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ABSTRACT This paper presents a uniform benchmarking methodology for non-Boolean computation
based on the cellular neural network (CNN) for a variety of beyond-CMOS device technologies, including
charge-based and spintronic devices. Three types of CNN implementations are investigated using analog,
digital, and spintronic circuits. Monte Carlo simulations are performed to quantify the impact of the input
noise, thermal noise, and the number of bits representing the weights of synapses on the overall recall
probability and delay. The results demonstrate that the recall probability improves significantly as the
number of synapses increase. Using a 4-b resolution for synapse weights provides the best tradeoff between
the required numbers of synapses and synapse bits for a target recall rate. Finally, three types of CNN
implementations with various device technologies are benchmarked for a given input noise and recall
accuracy target. It is shown that spintronic devices are promising candidates to implement CNNs, where up
to 3× energy-delay product improvement is predicted in domain wall devices compared to its conventional
CMOS counterpart.

INDEX TERMS Beyond-CMOS technology, cellular neural network (CNN), performance benchmarking.

I. INTRODUCTION

W ITH CMOS technology approaching its scaling
limit [1], many beyond-CMOS device technologies

are being considered to augment the conventional Si CMOS
technology and to sustain the exponential growth of the
computational power of microchips [2]. For the charge-based
devices, some promising candidates include ferroelectric
negative capacitance FET (NCFET) [3], [4], tunneling
FET (TFET) [5]–[8], piezoelectric FET (PiezoFET) [9],
graphene p-n junction switch [10], and various FETs based
on 2-D materials [11], [12]. Some of these devices can
potentially work with lower supply voltages as they may
offer steep threshold swings. A decrease in the power supply
voltage reduces the dynamic energy dissipation in devices
and interconnects quadratically. Another major category of
emerging devices includes spintronic devices that use mag-
nets and spin transfer torque mechanism to store and process
information [13]. All-spin logic (ASL) [14], charge-coupled
spin logic [15], and domain wall logic [16] are some of the
well-studied device concepts in this category. These devices

can operate with supply voltages of ∼100 mV or even lower
and have an additional feature of nonvolatility. Although the
intrinsic energy required to switch a very stable magnet at
room temperature can be as low as 40 kT, these devices are
quite energy hungry because of the inefficiency of the spin
transfer torque mechanism. Furthermore, the switching delay
of the ferromagnet is typically in the nanosecond range com-
pared to FETs that can switch in less than tens of picoseconds.

Recent benchmarking research based on Boolean circuits
such as 32-b adders has projected a limited performance gain
for only a few beyond-CMOS device candidates [2]. For
spintronic devices, orders of magnitude worse performance
in terms of energy-delay product (EDP) has been predicted.
Research in the area of beyond-CMOS devices is progress-
ing fast and the proposed devices are being continuously
revised and reinvented. Such innovations, which are hard to
predict, will with little doubt make emerging devices more
competitive. However, one needs to recognize that conven-
tional CMOS devices and their corresponding circuits and
architectures have evolved together over many years. Some

36

2329-9231 
 2016 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. VOLUME 2, 2016



Pan and Naeemi: Non-Boolean Computing Benchmarking for Beyond-CMOS Devices

of the emerging beyond-CMOS devices offer fundamentally
different and in some cases unique characteristics because of
which novel and nontraditional circuit concepts are needed to
realize their full potential.

To better utilize emerging charge- and spin-based
technologies, alternative nonBoolean platforms based on neu-
romorphic circuits are quite attractive [17], [18]. Biologically
inspired computing platforms are highly efficient for solving
many problems, particularly in the voice, image, and video
processing, by taking advantage of massive parallel low-
power computing blocks [19], [20]. Many proposals have
studied neuromorphic systems based on spintronic devices,
and they are shown to provide low energy per operation
compared to the conventional CMOS technology [21], [22].
For the charge-based devices, recent studies demonstrated
that using TFETs to build a cellular neural network (CNN)
can potentially lower the energy per operation thanks to their
low supply voltage and steep subthreshold slope [23], [24].

In this paper, for the first time, uniform nonBoolean
benchmarking is performed for a variety of beyond-CMOS
devices based on the CNN architecture. The CNN is a suit-
able platform for the purpose of benchmarking, because a
variety of charge- and spin-based devices can be used to
implement CNN circuits efficiently [23]–[25]. Moreover, the
mathematical framework for CNN circuits is well defined and
understood, which facilitates benchmarking various imple-
mentations for a given task and desired accuracy. Further-
more, there has been a great deal of research on both digital
and analog implementation of CNN circuits with CMOS
devices [26], [27]. The benchmarking in this paper covers
three CNN implementations based on analog and digital
charge-based switches and spintronic devices. The perfor-
mance is compared in terms of the energy and delay for a
given associative memory application with a certain accuracy
target and input noise level. It is crucial to understand and
identify the advantage and drawback of each device technol-
ogy by means of a rigorous and fair benchmarking to guide
device researchers to develop a device for optimal circuit
performance.

The rest of this paper is organized as follows. Section II
describes the designmethodology and themodeling approach
for three types of CNNs, including the analog, digital, and
spintronic implementations. Section III shows the functional
demonstration and the benchmarking results, comparing the
recall accuracy, energy, and delay for different CNN imple-
mentations using various emerging beyond-CMOS devices.
The conclusions are drawn in Section IV.

II. CNN CELL IMPLEMENTATIONS AND
MODELING APPROACHES
A. OVERVIEW
The CNN is a non-Boolean computing architecture that con-
tains an array of computing cells that are connected to nearby
cells. Since interconnects are major limitations in modern
VLSI systems, CNN systems can take advantage of the local

communication and encounter fewer constraints imposed by
interconnects. The CNN can be considered as a brain-inspired
computing architecture that relies on neurons to integrate
the incoming currents. The accumulated and activated output
signal drives nearby neurons through weighted synapses.
The underlying mathematics of a CNN was proposed by
Chua and Yang [28] and the dynamic state equation of each
CNN cell circuit is written as

Cf
dxij
dt
= −

1
Rf
xij +

∑
kl∈Sij

Aij,klykl +
∑
kl∈Sij

Bij,klukl + Iij

yij = f (xij) (1)

where xij is the state voltage of the cell, Rf and Cf are the
linear resistance and capacitance of each cell, ykl and ukl
are the outputs and inputs of neighboring cells, respectively,
f (x) is the sigmoid function that describes the characteristic
between the output voltage and cell state voltage, Akl and Bkl
are templates of each cell, whose values represent the weights
of synapses connecting two nearby cells, and Iij is the input
bias current of each cell.

B. ANALOG IMPLEMENTATION
Many prior publications have focused on the CNN imple-
mented by analog circuits using CMOS transistors. A widely
used implementation is based on operational amplifiers and
operational transconductance amplifiers (OTAs) as neurons
and synapses, respectively [26], [27]. Some recent work has
also investigated CNN using beyond-CMOS charge-based
devices, such as TFETs, to potentially improve the energy
efficiency [23], [24] thanks to their steep subthreshold slope
and low operating voltage.

In this paper, the delay per operation is numerically solved
based on CNN dynamics shown in (1), where the linear
feedback capacitance, Cf , is the summation of the input and
output capacitances of nearby OTAs to reliably sink current,
the feedback resistance, Rf , is set as 2/Gm to achieve a
stable output, where Gm is the summation of the conduc-
tance of input synapses. Since the synapses are realized with
OTAs [23], the conductance of the synapse is equal to the
transconductance of transistor connecting to the input, which
is written as

gm =
ib ln 10
SS

(2)

where ib is the bias current of the device and SS is the
subthreshold slope in mV/Dec at the bias current point. In this
paper, the bias current of the transistor is set as the geometric
mean current of ON and OFF currents, which are adopted from
the previous benchmarking work [2], shown in Fig. 1. The
transistor width is set as 10 F, where F is the minimum feature
size of 15 nm.

Fig. 2 shows the comparison of subthreshold slope and
transit frequency among various charge-based device tech-
nologies. The subthreshold slope is estimated as the aver-
age slope based on the ON and OFF currents, assuming the
maximum threshold voltage is 0.3 V. The transit frequency is
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FIGURE 1. Device input capacitance versus the bias current for a
variety of charge-based device technologies. Right: size of the
circle represents the supply voltage. Results are adopted
from [2]. The bottom-right is the preferred corner.

FIGURE 2. Subthreshold slope versus the transit frequency for a
variety of charge-based device technologies. The bottom-right
is the preferred corner.

defined as fT = gm/2πCo ∝ 1/RC , where C0 is the input
capacitance of the transistor. Since the settling time of the
system to reach the equilibrium state is proportional to the RC
time constant according to the CNN dynamic equation (1),
the inverse of the transit frequency represents the speed of
the CNN operation. In general, the TFET has a steeper sub-
threshold slope compared to the conventional CMOS HP and
LV devices. In addition, the TFET operates at a low supply
voltage. However, the low ON current limits the bias current,
leading to a slow operation speed. The energy dissipation is
written as E = VddIb · td ∝ Vdd · SS · C0, where Ib is the
total biasing current of synapses and neurons. The neuron is
built with a two-stage differential-input single-ended output
7-transistor operational amplifier [29]. The bias current of
the neuron is set as the maximum current from incoming
synapses to provide a large driving capability. Based on the
analysis above, a device with a large bias current and a small
subthreshold slope and capacitance can potentially be faster;

a device with a small subthreshold slope, supply voltage,
and capacitance may potentially consume less energy. These
trends can be observed based on more rigorous numerical
simulation results of CNN dynamics shown in Section III.

FIGURE 3. Diagram of the CNN cell implementation based on the
digital circuit.

C. DIGITAL IMPLEMENTATION
The diagram of the digital CNN cell implementation is
illustrated in Fig. 3. The n-b weights of synapses connecting
nearby cells are stored in n-b registers. The following opera-
tions are performed in each cell in parallel.

1) The counter is activated by the clock and the output of
the decoder will select one weight.

2) The weight is multiplied by the corresponding one-bit
state from either the current cell or one of the nearby
cells. Multiplication is performed by the n-b two-input
AND gates, whose outputs are stored in the n-bit register.

3) At the next clock cycle, the weighted state gets added
by the (n + log2Ns)-bit adder, and the output is stored
in an (n+ log2Ns)-bit register, where Ns is the number
of synapses connecting to the cell, namely, the number
of weights.

4) After all the weighted states are summed, the final
weighted state is truncated and updates the one-bit state
in the current cell. After all cell states in the CNN
system are updated, the system goes to the next time
step. This iteration continues until the CNN system
reaches the steady state.

For the performance modeling, the delay and energy dissi-
pation of the register, counter, decoder, two-input AND gate,
and adder follow the previous benchmarking work for the
Boolean logic circuits [2].

D. SPINTRONIC IMPLEMENTATION
In this section, CNN implementations based on three major
types of current-driven spintronic devices are investigated,
including the spin diffusion, spin Hall effect (SHE), and
domain wall devices. Magnet switching dynamics follow the
Landau–Lifshitz–Gilbert equationwith a spin-transfer-torque
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term [30], [31]. The magnetization of a magnet, Em, under a
perpendicular spin-polarized current, EIS,⊥, is written as

d Em
dt
= −γµ0[ Em× EHeff]+ α

[
Em×

d Em
dt

]
+
EIS,⊥
qNs

(3)

where EHeff is the effective field, γ is the gyro ratio, µ0 is
the permittivity, α is the damping factor, q is the elementary
charge, Ns is the number of magnetons, and EIS,⊥ can be
expressed as i0 · (

∑
kl∈Sij Aij,klykl +

∑
kl∈Sij Bij,klukl + Iij),

where i0 is the unit spin-polarized current when the template
value is unity. The amplitude and the direction of the
spin-polarized current depend on the output and input volt-
age polarities of nearby cells and the weights of synapses
connecting those cells.

1) SPIN DIFFUSION-BASED DEVICE
The CNN using spin diffusion-based devices has been inves-
tigated thoroughly in a previous study [25]. It relies on the
ASL as the basic building block, where PMA magnets are
assumed in the simulation. For the CNN benchmarking in this
paper, IMA magnets are also included for the spin diffusion-
based devices. The CNN design parameters, such as magnet
dimensions and material properties, are listed in Table 1.

TABLE 1. Spintronic CNN Design Parameters

2) SPIN HALL EFFECT-BASED DEVICE
Fig. 4(a) shows the schematic of a CNN cell implemented by
magnetic tunnel junction (MTJs) as synapses and SHE-based
device as the
neuron. In this example, each 3-b synapse has two fixed
resistances and three MTJs that are digitally programmable
to achieve eight different combinations of parallel and
antiparallel states. Each combination represents one weight,
and overall eight quantized output currents can be generated
accordingly, shown in the bar chart in Fig. 4(b). The resis-
tances are adjusted such that the current linearly increases
with the weight. Depending on the input voltage polarity, both
positive and negative weights can be realized.

During the CNN operation, multiple synapses connecting
nearby cells are connected to the neuron, and the net charge

FIGURE 4. Schematics of spintronic CNN implementations.
(a) SHE-based neuron with MTJ-based synapses, (b) quantized
current versus the weights of the digitally programmable
synapses, and (c) domain wall motion based neuron.

current flowing through the SHE material in the neuron
is converted into spin currents due to the spin orbit cou-
pling [32]. The spin-polarized current density is Js = Jcθ ,
where θ is the spin Hall angle at a value of 0.3 [33], Jc is the
charge current density. The dimension of the SHE material
is 150 × 60 × 2 nm3 with a resistance of 60 �. To further
improve the spin current received in the magnet, recent work
has shown that adding an extra layer of the copper plate
between the SHE material and the free magnet can enhance
the spin injection through the lateral diffusion [34]. For the
benchmarking results shown in Section III, an enhancement
factor of 2 is considered to show the potential improvement
by using the copper collector.

The read-out circuitry is identical to the spin diffusion
based CNN by using two MTJs [25]. The voltage at the input
of the inverter becomes low and high when the bottom MTJ
is at parallel and antiparallel configurations, respectively. The
complementary voltages are generated to drive the synapses
in nearby cells. The dynamic of the magnet orientation of
each cell is numerically solved based on (3).

3) DOMAIN WALL MOTION-BASED DEVICE
Another CNN implementation is based on using a domain
wall device as the neuron, shown in Fig. 4(c). By replacing
the SHEmaterial with the domain wall magnet, the resistance
of the bottom MTJ depends on the position of the domain
wall underneath the fixed magnets. For instance, if the input
electrons flow to the right direction, the domain wall moves to
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FIGURE 5. Training patterns of the associative memory
application, where digital numbers ‘1’–‘5’ are associated
with ‘6’–‘0’.

the right and the bottom MTJ is at the parallel configuration,
lowering the voltage at the input of the inverter, and the Vout
rises to V dd. The domain wall magnet size is 150 × 30 ×
2 nm3 with a resistance of 150 �, and the relation between
the domain wall speed cdw and the input current density are
adopted from [16].

III. BENCHMARKING METHODOLOGY AND RESULTS
A. FUNCTIONAL DEMONSTRATION
The associative memory application is widely used in tasks
of voice and image recognition, which can be efficiently
performed in the CNN architecture [35], [36]. In this sec-
tion, three types of CNN implementations are investigated
to perform the pattern recall task, shown in Fig. 5. The top
five digital numbers, ‘1’ – ‘5’, are associated with the bottom
five numbers, ‘6’ – ‘0’. The training method used for storing
patterns is adopted from the Hebbian learning algorithm [37].
It can be applied for a large number of free parameters in a
space-varying template used in the associative memory with
a fair computational cost and good convergence speed. Once
the training is finished, a digital pattern with certain random
noisy pixels is set as the input. Here, a spintronic CNN
based on spin diffusion as the writing mechanism using PMA
magnets is shown in Fig. 6 as an example to demonstrate the
functionality of the application. A noisy pattern ‘1’ is used as
the input and the output is expected to be associated with the
pattern ‘6’. The simulations are performed at room tempera-
ture, and the thermal noise is taken into account. Depending
on the random input noise and the thermal noise, the output
has a probability of successful recall. In addition, the delay
per CNN operation is dependent on the input pattern, input
noise, and the thermal noise.

B. ISO-ACCURACY ANALYSIS
Since different CNN implementations may have different
accuracies, iso-accuracy analyses are important to achieve
a fair benchmark among various types of CNNs. For each
input pattern shown in Fig. 5, 100 Monte Carlo simulations
are performed for the associate memory application with a
given number of random noisy pixels. The recall accuracy
is defined as the number of output patterns that completely
match with the associated patterns during the training.

Fig. 7 shows the comparison of the recall accuracy versus
the number of synapses for four CNN implementations with

FIGURE 6. Functional demonstration of a spintronic CNN using
ASL devices with PMA magnets as the basic building blocks.
(a) Successful recall and (b) failure recall using pattern ‘1’ as
the input with 10% noisy pixels.

FIGURE 7. Recall accuracy versus the number of synapses using
input patterns with and without noise for four CNN
implementations based on analog, digital, PMA, and domain
wall devices.

3% and 15% noisy pixels at the input patterns. By increasing
the number of synapses for each neuron, the recall accuracy
can be increased significantly. This is because each cell can
reach and communicate with more nearby cells and improve
the probability of the successful recall. This improvement
comes at the cost of a larger footprint area, energy dissipa-
tion, and training cost. For a given number of synapses, the
recall accuracy differs among various CNN implementations
because of the differences in the CNN characteristics, such as
the sigmoid function, the dynamic behavior of the magnets,
and the feedback of the analog integrators. The analog CNN
provides a better recall accuracy for processing input pat-
terns with few noisy pixels. This advantage may come from
the unique feedback mechanism of the analog operational
amplifier. For the CNN used in this paper, the dynamic of
each cell state depends not only on the inputs of the system
but also on its own cell and other cell states. This differs
from other types of feedforward neural networks without the
feedback. For a given recall accuracy of 80%, Fig. 8 shows the
required number of synapses for four CNN implementations,
and the analog CNN requires fewer synapses compared to
other CNNs.

40 VOLUME 2, 2016



Pan and Naeemi: Non-Boolean Computing Benchmarking for Beyond-CMOS Devices

FIGURE 8. Required number of synapses versus noise levels of
the input patterns for four CNN implementations based on
analog, digital, PMA, IMA, and domain wall devices at 80%
recall accuracy.

FIGURE 9. Required number of synapses versus the number of
bits used in quantized weights with 3% noisy pixels at the input
patterns for four CNN implementations based on analog, digital,
spin diffusion, and domain wall devices at 70% recall accuracy.

The results shown above are based on synapses with
ideal weights. To quantify the impact of the finite resolu-
tion of synapse weights on the recall accuracy, the numbers
of required synapses for different CNN implementations to
achieve 70% recall accuracy are shown in Fig. 9. Here, the
input noise level is set as 3%. One can observe that there is
a tradeoff between the number of synapses and the number
of bits representing the weights of synapses. With a 2-b
weight, no CNN implementation can reach a 70% accuracy
even if all the cells are connected with each other. As the
number of bits representing the synapse weight increases, the
required number of synapses keeps decreasing. Compared to
CNNs using 4-bsynapses,∼50% more synapses are required
for those using 3-b synapses. Therefore, using 4-b weights
provides a good tradeoff and also imposes small overheads
compared to the ideal weights.

Fig. 10 shows the performance comparison among three
types of CNN implementations using 4-b weight synapses to

FIGURE 10. Comparison of energy and delay per operation
among various beyond-CMOS technologies based on analog,
digital, and spintronic implementations. Triangle and circular
points of charge-based devices represent the digital and analog
CNN implementation, respectively. For the text labels of
spintronic CNN implementation, SD, SHE, and DW stand for
spin diffusion, SHE, and domain wall motion, respectively, and
CC represents the copper collector.

achieve 90% recall accuracy for a given input noise of 10%.
For the charge-based CNN implementation, CMOS HP and
LV devices are employed to quantify the performance of the
digital CNN and to compare against their analog counterparts.
It is shown that the digital CNNs are quite power hungry and
slow. This is because multiple cycles are required to read out
the weights from the register and perform the summation in
the adder, which is energy- and time- consuming. In gen-
eral, the analog CNNs implemented by TFETs dissipate less
energy thanks to their steep subthreshold slope and lower
supply voltage, shown in Figs. 1 and 2.

For devices with an extra ferroelectric switching time, such
as FEFET, MITFET, PiezoFET, and NCFET, their relative
positions in the energy-delay plot shift largely toward the
preferred corner compared to the results shown in the pre-
vious Boolean logic benchmarking [2]. The reason is that the
extra polarization switching time of the ferroelectric material
can be comparable or even larger than the intrinsic switching
delays of FETs in a Boolean circuit; however, for the CNN
application, the settling time is dominated by the product of
the feedback resistance and capacitance.

In contrast to Boolean circuits, spintronic devices are
more competitive compared to charge-based devices. This
is because a single magnet can mimic the functionality of a
neuron, and these spintronic devices operate at a low supply
voltage. For the domain wall device, it provides the best
performance in terms of the EDP thanks to its low critical
current requirement. The spin diffusion-based CNN with
IMA magnets consumes more energy due to the large critical
current required to switch the magnet.
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IV. CONCLUSION
In this paper, a uniform benchmarking methodology is
presented for the non-Boolean computation based on the
CNN architecture. A variety of beyond-CMOS device tech-
nologies, including charge-based and spintronic devices, are
compared based on three types of CNN implementations,
using analog, digital, and spintronic circuits. The impact of
the input noise, thermal noise, and the number of bits of
synapses on the system-level recall probability and delay are
quantified based on Monte Carlo simulations. As the number
of synapses increases, the recall probability improves signifi-
cantly. The tradeoff between the required number of synapses
and the resolution of the synapse weight is quantified, show-
ing the benefit of using 4-b weights. At the end, three types of
CNN implementations with various charge- and spin-based
devices are benchmarked in a single plot for a given input
noise and recall accuracy target. The results demonstrate that
TFET-based CNNs, in general, consume less energy thanks
to their steep threshold slope and low supply voltage. CNNs
implemented by digital CMOS perform worse compared to
their analog counterpart due to the large energy and delay
from multiplying and adding synapse weights. Spintronic
devices are promising candidates for implementing CNN.
Up to 3× EDP improvement is observed for the CNN imple-
mented by domain wall devices compared to its conventional
CMOS counterpart. The results of this benchmarking are
in sharp contrast to those for Boolean functions, such as a
32-b adder or an ALU, where spintronic devices performed
significantly worse compared to CMOS devices.
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