
current. The two-device architecture takes the difference
between two devices to represent negative numbers. The
periodic carry architecture also uses two devices for the
file-type data set and four devices for MNIST.

with periodic carry [5], an ideal device accuracy of 98.0%
can be achieved, as shown in Fig. 13. We use a base 8, two-
digit number system where the first digit represents numbers
eight times larger than the second digit. Periodic carry allows
one to take the advantage of both a parallel write and a place
value number system. Normally, a carry must be computed
after every addition if using multiple digits. This eliminates
the benefit of the parallel update. Allowing for a part of an
analog device’s conductance range to represent a carry allows
the carry from the second digit to the first digit to be computed
only once every 1000 updates, thereby averaging out the cost
of reading each memory element and adjusting the weights to
perform a carry. We dedicate 50% of the conductance range
of the lowest order digit to representing the carry.

For the file-type data set, only a single device is needed
per digit, and using periodic carry actually results in higher

accuracy than the numeric floating-point calculation (likely
due to noise finding a more optimal solution).

IV. ARCHITECTURAL EVALUATION
One of the key drawbacks of using a floating-gate memory
for an analog accelerator is that it requires a far larger area
and voltage versus a ReRAM. Nevertheless, it is still possible
to achieve significant system-level advantages relative to an
optimized digital SRAM-based ASIC. To understand this,
the architectural-level analysis in [1] was modified to use a
1024 × 1024 SONOS array. The energy, area, and latency
of a neural core that performs the three key matrix opera-
tions, VMM, MVM, and OPU, were modeled. A 14-/16-nm
process was modeled for the digital logic and interconnects.
We assume that the SONOS cell can scale to 28 nm and esti-
mate a gate capacitance of 100 aF and cell area of 0.053 µm2

based on existing 28-nm floating-gate transistors [13], [14].
We also assume that it is possible to optimize the channel
to give the high resistance (100 M�) needed for large-scale
arrays. The access transistors are assumed to have the same
area and capacitance as the floating-gate cell. Finally, writ-
ing the array requires large high-voltage transistors that can
support 11 V. Based on [15], high-voltage vertical transistors
can be fabricated in an area of 1.44 µm2 and a capacitance
of 7.44 fF. These transistors are 9% of the core area. If
needed, larger planar high-voltage transistors can be used
without drastically changing the overall area. We assume that
a future process will be able to integrate the needed transistors
on a single substrate as commercial 28-nm embedded flash
is already in development. The ReRAM- and SRAM-based
accelerators and device properties are described in detail
in [1]. The SRAM-based accelerator is based on a 1-MB
cache synthesized using a cache generator targeting the
14-/16-nm PDK. The ReRAM is assumed to have a 100-M�
on state, 35-aF capacitance, 10× on/off ratio, and a 1.8 V
write voltage. The resulting energy, area, and latency rela-
tive to digital SRAM-based accelerator and analog ReRAM-
based accelerator are summarized in Tables 3 and 4 for the
accelerator. For an 8-bit floating-gate training accelerator,
70% of the write energy is due to the CV2 energy of charging
wires to 10 or 11 V. The very low write currents result in
negligible contributions to the write energy. The SONOS read
latency is comparable to ReRAM as the timing is dominated

TABLE 4. Energy and latency comparisons.
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by the A/D and D/A converters. However, 96% of the total
latency is due to the slow write speed of SONOS. Neverthe-
less, the large parallelism afforded by an analog accelerator
allows for the total SONOS latency to still be 2× faster than
an SRAM-based accelerator. Latency can be decreased by
trading off retention for a faster write or by using a device
with a steeper subthreshold swing that allows for a larger
conductance change with a smaller threshold shift.

Only 57% of the area is due to the SONOS cell and the
access transistor, indicating that the array area is reasonably
balanced with the area of the rest of the circuitry. If higher
area efficiency is desired, two 3-D integration options can
be explored. High-density (1.8 µm pitch) face-to-face inter-
connects [16] could be used to connect two wafers, one
with digital logic and one with high-voltage and floating-gate
transistors to reduce the area by 50%. The 3-D interconnect
capacitance would be less than the row or column capacitance
in the SONOS array. Following [17], 3-D nand arrays could
also be used to store multiple layers of an NN in the same 2-D
area. Each individual SONOS cell shown in Fig. 1 could be
replaced by a column in a 3-D nand array.

V. CONCLUSION
Floating-gate memories, currently available in commercial
foundries, are a compeling near-term option for analog train-
ing accelerators. This paper has demonstrated lower write
noise and write nonlinearity than alternative resistive mem-
ories, allowing for training to ideal accuracies on MNIST.
Despite the high voltage and slow writes, the energy, area,
and latency of an 8-bit floating-gate neural accelerator is still
120×, 5.0×, and 2.1× better, respectively, than an optimized
digital ASIC counterpart. The high accuracies are enabled by
operating the devices in the subthreshold regime giving sym-
metric write nonlinearities. Any three-terminal transistor-
based device should be able to operate in this favorable
regime.
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