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ABSTRACT The operation of an array of coupled oscillators underlying the associative memory function
is demonstrated for various interconnection topologies (cross-connect and star-coupled). Three types of
nonlinear oscillators (Andronov–Hopf, phase-locked loop, and spin torque) and their synchronization
behavior are compared. Frequency-shift keying scheme of encoding input and memorized data is introduced.
The speed of synchronization of oscillators and the evolution of the degree of match are studied as a function
of device parameters.

INDEX TERMS Array, associative memory, neural networks, non-Boolean computing, oscillator,
phase-locked loop (PLL), sparse representation, spin torque.

I. INTRODUCTION

THE progress of integrated circuits for digital
computing has been an unprecedented success for the

past 40 years due to scaling of the number of transistors on
chip (Moore’s law [1]). Continued scaling is projected for at
least another decade [2]. Digital circuits thus handily meet
user requirements for the processing of numerical, text, and
video information. However, there is a class of problems,
traditionally associated with human intelligence, which com-
puters do not handle as successfully. They are, for example,
image recognition, speech recognition, contextual search,
and detection of spatiotemporal events. Algorithms for their
solution based on digital Boolean logic exist, but require
excessive computational effort. Various researchers arrived
at the idea to explore alternative analog or non-Boolean
methods of computing for these problems. A school of
thought that aimed to emulate, to various degrees, the oper-
ation of neurons emerged. It resulted in vigorous growth
of the fields of neural networks [3] and neuromorphic
computing [4]. Various architectures for non-Boolean com-
puting exist. Artificial neural networks [5] are the cascaded

devices with typically high fan-in and fan-out. Cellular neural
networks [6] are typically rectangular arrays of nodes,
each connected to nearest neighbors. LEGION networks [7]
combine coupling between nearest neighbor oscillators with a
common inhibiting node. In contrast to the above approaches,
we are dealing in this paper with networks of oscillators,
which we call coupled-oscillator associative memory
array (COAMA). In such a network, all oscillators are
coupled to each other, possibly through a common node
(the averager). The memorized and test patterns are encoded
in the parameters of oscillators. Under proper operation, if
a test pattern is close to one of the memorized patterns,
the phases of oscillators synchronize, which we interpret
as recognition. However, if the phases of oscillators do not
synchronize, it is a lack of recognition.

Our work builds on prior research in [8]–[10]. But, in
this paper, we are going further. We design realistic schemes
of such oscillator arrays using particular nanoscale devices
[such as nanotransistors and spin-torque oscillators (STOs)].
Prior work with coupled oscillators used a scheme, in which
the patterns are encoded as constants of coupling between
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oscillators [phase-shift keying (PSK)]. Correspondingly,
two stages—initialization and recognition—were required
in PSK. Here, we present for the first time a scheme of
frequency-shift keying (FSK), in which the patterns are
encoded as the differences of frequencies of oscillators. FSK
requires only a single stage of recognition. In addition, we
use more realistic mathematical models for simulating oscil-
lators than the popular models. For example, the Kuramoto
model [11], [12], which has been widely used to represent
arrays of coupled oscillators, contains only phases of oscilla-
tors. In contrast, all our models involve both amplitudes and
phases of oscillators. This holds true for our phase-locked
loop (PLL) model being more rigorous than that in [13].

For arrays of STOs [14], we extend our treatment from
the macrospin model (describing the magnetization of a
nanomagnet by a single vector) to a micromagnetic simula-
tion (capturing the coordinate dependence of magnetization).
Thus, the STOs are described with the most physically based
model than the other two types of oscillators. For realizing
dynamic, non-Boolean computing systems, we explore an
avenue where basic device components are not trying to
imitate a CMOS switch or circuit dynamics, but where the
individual device components itself are complex dynamical
systems. The benefits of oscillatory non-Boolean systems
could potentially be better exploited using such devices. As an
example, we study the spin-torque oscillators described in
STOs that are sub-100-nm-scale devices, acting as compact
microwave oscillators [15]–[20]. The self-sustaining oscil-
lations are generated by the flow of spin-polarized currents
(spin torque) into a thinmagnetic layer, and themagnetization
oscillations can be detected by the resistance change in
the same current path [21]. The magnetic oscillations may
create propagating spin waves [22], [23], which provide
a nonelectrical interaction mechanism between STOs [24].
The physics underlying STO operation is, in principle, well
understood and one can use standard micromagnetic
simulation codes [25] to model magnetization dynamics.
However, due to the strong nonlinearity of magnetization
dynamics [26], the large variety of possible oscillation [27]
and spin-wave modes, and the heavy computational work-
load of a full micromagnetic simulation, one has to use a
hierarchical set of approximate modeling tools to understand
the behavior of STO networks. This paper presents such
modeling hierarchy.

The coupling constants between oscillators correspond to
the Hopfield network algorithm. We compare it with other
associative memory algorithms (Palm and Furber/Willshaw)
in the Supplementary Material. We analyze the accuracy
of recognition of these algorithms, first using random data
patterns and then feature patterns extracted from real-life
images.

II. ASSOCIATIVE MEMORY AND OSCILLATOR ARRAYS
The role of an associative memory is to compare a vector of
a test pattern with the set of m vectors of memorized patterns
and to find one (or several) closest according to some metric

defined for these vectors

test = ξ0, memorized = ξ1, ξ2, ξ3 . . . (1)

where the vectors can be of any length n, binary, or grayscale.
A simple example of patterns in Fig. 1 will be used for an
illustration here. We apply an array of coupled oscillators to
the task of recognition and seek a design where the synchro-
nization of oscillators would correspond to a match. We start
with describing the evolution of an array of Andronov–Hopf
oscillators [28] (similar to van der Pol oscillators) by

dzi
dt
= (ρi + iωi)zi − zi|zi|2 + ε

n∑
j=1

Cijzj (2)

where z = x + iy is the complex amplitude of an oscillator,
ρi is a parameter determining the limiting cycle amplitude,
ε is the strength of coupling between oscillators, and the
subscripts i and j denote the oscillators within the array and,
correspondingly, the elements in the vectors. This model
closely follows those of other efforts [8]–[10]. In these exam-
ples, we will use ρi = 0.03 and ε = 0.01.

FIGURE 1. Example 1 × 60 patterns. Left-most pattern is the test
one, and the rest of the patterns are memorized. The 1-looking
test pattern is the closest to the middle memorized pattern.

We consider two methods of encoding of patterns into
oscillators: 1) FSK (introduced for the first time in this
paper) and 2) PSK. The mathematics of PSK has been given
in [8]–[10]. In FSK, the patterns are encoded as the
frequency shifts of the oscillators. Each associative array
(one permemorized pattern) is used to compare the test vector
with index 0 with one memorized vector with index m, by
shifting the frequency of each oscillator labeled by i from the
center frequency ω0, as shown in Fig. 2

ωi = ω0 +1ω(ξ0,i − ξm,i). (3)

FIGURE 2. Block diagram of an associative array in the FSK
method. Signals are passed in both directions through links.
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The coupling constants are set to a fixed value, e.g., Cij = 1.
In other words, the memorized and test patterns are encoded
not as coupling elements, but as states of the circuits control-
ling the frequencies of oscillators. The physical implementa-
tion of such circuits is dictated by the nature of oscillators.
The degree of match (DOM) between the patterns is defined
(under the name of mean field activity) in [8] as the amplitude
of the following expression to measure the alignment of
phases of the oscillators. It is alternatively called Kuramoto
synchronization index

dm =
1
n

n∑
j=1

zj. (4)

It corresponds to the amplitude of the signal at the averager.
Intuitively, the reason that the patterns are matched is the

dependence of synchronization on the frequencies of oscil-
lators. If the test and the memorized patterns are close, the
shifts of oscillator frequencies from the center one will be
small. It has been discovered long ago [29] that the coupled
oscillators synchronize if their frequencies are different by
less than a certain range dictated by the strength of coupling.
Conversely, if the test and the memorized are significantly
different, many oscillators will be significantly detuned from
the center frequency. In this case, the array of oscillators
would fail to synchronize to a single frequency. If the array
synchronizes, the outputs of oscillators add in phase and the
DOM is large. If the array does not synchronize, the phases of
oscillators drift relative to each other and their outputs add to
an oscillating function that is close to zero amplitude. Note
that adding a constant to all elements of a vector does not
change the conditions for synchronization. Thus, a uniformly
darker or brighter grayscale pattern would still be recognized
as a match in FSK.

Pattern matching is obtained differently in the case of PSK.
The following mapping of patterns on physical values is
used: the logical bit value b takes the values of 1 or 0, and
corresponds to the phase of an oscillator φ = πb, and the
pattern values are ξ = cosφ, i.e., 1 to −1 corresponding,
respectively, to white and black. The center frequencies of all
oscillators are set to a fixed value ω0. The coupling constants
(weights) are set by the product of pattern values. For the first
stage, initialization (Fig. 3), the pattern values are determined
by the test vector ξ0, such that

Cij(init) = ξ0,iξ0,j. (5)

The purpose of the initialization stage is to impose the phase
differences corresponding to the test pattern on the array of
oscillators starting from random initial conditions. For the
second stage, recognition, the coupling constants (weights)
are switched to the ones determined by all m of the memo-
rized vectors according to a Hebbian learning rule [8]

Cij(recog) =
1
m

m∑
k=1

ξk,iξk,j. (6)

FIGURE 3. Block diagram of an associative array in the PSK
method with star topology in the initialization stage. Signals are
passed in both directions through links and multiplied by a
factor each time passing an orange box. Phase detectors
provide relative phases of neighboring oscillators.

In other words, all of the memorized patterns participate
in the determination of dynamics of oscillators. Experience
shows [8] that each pattern corresponds to an attraction basin
in the configuration space. The purpose of the recognition
stage (Fig. 4) is, for thus prepared oscillators, to transition
to the phase differences corresponding to one memorized
pattern closest to the test pattern. In both stages, the DOM of
the oscillator state to any vector with index k is given by [8]
the amplitude of

dk =
1
n

n∑
j=1

ξk,jzj. (7)

FIGURE 4. Block diagram of an associative array in the PSK
method with star connection topology in the recognition stage.
Similar to that of Fig. 3, but the array of oscillators is
simultaneously connected to M averages.

The PSK can be implemented with two topologies:
1) star [9], [10] or 2) cross-connect [13]. Both are mathemati-
cally equivalent [30] (if one does not consider realistic details
of implementations, such as attenuation and delay of signals)
and thus would produce identical simulation results. This
equivalence can be understood by expressing the coupling
term in (2) in terms of memorized or test vectors according
to (6) and (7)

ε

n∑
j=1

Cijzj =
ε

m

n∑
j=1

m∑
k=1

ξk,iξk,jzj =
nε
m

m∑
k=1

ξk,idk . (8)
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In the first form in this equation, these terms are implemented
by cross-connect coupling, as shown in Fig. 5. In the
second form, it is implemented by first summing the outputs
by averagers dk corresponding to each pattern, and then
broadcasting the value of each averager to each oscillator, as
shown in Fig. 4. Vector elements ξk,i should correspond to
multipliers in each coupling.

FIGURE 5. Block diagram of an associative array in the PSK
method with cross-connect topology in either the initialization
or recognition stages. Signals are passed in one direction in a
loop and multiplied by a factor Cij each time passing an orange
box. All signals in rows are summed and sent to drive inputs of
oscillators. Phase detectors provide relative phases of
neighboring oscillators.

For the initialization stage, the oscillators are connected
to one averager (Fig. 3). For the recognition stage, the
oscillators need to be disconnected from the averager
corresponding to the test pattern and connected to a set of
averagers corresponding to the memorized patterns (Fig. 4).
For M memorized patterns, one need M averagers. In the
cross-connect implementation (Fig. 5), there are no aver-
agers, and the DOM cannot be directly obtained. Thus, one
is forced to determine the differences of the phases between
neighboring oscillators and compare them with the memo-
rized patterns. This puts this implementation at a disadvan-
tage compared with the star architecture. Its advantage is that
for the recognition stage, the scheme is the same and the same
number of coupling elements is needed for any number of
memorized patterns. In all the above implementations, one
can use phase detectors to determine the relative phases of
oscillators in order to retrieve the memorized pattern to which
the array converged.

III. FREQUENCY-SHIFT KEYING VERSUS PHASE-SHIFT
KEYING SYNCHRONIZATION
The results of simulation of arrays according to (1)–(7) with
randomly set initial conditions are shown below. The phase
differences of each of the 60 oscillators and the first oscillator
are plotted. Time is in units of inverse cyclic central frequency
of the oscillators ω−10 .
First, we consider the FSK example. We see that for

a match (Fig. 6), the phases converge to constant values,
modulo 2π , from each other. This proves that the oscil-
lators are running at the same frequency and, moreover,
are phase locked (synchronized). The DOM reaches a high

FIGURE 6. Relative phases of oscillators in units of π (top) and
the DOM (bottom) versus time for the associative array
comparing the test pattern and the 1-looking memorized
pattern by FSK.

value (close to 1) and oscillates weakly around it. Thus,
the synchronization is achieved over 6–10 periods of oscil-
lation. Conversely, for the case of bad match (Fig. 7), the
phases of most oscillators continue to increase linearly.

FIGURE 7. Relative phases of oscillators in units of π (top) and
the DOM (bottom) versus time for the associative array
comparing the test pattern and the 0-looking memorized
pattern by FSK.
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This indicates that the synchronization has not occurred for
some of the oscillators and the oscillators are running inde-
pendently with their own frequencies. The DOM oscillates
with a large amplitude around a small value. These features
of the DOM allow one to build circuits for the determination
of a winner-take-all (WTA) or k-WTA.
Next, we treat the PSK example. The results of simulations

of the evolution of oscillators in their initialization stage are
shown in Fig. 8, and for the recognition stage are shown
in Fig. 9. They show that the oscillators, starting from ran-
dom initial amplitude and phase, quickly converge to phases
different by π or 2π , depending on the sign of coupling
constants C . The DOM to the test vector reaches 1. Then,
in the recognition stage, only a few oscillators switch their
phases by π in very fast transitions until the DOM to one
memorized vector increases to 1, while the DOM to others
decreases to 0.

FIGURE 8. Relative phases of oscillators (top) and the
DOM (bottom) versus time for the associative array
in PSK initialization stage.

In PSK, the grayscale patterns are encoded via the phase
as ξ = cosφ. There is an inherent ambiguity of mapping
a certain element of the vector to other phase φ or −φ.
Our simulations show that the PSK does not converge to a
steady-state solution. We speculate that this is due to multiple
possible combinations of angles to which the system can
converge.

The overall comparison of the FSK and PSK methods is
given in Fig. 10. PSK requires just one oscillator array to
find the best matching memorized pattern. FSK calculates
the DOM of the test pattern with one of the m memorized
patterns. The full associative memory operation required m
such arrays in parallel. Additional circuits (such as k-WTA)
are required to rank the comparisons between each other.

FIGURE 9. Relative phases of oscillators (top) and the
DOM (bottom) versus time for the associative array
in PSK recognition stage.

FIGURE 10. Table of comparison of the characteristics of PSK
and FSK associative arrays. Only local memory elements in the
arrays are counted. Possible storage of vectors outside the
array is disregarded. m arrays in parallel required for FSK.

The pattern information for FSK can be stored externally
to the arrays (with only the difference between input and
stored pattern entering the system during evaluation), while
the memory elements in the PSK system must be an integral
part of the array. The fact that the FSK is capable of handling
grayscale inputs, and the absence of variable coupling con-
stants in it, in our opinion, gives crucial advantages to FSK.

IV. PHASE-LOCKED LOOP SYNCHRONIZATION
Another implementation of oscillators is a PLL with input vi
and output vo, as shown in Fig. 11. Here, we provide a model

FIGURE 11. Block diagram of a single PLL, adapted from [13].
It represents one oscillator in the array block diagrams.
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following [31], which includes both phase and voltage ampli-
tudes, more general and rigorous than that in [13] which only
includes phase. For the voltage-controlled oscillator (VCO),
its phase θ derivative is modified by the input voltage vc with
the gain K0

dθ
dt
= ω + K0vc (9)

where voltage vc is the output of a loop filter with input vd ,
described here by a one-pole transfer characteristic with time
constant τ

τ
dvc
dt
= −vc + vd (10)

where voltage vd is coming from a phase detector which can
be implemented as an ideal mixer with a factor Am

vd = Amviv0. (11)

We assume that the waveform generated by the oscillator is
approximated by a simple harmonic

V (θ ) = cos(θ ). (12)

Then, the equations for an array of linearly coupled VCOs,
where the sum of outputs of all PLLs is connected to each
input

dθi
dt
= ωi + K0vc,i (13)

τ
dvc,i
dt
= −vc,i + 2εKdV (θi)

n∑
j=1

CijV (θj − π/2) (14)

where an arbitrary phase delay in the feedback loop is chosen
to be π /2, and the gain of the mixer is

Kd =
AmV 2

o

2
. (15)

The DOM is determined in a manner similar to the above

dk =
1
n

∣∣∣∣∣
n∑
i=1

ξk,i exp (iθi)

∣∣∣∣∣. (16)

The simulation results (Figs. 12 and 13) are qualitatively
similar to the case of Andronov–Hopf oscillators. Thus, the
synchronization develops in a very similar manner for the
oscillators, which are different in the number of variables,
the character of nonlinearity, and a form of coupling.
Simulations of FSK arrays with PLL (not shown here) are
also similar to the results of Section III. This gives us an indi-
cation that the very phenomenon of synchronization rather
than the nature of the oscillator controls the operation of the
associative memory.

V. SPIN-TORQUE OSCILLATOR SYNCHRONIZATION
STOs are the promising components for oscillatory associa-
tive memories. They dissipate very little power (can be driven
by milliamps of currents and millivolts of voltage), produce
oscillations in the gigahertz range (which is highly compati-
ble with microelectronic circuitry), and enable various inter-
connection topologies (passive and electrical connections as

FIGURE 12. Relative phases of PLLs (top) and the DOM (bottom)
versus time for the associative array in PSK initialization stage.

FIGURE 13. Relative phases of PLLs (top) and the DOM (bottom)
versus time for the associative array in PSK recognition stage.

well as direct spin-wave coupling) [17]. Phase locking of two
STO has been demonstrated [24].

The dynamics of STOs is more complicated than that of
an idealized oscillator, and to the best of our knowledge, the
dynamic equations of the magnetization cannot be reduced to
Kuramoto phase oscillators [11] or the previously described
Andronov–Hopf oscillators. Our numerical models, how-
ever, show that the collective behavior of coupled STOs is
very similar to that of the simpler oscillators. In order to
demonstrate this: 1) the partial differential equations (PDEs),
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micromagnetic equations describing spin-torque driven
magnetization dynamics will be written in the form of ordi-
nary differential equations (ODEs) and 2) how phase and
frequency locking develops in systems of coupled STOs will
be shown.

Numerical solution of the Landau–Lifshitz–Gilbert (LLG)
equation is widely used for physics-based simulation stud-
ies of the magnetization dynamics in submicrometer-size
nanomagnets. In order to model spin-torque effects, the
LLG equations are complemented with the Slonczewski
antidamping spin-torque term [17]

dM
dt

∣∣∣∣
prec
= −γ (M×Heff)+

αγ

Ms
[M×(M×Heff)]

+
γβPeff
Ms

[M×(S×M)]

β =

∣∣∣∣ }
µ0e

∣∣∣∣ J
tMs

Peff =
P32(

32 + 1
)
+
(
32 − 1

)
(M · S)

(17)

where M is the magnetization vector distribution of the
free magnetic layer, γ = 2.21 · 105 m/(As) is the
Landau–Lifshitz gyromagnetic ratio, e is the electron
charge, Heff is the effective magnetic field (which includes
contributions from the STO shape, anisotropy, and exchange
stiffness), Ms is the saturation magnetization (we used
Ms = 8.6 · 105 A/m), α is the damping constant, J is the
current density, 3 is the spin asymmetry parameter (we used
3 = 1.5 everywhere), t = 5 nm is the thickness of the free
layer, and S is a unit vector indicating the spin polarization
of the driving current. The vector S is determined by the
magnetization direction of a polarizer magnetic layer, but the
magnetization of this layer is assumed to be fixed and not
simulated. The above parameters are similar to the STOs
discussed in [20]. These equations can be applied in two
different ways. As written above, they are PDEs, which give
the response of a magnetization distribution to an applied
external field and current distribution—these are all vector
field variables. Micromagnetic solver packages, such as the
well-establishedObject-OrientedMicromagnetic Framework
(OOMMF) code [25], are available for the solution, but solv-
ing these PDEs is time consuming, and it is difficult to find
connections to aKuramoto-type phasemodel. For sufficiently
small-sized STOs, one can replace the magnetization distri-
bution with a magnetization vector and solve for only ODEs
instead of PDEs. This approximation is usually referred as
the single-domain or macrospin model. The M and H vector
fields are represented by their volume average over the free
layer. There is no general rule when such approximation is
valid, so the macrospin model should always be carefully
validated against the full micromagnetic model.

We performed this comparison for various-sized STOs.
For an STO with a d < 30-nm-diameter free layer,
the macrospin model yields almost identical results to the
PDE-based, full micromagnetic description. The frequency–
current plot of Fig. 14 gives a side-by-side comparison.

FIGURE 14. Frequency-current diagram for a 30-nm-diameter
STO in CoNi film. (a) Full micromagnetic simulation and
(b) macrospin model. Material parameters are identical in the
simulations and similar to STOs studied in [20]. The threshold
and cutoff currents and the oscillation frequencies for all
harmonics are quite well approximated by the single-domain
model. The curves are somewhat different in the third
dimension, as the macrospin model is not very accurate in the
predicting of linewidth and also due to the numerical accuracy
of the Fourier transform. The single-domain model shows more
harmonics than the macrospin model.

The current-dependent frequency spectra were generated
from 100 independent simulation runs, each simulation run
using a different current value from 0 to 10 mA. The
time-dependent magnetization dynamics was then Fourier-
transformed. In experiments, such spectra are often measured
by spectrum analyzers. Plotting the data this way allows
comparison of simulation results from different models and
comparing computational and experimental results [17].

The simulations show that for contact diameters between
30 and 50 nm, the macrospin model is a close approximation.
This means that the f (i) current–frequency relation of oscil-
lation peaks, the precession modes, the threshold current for
the onset of oscillations, and the cutoff current (the current
when the STO layer switches to a stationary state and stops
oscillating) agree well between the two models. The full
micromagnetic model predicts higher oscillation bandwidth,
due to nonuniformities appearing in M(r, t). For nanomag-
net diameters above 50 nm, the free layer magnetization
breaks up into multiple domains during oscillation, and the
linewidths, threshold, and cutoff currents predicted by the
macrospin model became highly inaccurate. This means that
typically for d < 50-nm-diameter STOs, there is a possibility
to develop lumped, ODE-based models [32].

As a case study, we investigate a model of electrically
coupled STOs. The magnetization oscillations modulate the
STO resistance and the oscillation signal can be picked up
and superposed to the driving current of each individual
STO. A circuit schematic is shown in Fig. 15—this is an
implementation of the star-architecture interconnection. This
circuit can be straightforwardlymodeled in the single-domain
approximation, and details about the model are given in [20].
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FIGURE 15. Realization of the FSK scheme of Fig. 2 with STOs.
(a) In the associative array, each STO is biased by a constant
current, its inputs is proportional to the difference between
the ξ vectors and the output of the STOs connect to the
broadcast amplifier via a high-pass filter. (b) Circuit schematic
showing the interconnection of four STOs in the broadcast
scheme (star architecture). The boxed equation shows the
characteristics of the transconductance amplifier that sums
STO outputs, amplifies, and broadcasts the sum signal that
couples the STOs. The transconductance G sets the coupling
strength.

The coupling strength of the STOs is determined by the
giant-magnetoresistance (GMR) ratio of the STOs (i.e., how
strongly their resistance is changing upon oscillations) and by
the transconductance of the active amplifier interconnecting
them. The GMR-based STOs [17] deliver a few-ten micro-
volts of output voltage (V out

i ),1 which is picked up, summed
with signals from all other oscillators, and broadcasted to the
input of each oscillator (icontrol). The broadcasted current is
typically in the order of 0.1 mA on top of few milliamps STO
driving current.

According to the simulations, the phase of injection-locked
STOs is not stable, while on average, the STO frequency is
very close to that of the injected signal, the STO phase often
undergoes jumps, before it resynchronizes with the injected
signal again. Thermal agitation of the magnetic moments,
which is not considered in the model, is likely another source
of phase instability. This suggests that the FSK seems to be
a more appropriate scheme for associative functions. Fig. 16
shows the circuit dynamics for 64 STOs interconnected using
the FSK scheme. We plot the instantaneous frequency (the
inverse of the time elapsed between two zero crossings of the
STO signal). The coupling is abruptly switched on at t = 5 ns.
In Fig. 16(a), the uncoupled oscillator frequencies are evenly
spaced and lie too far apart to synchronize—pairwise syn-
chronization occurs between particular frequencies, but no
dominant frequency component emerges. If some oscillator
frequencies form a group of like frequencies [as shown
in Fig. 16(b)], then all these oscillators synchronize to

1GMR-based STO devices are all-metallic structures, where most of the
net device resistance (typically a few ohms) comes from contact resistances.
Overall, they are driven by a few milliamperes of current, and have a
few ohms of resistance and a net magnetoresistance ratio of a few percent.

FIGURE 16. Oscillator frequencies are plotted as a function of
time for 64 electrically interconnected STOs. (a) Oscillator
frequencies are lying too far apart to synchronize. (b) Group
of STOs frequency locking.

a single dominant frequency component. This can be read-out
and related to a DOM metric. One can clearly see that
the behavior of coupled STOs differs from basic oscillator
models in many respects. As shown in Fig. 16(a), even if
the oscillator frequencies are far apart, oscillators interact
and disturb each other’s frequencies in complex ways.
In many cases (unless the frequencies are very close and the
coupling is strong), the array goes into a partially synchro-
nized state, which is shown in Fig. 16(b). Some STOs are
synchronized to each other, and others are periodically pulled
to the synchronized group. The frequency of the synced group
is not absolutely stable; it is slightly modulated by the group
of unsynchronized oscillators—this is the reason why PSK
would be difficult to implement.

Fig. 16(b) also shows that in this coupling scheme, STO
frequencies are not independent of the degree of synchro-
nization. A synchronized state increases the net current flow
into the STOs (via the feedback) and the increasing current
red-shifts (decreases) oscillation frequency.

Still, the quantification of the DOM relies on the phase-
coherence of the synced STOs and their strength and stability
of the dominant frequency component indicate the DOM.

VI. CONCLUSION
We present a design of COAMA amenable to practical real-
ization. We simulate its operation in both traditional PSK
and novel FSK schemes with various models of nonlinear
oscillators. The realization of these schemeswith the arrays of
PLL and STO is considered. The simulation shows successful
recognition for the case of example matching patterns.
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